
Contents lists available at ScienceDirect
Signal Processing

Signal Processing 104 (2014) 105–119
http://d
0165-16

☆ This
Laborat
07-1-03
Scientif
opinion
this pub
views o

n Corr
E-m

axr2@p
1 Fo

PA, USA
journal homepage: www.elsevier.com/locate/sigpro
State splitting and merging in probabilistic finite state
automata for signal representation and analysis$

Kushal Mukherjee a,1, Asok Ray b,n

a United Technology Research Center, Cork, Ireland
b The Pennsylvania State University, University Park, PA, USA
a r t i c l e i n f o

Article history:
Received 27 July 2013
Received in revised form
24 March 2014
Accepted 28 March 2014
Available online 4 April 2014

Keywords:
Probabilistic finite state automata
Symbolic dynamics
D-Markov machines
State splitting
State merging
x.doi.org/10.1016/j.sigpro.2014.03.045
84/& 2014 Elsevier B.V. All rights reserved.

work has been supported in part by the
ory and the U.S. Army Research Office under
76 and W911NF-13-1-0461, and by the U.S
ic Research (AFOSR) under Grant no. FA9
s, findings and conclusions or recommend
lication are those of the authors and do not n
f the sponsoring agencies.
esponding author.
ail addresses: MukherK@utrc.utc.com (K. Mu
su.edu (A. Ray).
rmerly with The Pennsylvania State Univer
.

a b s t r a c t

Probabilistic finite state automata (PFSA) are often constructed from symbol strings that,
in turn, are generated by partitioning time series of sensor signals. This paper focuses on a
special class of PFSA, which captures finite history of the symbol strings; these PFSA, called
D-Markov machines, have a simple algebraic structure and are computationally efficient
to construct and implement. The procedure of PFSA construction is based on (i) state
splitting that generates symbol blocks of different lengths based on their information
contents; and (ii) state merging that assimilates histories by combining two or more
symbol blocks without any significant loss of the embedded information. A metric on the
probability distribution of symbol blocks is introduced for trade-off between loss of
information (e.g., entropy rate) and the number of PFSA states. The underlying algorithms
have been validated with three test examples. While the first and second examples
elucidate the key concepts and the pertinent numerical steps, the third example presents
the results of analysis of time series data, generated from laboratory experimentation, for
detection of fatigue crack damage in a polycrystalline alloy.

& 2014 Elsevier B.V. All rights reserved.
1. Introduction

Symbolic time series analysis (STSA) [1,2] is built upon the
concept of symbolic dynamics [3] that deals with discretiza-
tion of dynamical systems in both space and time. The notion
of STSA has led to the development of a pattern recognition
tool, in which a time series of sensor signals is represented as
U.S. Army Research
Grant nos. W911NF-
. Air Force Office of
550-12-1-0270. Any
ations expressed in
ecessarily reflect the

kherjee),

sity, University Park,
a symbol sequence that, in turn, leads to the construction of
probabilistic finite state automata (PFSA) [4–9]. The paradigm
of PFSA has been used for behavior modeling of dynamical
systems and its applications are widespread in various
fields including computational linguistics [10] and speech
recognition [11]. Since PFSA models are capable of efficiently
compressing the information embedded in sensor time series
[12,13], these models could enhance the performance and
execution speed of information fusion [14] and information
source localization [15] that are often computation-intensive.
Rao et al. [16], Jin et al. [17] and Bahrampour et al. [18] have
shown that the performance of this PFSA-based tool as a
feature extractor for statistical pattern recognition is compar-
able (and often superior) to that of other existing techniques
(e.g., Bayesian filters, Artificial Neural Networks, and Principal
Component Analysis [19]).

Statistical patterns of slowly evolving dynamical beha-
vior in physical processes can be identified from sensor
time series data [1]. Often the changes in these statistical

www.sciencedirect.com/science/journal/01651684
www.elsevier.com/locate/sigpro
http://dx.doi.org/10.1016/j.sigpro.2014.03.045
http://dx.doi.org/10.1016/j.sigpro.2014.03.045
http://dx.doi.org/10.1016/j.sigpro.2014.03.045
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.03.045&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.03.045&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2014.03.045&domain=pdf
mailto:MukherK@utrc.utc.com
mailto:axr2@psu.edu
http://dx.doi.org/10.1016/j.sigpro.2014.03.045

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119106
patterns occur over a slow time scale with respect to the
fast time scale of process dynamics. In this context, the
concept of two time scales is succinctly presented below.

Definition 1.1 (Fast scale). The fast scale is defined to be a
time scale over which the statistical properties of the
process dynamics are assumed to remain invariant, i.e.,
the process is assumed to have statistically stationary
dynamics at the fast scale.

Definition 1.2 (Slow scale). The slow scale is defined to be
a time scale over which the statistical properties of the
process dynamics may gradually evolve, i.e., the process
may exhibit statistically non-stationary dynamics at the
slow scale.

In view of Definition 1.1, statistical variations in the inter-
nal dynamics of the process are assumed to be negligible at
the fast scale. Thus, sensor time series data are acquired
based on the assumption of statistical stationarity at the fast
scale. In view of Definition 1.2, an observable non-stationary
behavior could be associated with the gradual evolution of
anomalies (i.e., deviations from the nominal behavior) in the
process at the slow scale. In general, a long time span at the
fast scale is a tiny (i.e., several orders of magnitude smaller)
interval at the slow scale. A pictorial view of the two-time-
scales operation in Fig. 1 illustrates the concept.

The major steps for construction of PFSA from sensor
signal outputs (e.g., time series) of a dynamical system are
Fig. 1. Underlying concept of fast and slow time scales.

Partitioning of Pre-
processed Sensor Data

Al
={

S
Q={A

Fig. 2. Construction of probabilistic
as follows:
(1)
phab
0,1,

tate
,B,C

finit
Coarse-graining of time series to convert the scalar or
vector-valued data into symbol strings, where the
symbols are drawn from a (finite) alphabet [20].
(2)
 Encoding of probabilistic state machines from the
symbol strings [12,21].
In the process of symbol generation, the space of time
series is partitioned into finitely many mutually exclusive and
exhaustive cells, each corresponding to a symbol belonging to
a (finite) alphabet. As a trajectory of the dynamical system
passes through or touches various cells of the partition, the
symbol assigned to the cell is inserted in the symbol string. In
this way, a time series corresponding to a trajectory is
converted into a symbol string. Fig. 2 illustrates the concept
of constructing finite state automata (FSA) from time series,
which provides the algebraic structure of probabilistic finite
state automata (PFSA).

The next step is to construct probabilistic finite state
automata (PFSA) from the symbol strings to encode their
statistical characteristics so that the dynamical system's
behavior is captured by the patterns generated by the PFSA
in a compact form. The algebraic structure of PFSA (i.e., the
underlying FSA) consists of a finite set of states that are
interconnected by transitions [22–24], where each transi-
tion corresponds to a symbol in the (finite) alphabet.
At each step, the automaton moves from one state to
another (possibly including self loops) via these transi-
tions, and thus generates a corresponding block of symbols
so that the probability distributions over the set of all
possible strings defined over the alphabet are represented
in the space of PFSA. The advantage of such a representa-
tion is that the PFSA structure is simple enough to be
encoded as it is characterized by the set of states, the
transitions (i.e., exactly one transition for each symbol
generated at a state), and the transition's probability of
occurrence.

D-Markov machines are models of probabilistic lan-
guages where the future symbol is causally dependent
on the (most recently generated) finite set of (at most)
D symbols and form a proper subclass of PFSA with
applications in various fields of research such as anomaly
detection [12] and robot motion classification [25]. The
… …
Symbol Sequence

Finite State Machine

A B

C D

et
2,3}

s
,D}

e state automata (PFSA).

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 107
underlying FSA in the PFSA of D-Markov machines are
deterministic, i.e., the future state is a deterministic func-
tion of the current state and the observed symbol. There-
fore, D-Markov machines essentially encode two entities:
(1) probability of generating a symbol at a given state, and
(2) deterministic evolution of future states from the
current state and the symbol. It is noted that if the symbol
is not observed, the description of the state transition in
the D-Markov machine becomes a probabilistic Markov
chain. Furthermore, under the assumption of irreducibility,
the statistically stationary distribution of states is unique
and can be computed. This class of PFSA (in D-Markov
machines) is a proper subclass of probabilistic non-
deterministic finite state automata which is equivalent to
Hidden Markov Models (HMMs) [4]. Even though HMMs
form a more general class of models, the deterministic
properties of D-Markov machines present significant com-
putational advantages. For example, due to the con-
strained algebraic structure of D-Markov machines, it is
possible to construct algorithms for efficient implementa-
tion and learning [26,27].

This paper makes a symbolic representation of time
series signals generated from dynamical systems. Since
long-range dependencies in the time series rapidly dimin-
ish under the assumption of strong mixing [28], such a
dynamical system could be modeled as a D-Markov
machine with a sufficiently large value of D. However,
increasing the value of D may lead to an exponential
growth in the number of machine states and hence the
computational complexity of the model. The main issue
addressed in this paper is order reduction of the states of a
D-Markov machine model for representing the stationary
probability distribution of the symbol strings that are
generated from the times series of a dynamical system
[29]. In addition, this paper addresses the trade-off
between modeling accuracy and model order, represented
by the number of states, for the proposed algorithm. Along
this line, major contributions of the paper are conceptual
development, formulation and validation of the under-
lying algorithms in D-Markov machines by
(1)
 Merging of (possibly redundant) states of the PFSA for
state-order reduction.
(2)
 Retaining the D-Markov properties with a specified
bound on the error between the constructed PFSA and
the symbol string.
(3)
 Trade-off between model error and model complexity
(i.e., number of states).
(4)
 Validation of the underlying concept on time series
data generated from laboratory experimentation for
detection of fatigue crack damage in a polycrystalline
alloy.
The power of the proposed tool of PFSA-based
D-Markov machines is its capability of real-time execution
at local nodes of sensor networks for anomaly detection,
pattern classification, condition monitoring, and control of
diverse physical applications. It is noted that the nodes
of such a sensor network may often have very limited
memory and slow execution in terms of flops. This paper is
organized into five sections including the introduction.
Section 2 presents the preliminary concepts and a brief
background on PFSA including the definition of a
D-Markov machine. Section 3 develops the algorithms of
state splitting and state merging. Section 4 presents three
examples to explain and validate the algorithms. Section 5
concludes this paper with recommendations for future
research.
2. Mathematical preliminaries and background

This section presents pertinent information regarding
construction of D-Markov machines and other mathema-
tical tools (e.g., entropy rate and metric to quantify the
distance between two PFSA). The following standard
definitions are recalled.

Definition 2.1 (Finite state automaton, Hopcroft et al. [23],
Sipser [24]). A finite state automaton (FSA) G, having a
deterministic algebraic structure, is a triple ðΣ;Q ; δÞ where
�
 Σ is a (nonempty) finite alphabet with cardinality jΣj;

�
 Q is a (nonempty) finite set of states with cardinality

jQ j;

�
 δ:Q � Σ-Q is a state transition map.

Definition 2.2 (Symbol block). A symbol block, also called
a word, is a finite-length string of symbols belonging to the
alphabet Σ, where the length of a word w9s1s2⋯sℓ with
siAΣ is jwj ¼ ℓ, and the length of the empty word ϵ is
jϵj ¼ 0. The parameters of FSA are extended as
�
 The set of all words constructed from symbols in Σ,
including the empty word ϵ, is denoted as Σ⋆.
�
 The set of all words, whose suffix (respectively, prefix)
is the word w, is denoted as Σ⋆w (respectively, wΣ⋆).
�
 The set of all words of (finite) length ℓ, where ℓ40, is
denoted as Σℓ.

Definition 2.3 (Extended map, Hopcroft et al. [23], Sipser
[24]). The extended state transition map δ⋆:Q � Σ⋆-Q
transfers one state to another through finitely many
transitions such that, for all qAQ ; sAΣ and wAΣ⋆;

δ⋆ðq; eÞ ¼ q and δ⋆ðq;wsÞ ¼ δðδnðq;wÞ; sÞ
where ws is suffixing of the word w by the symbol s.

Definition 2.4 (Irreducible FSA). An FSA G is said to be
irreducible if, for all q1; q2AQ , there exists a word w1;2AΣn

such that q1 ¼ δnðq2;w1;2Þ.

Definition 2.5 (PFSA). A probabilistic finite state automa-
ton (PFSA) K is a pair ðG; πÞ, where
�
 The deterministic FSA G is called the underlying FSA of
the PFSA K.
�
 The probability map π:Q � Σ-½0;1� is called the morph
function (also known as symbol generation probability
function) that satisfies the condition: ∑sAΣπðq; sÞ ¼ 1
for all qAQ .

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119108
Equivalently, a PFSA is a quadruple K ¼ ðΣ;Q ; δ; πÞ, where
�
 The alphabet Σ of symbols is a (nonempty) finite set,
i.e., 0o jΣjo1, where jΣj is the cardinality of Σ.
�
 The set Q of automaton states is (nonempty) finite, i.e.,
0o jQ jo1, where jQ j is the cardinality of Q.
�
 The state transition function δ:Q � Σ-Q .

�
 The morph function π:Q � Σ-½0;1�, where ∑sAΣπ

ðq; sÞ ¼ 1 for all qAQ . The morph function π generates
the ðjQ j � jΣjÞ morph matrix Π.

Remark 2.1. The underlying FSA (see Definition 2.1) of the
PFSA model does not make use of an initial state q0. By the
assumption of statistical stationarity in the fast scale (see
Definition 1.1), the connotation here is that the stochastic
process, resulting from the PFSA, started from an arbitrary
state sufficiently long ago so that the current state is not
affected by the initial state q0. Furthermore, the FSA model
has no accept states [23,24,4].

Remark 2.2. The structure of the PFSA model in Definition
2.5 is simpler than that used by Vidal et al. [7]. However,
the PFSA model in Definition 2.5 is largely similar to the
model used by Thollard et al. [30] except that Thollard
et al. used an initial state q0 and a special symbol # not
belonging to Σ.

Definition 2.6 (Extended morph function). The morph
function π:Q � Σ-½0;1� of PFSA is extended as πn:Q�
Σn-½0;1� such that, for all qAQ ; sAΣ and wAΣ⋆;

π⋆ðq; eÞ ¼ 1 and π⋆ðq;wsÞ ¼ π⋆ðq;wÞ � πðδ⋆ðq;wÞ; sÞ

where ws is suffixing of the word w by the symbol s.

Remark 2.3. Any state of an irreducible FSA can be
reached from another state (including the originating
state) in a finite number of transitions represented by a
word w1;2AΣn. Graphically, an irreducible FSA is con-
nected and the associated PFSA is irreducible if and only
if any state can be reached from another state with non-
zero probability [31]. Irreducible PFSA are widely used as
language models in symbolic systems [3]. In many appli-
cations such as anomaly detection and pattern classifica-
tion, the transitions between the states capture the (slow-
scale) dynamical evolution of the (fast-scale) stationary
system [12], where the initial condition is not important.

2.1. Symbolization of time series

This step requires partitioning (also known as quanti-
zation) of the time series data of the measured signal. The
signal space is partitioned into a finite number of cells that
are labeled as symbols, i.e., the number of cells is identi-
cally equal to the cardinality jΣj of the (symbol) alphabet
Σ. As an example for the one-dimensional time series in
Fig. 2, the alphabet Σ ¼ fα; β; γ; δg, i.e., jΣj ¼ 4, and three
partitioning lines divide the ordinate (i.e., y-axis) of the
time series profile into four mutually exclusive and
exhaustive regions. These disjoint regions form a partition,
where each region is labeled with one symbol from the
alphabet Σ. If the value of time series at a given instant is
located in a particular cell, then it is coded with the
symbol associated with that cell. As such, a symbol from
the alphabet Σ is assigned to each (signal) value corre-
sponding to the cell where it belongs. (Details are reported
in [13].) Thus, a (finite) array of symbols, called a symbol
string (or symbol block), is generated from the (finite-
length) time series data.

The ensemble of time series data is partitioned by using
a partitioning tool (e.g., maximum entropy partitioning
(MEP) or uniform partitioning (UP) methods [13]). In UP,
the partitioning lines are separated by equal-sized cells.
On the other hand, MEP maximizes the entropy of the
generated symbols and therefore, the information-rich
cells of a data set are partitioned finer and those with
sparse information are partitioned coarser, i.e., each cell
contains (approximately) equal number of data points
under MEP. In both UP and MEP, the choice of alphabet
size jΣj largely depends on the specific data set and the
allowable loss of information (e.g., leading to error of
detection and classification).
2.1.1. Selection of alphabet size
Considerations for the choice of alphabet size jΣj include

the maximum discrimination capability of a symbol sequence
and the associated computational complexity. The maximum
discrimination capability is characterized by the entropy of
the sequence that should be maximized to the extent it is
possible, or alternatively by minimizing the information loss
that is denoted as the negative of the entropy. As the alphabet
size is increased, there is both an increase in computational
complexity and a possible reduction in loss of information; in
addition, the effects of a large alphabet may become more
pronounced for an insufficiently long time series [32].

In partitioning of a (one-dimensional) time series for
symbolization, the alphabet size jΣj must be appropriately
chosen in order to transform the real-valued finite-length
data set S into a symbol string. The data set S is parti-
tioned into a (finite) number of (mutually exclusive and
exhaustive) segments to construct a mapping between S

and the alphabet of symbols fsjsAΣg. To do so, a choice
must be made as to the number of symbols, i.e., the
cardinality jΣj of the symbol alphabet Σ. Presented below
is a brief discussion on how to make the tradeoff between
information loss and computational complexity.

Let the alphabet size be k¼ jΣj and the method of
partitioning the time series be maximum entropy parti-
tioning [13], i.e., a uniform probability distribution on the
symbols with PðsÞ ¼ 1=k 8sAΣ. Then, the information
loss, represented by the negative of the entropy [33] of
the symbol sequence, is given as

I ¼ �H¼ ΣsAΣ PðsÞ ln PðsÞ ¼ � ln k ð1Þ

By representing the computational complexity as a
function g(k) of the alphabet size k and choosing an
appropriate scalar tradeoff weighting parameter αA ð0;1Þ,
the cost functional to be optimized becomes

JðkÞ ¼ �α ln kþð1�αÞgðkÞ ð2Þ

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 109
The optimal alphabet size jΣj is obtained by solving for k in
the equation Jðkþ1Þ� JðkÞ ¼ 0 along with additional con-
straints that may have to be imposed in the optimization
procedure to realize the effects of critical issues such as
any bounds on the alphabet size. As an example, if the
computational cost g(k) is linear in k with a constant real
coefficient c40, i.e., gðkÞ ¼ ck, then the optimal alphabet
size is obtained as

jΣj ¼ ceil
1

exp
1�α

α
c

� �
�1

2664
3775 ð3Þ

where ceil½⋆� is the smallest integer greater than or equal
to ⋆.

Remark 2.4. The information loss in Eq. (1) is indepen-
dent of the time series data being symbolized. Further-
more, it may not always be possible to identify and
parameterize a computational complexity model g(k) that
would unambiguously represent the class of time series
data. Alternative methods for alphabet size selection,
based on tools of machine learning (e.g., k-means and
mixture models [19]), are potentially viable as listed in
Section 5 as a topic of future research.

2.2. D-Markov machines

This subsection introduces the pertinent definitions
that are necessary to construct a D-Markov machine. The
PFSA model of the D-Markov machine generates symbol
strings fs1s2⋯sℓ:ℓAN 8sjAΣg on the underlying Markov
process. The morph function π implicitly alludes to the fact
that the PFSA satisfies the Markov condition, where gen-
eration of a symbol only depends on the current state.
However, if the state is unknown, the next symbol gen-
eration may depend on the past history of the symbols
generated by the PFSA. In the PFSA model, a transition
from one state to another is independent of the previous
history of states. Therefore, the states and transitions form
a Markov process, which is a special class of Hidden
Markov Models (HMMs) [7,34]. However, from the per-
spectives of PFSA construction from a symbol sequence,
the states are implicit and generation of the next symbol
may depend on the complete history of the symbol
sequence. In the construction of a D-Markov machine
[12], generation of the next symbol depends only on a
finite history of at most D consecutive symbols, i.e., a
symbol block of length not exceeding D. A formal defini-
tion of the D-Markov machine follows.

Definition 2.7 (D-Markov machine, Ray [12]). A D-Markov
machine is a PFSA in the sense of Definition 2.5 and it
generates symbols that solely depend on the (most recent)
history of at most D symbols in the sequence, where the
positive integer D is called the depth of the machine.
Equivalently, a D-Markov machine is a statistically sta-
tionary stochastic process S¼⋯s�1s0s1⋯, where the prob-
ability of occurrence of a new symbol depends only on the
last D symbols, i.e.,

P½sn∣⋯sn�D⋯sn�1� ¼ P½sn∣sn�D⋯sn�1� ð4Þ
Consequently, for wAΣD (see Definition 2.2), the equiva-
lence class Σ⋆w of all (finite-length) words, whose suffix is
w, is qualified to be a D-Markov state that is denoted as w.

Remark 2.5. It is noted that D-Markov machines belong to
the class of shifts of finite type, i.e., shift spaces that can be
described by a finite set (possibly the empty set) of
forbidden symbol blocks [3]. Given a probability distribu-
tion, construction of an exact PFSA model appears to
be computationally infeasible. Furthermore, a D-Markov
machine is a finite-history automaton, where the past
information is embedded as words of length D or less.
That is, if w is a word of length D or more, then δnðq;wÞ in a
D-Markov machine is independent of the state q. What-
ever the initial state q is, the finite sequence of transitions
represented by the word wAΣD always leads to the same
terminal state that could be represented by the word w
itself. Consequently, in a D-Markov machine, a word
wAΣD can be associated with a state of the machine.
Moreover, the state transition map δ can be automatically
constructed from the words that correspond to individual
states. Then, the morph functions π (that are the entries of
the morph matrix Π) can be estimated by counting the
frequency of occurrences of the individual symbols ema-
nating from each state [32]. Similarly, the state probability
vector of a D-Markov machine can be estimated by
frequency counting.

Considering the set of all symbol blocks of length D as
the set of states, one may construct a D-Markov machine
from a symbol sequence by frequency counting to estimate
the probabilities of each transition. Since the number of
states increases exponentially as the depth D is increased,
state merging might be necessary for order reduction of
D-Markov machines with relatively large values of D.
For example, with the alphabet size jΣj ¼ 4 (i.e., 4 symbols
in the alphabet Σ) and a depth D¼5, the D-Markov
machine could have at most jΣjD ¼ 1024 states.

Given a finite-length symbol sequence S over a (finite)
alphabet Σ, there exist several PFSA construction algo-
rithms to discover the underlying irreducible PFSA model
K of S, such as causal-state splitting reconstruction (CSSR)
[21], D-Markov [12,13], and Compression via Recursive
Identification of Self-Similar Semantics (CRISSiS [35]).
All these algorithms start with identifying the structure
of the PFSA K9 ðQ ;Σ; δ; πÞ. Then, a jQ j � jΣj count matrix C
is initialized to the matrix, each of whose elements is
equal to 1.

Let Nij denote the number of times that a symbol sj is
generated from the state qi upon observing the sequence
S. The maximum a posteriori probability (MAP) estimate
of the probability map for the PFSA K is computed by
frequency counting as

π̂MAP qi; sj
� �

9
Cij

∑ℓCiℓ
¼ 1þNij

jΣjþ∑ℓNiℓ
ð5Þ

The rationale for initializing each element of the count
matrix C to 1 is that if no event is generated at a state
qAQ , then there should be no preference to any particular
symbol and it is logical to have π̂MAPðq; sÞ ¼ 1=jΣj 8sAΣ,
i.e., the uniform distribution of event generation at the
state q. The above procedure guarantees that the PFSA,

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119110
constructed from a (finite-length) symbol string, must
have an (elementwise) strictly positive morph map Π
and that the state transition map δ in Definition 2.1 is a
total function.

Alternatively, the maximum likelihood estimate (MLE)
of the probability map for the PFSA K is computed by
frequency counting as

π̂MLE qi; sj
� �

9
Nij

∑ℓNiℓ
ð6Þ

2.3. Entropy rate

This subsection introduces the notion of entropy rate
that, given the current state, represents the predictability
of PFSA.

Definition 2.8 (Conditional entropy and entropy rate, Cover
and Thomas [33]). The entropy of a PFSA ðΣ;Q ; δ; πÞ condi-
tioned on the current state qAQ is defined as follows:

HðΣjqÞ9� ∑
sAΣ

PðsjqÞ log PðsjqÞÞ ð7Þ

The entropy rate of a PFSA ðΣ;Q ; δ; πÞ is defined in terms
of the conditional entropy as follows:

HðΣjQ Þ9 ∑
qAQ

PðqÞHðΣjqÞ

¼ � ∑
qAQ

∑
sAΣ

PðqÞPðsjqÞ log PðsjqÞ ð8Þ

where P(q) is the (unconditional) probability of a PFSA
state qAQ; and PðsjqÞ is the (conditional) probability of a
symbol sAΣ emanating from the PFSA state qAQ .

Remark 2.6. Lower is the entropy rate HðΣjQ Þ, more
predictable is the machine if conditioned on the current
state. As HðΣjQ Þ approaches 0, the PFSA tends to be
completely deterministic.

2.4. Metric for the distance between two PFSA

This subsection introduces the notion of a metric to
quantify the distance between two PFSA.

Definition 2.9 (Metric). Let K1 ¼ ðΣ;Q1; δ1; π1Þ and K2 ¼
ðΣ;Q2; δ2; π2Þ be two PFSA with a common alphabet Σ.
Let P1ðΣjÞ and P2ðΣjÞ be the steady state probability vectors
of generating words of length j from the PFSA K1 and K2,
respectively, i.e., P1ðΣjÞ9 ½PðwÞ�wAΣj for K1 and P2ðΣjÞ9
½PðwÞ�wAΣj for K2. Then, the metric for the distance
between the PFSA K1 and K2 is defined as

Φ K1;K2ð Þ9 lim
n-1

∑
n

j ¼ 1

P1ðΣjÞ�P2ðΣjÞ
�� ��

ℓ1

2jþ1 ð9Þ

where the norm ‖⋆‖ℓ1 indicates the sum of absolute values
of the elements in the vector ⋆.

The norm on the right side of Eq. (9) yields

‖P1ðΣjÞ�P2ðΣjÞ‖ℓ1 r‖P1ðΣjÞ‖ℓ1 þ‖P2ðΣjÞ‖ℓ1 ¼ 2

because each of the probability vectors P1ðΣjÞ and P2ðΣjÞ
has non-negative entries that sum to 1. Furthermore,
convergence of the infinite sum on the right side of Eq.
(9) is guaranteed due to the weight 1=2jþ1 and satisfies the
relation 0rΦð�; �Þr1. It is noted that alternative forms of
norms could also be used, because of norm equivalence in
finite-dimensional vector spaces.

Since the metric in Definition 2.9 assigns more weight
to words of smaller length, the infinite sum could be
truncated to a relatively small order D (e.g., typically in
the range of 5 to 20) [13] for a given tolerance ε51. That
is, the distance Φð�; �Þ in Eq. (9) effectively compares the
probabilities of generating words of length D in two PFSA
and is especially adaptable to D-Markov machines whose
dynamical behavior is characterized by words of a speci-
fied maximal depth [12].

The metric Φð�; �Þ can also be used to calculate the
distance between a PFSA and a symbol string, in which
case the probabilities are expressed in terms of relative
frequency of occurrence of a word. In fact, it has been
shown by Vidal et al. [7] that this metric quantifies the
distance between probability distributions. However, this
issue is not addressed in the current paper.

3. Algorithm development

This section develops the algorithms for construction of
D-Markov machines. The underlying procedure consists of
two major steps, namely, state splitting and state merging.
In general, state splitting increases the number of states to
achieve more precision in representing the information
content in the time series. This is performed by splitting
the states that effectively reduce the entropy rate HðΣjQ Þ,
thereby focusing on the critical states (i.e., those states that
carry more information). Although this process is executed
by controlling the exponential growth of states with
increasing depth D, the D-Markov machine still may have
a large number of states. The subsequent process reduces
the number of states in the D-Markov machine by merging
those states that have similar statistical behavior. Thus, a
combination of state splitting and state merging, described
in Algorithms 1 and 2, respectively, leads to the final form
of the D-Markov machine.

3.1. Development of the state splitting algorithm

In D-Markov machines, a symbol block of (finite) length
D is sufficient to describe the current state. In other words,
the symbols that occur prior to the last D symbols do not
affect the subsequent symbols observed. Therefore, the
number of states of a D-Markov machine of depth D is
bounded by jΣjD, where jΣj is the cardinality of the
alphabet Σ. As this relation is exponential in nature, the
number of states rapidly increases as D is increased.
However, from the perspective of modeling a symbol
string, some states may be more important than
others in terms of their embedded information contents.
Therefore, it is advantageous to have a set of states that
correspond to symbol blocks of different lengths. This is
accomplished by starting off with the simplest set of
states (i.e., Q ¼ Σ for D¼1) and subsequently splitting the
current state that results in the largest decrease of the
entropy rate.

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 111
The process of splitting a state qAQ is executed by
replacing the symbol block q by its branches as described
by the set fsq: sAΣg of words. Maximum reduction of the
entropy rate is the governing criterion for selecting the
state to split. In addition, the generated set of states must
satisfy the self-consistency criterion, which only permits a
unique transition to emanate from a state for a given
symbol. If δðq; sÞ is not unique for each sAΣ, then the state
q is split further. In the state splitting algorithm, a stopping
rule is constructed by specifying the threshold parameter
ηspl on the rate of decrease of conditional entropy.
An alternative stopping rule for the algorithm is to provide
a maximal number of states Nmax instead of the threshold
parameter ηspl. The operation of state splitting is described
in Algorithm 1.

Algorithm 1. State splitting.

Input: Symbol sequence s1s2s3⋯‥ , where each si belongs

to the symbol alphabet Σ
User defined parameters: Maximum number

of states Nmax and threshold ηspl for state splitting
Output: PFSA K ¼ fΣ;Q ; δ; πg
Initialize: Create a 1-Markov machine ~Q≔Σ

repeat

Q≔ ~Q ;
~Q ¼ arg minQ 0HðΣjQ 0Þ;
where Q 0 ¼ ðQ \fqgÞ [ðfsq: sAΣgÞ and qAQ

until j ~Q joNmax or HðΣjQ Þ�HðΣj ~Q Þoηspl

for all qA ~Q and sAΣ do
if δðq; sÞ is not unique then

~Q≔ð ~Q \fqgÞ [ðfsq: sAΣgÞ;
end if

end for
return K ¼ fΣ;Q ; δ; πg
Remark 3.1. Other distances such as the KL-divergence
[33] between the distribution of symbols could also be
used before and after state splitting. This procedure is
conceptually similar to variable length n-grams [36] used
in language modeling, where a tree structure is imple-
mented to allow contexts with different lengths.

Let q be a D-Markov state (see Definition 2.7), which is
split to yield new states sq, where sAΣ and sq represents
the equivalence class of all (finite-length) symbol strings
with the word sq as the suffix. Fig. 3 illustrates the process
of state splitting in a PFSA with alphabet Σ ¼ f0;1g, where
each terminal state is circumscribed by an ellipse.
For example, the states in the third layer from the top
are 00q, 10q, 01q, and 11q, of which all but 10q are
0q

q

1q

10q 01q 11q

010q 110q

00q

Fig. 3. Tree-representation of state splitting in D-Markov machines.
terminal states. Consequently, the state 10q is further split
as 010q and 110q that are also terminal states, i.e,
Q ¼ f00q; 01q; 11q; 010q; 110qg, as seen in the split PFSA
diagram of Fig. 3. Given the alphabet Σ and the associated
set Q of states, the morph matrix Π can be computed in the
following way:

π q; sð Þ ¼ PðsjqÞ ¼ PðqsÞ
PðqÞ ; 8sAΣ; 8qAQ ð10Þ

where Pð�Þ and Pð�j�Þ are the same as those used in
Definition 2.8 and Eq. (8) therein.

For construction of PFSA, each element πðs; qÞ of the
morph matrix Π is estimated by frequency counting as the
ratio of the number of times, NðqsÞ, the state q is followed
(i.e., suffixed) by the symbol s and the number of times, N
(q), the state q occurs. By using the structures of Eqs. (5)
and (6), it follows from Eq. (10) that each element π̂ðs; qÞ of
the estimated morph matrix bΠ is obtained as

π̂MAP q;sð Þ91þNðqsÞ
jΣjþNðqÞ and π̂MLE q; sð Þ9NðqsÞ

NðqÞ ;
8sAΣ; 8qAQ ð11Þ

where ∑sAΣπ̂MAPðs; qÞ ¼ 1 and ∑sAΣπ̂MLEðs; qÞ ¼ 1; 8qAQ .
Similar to Eq. (11) and following the structures of

Eqs. (5) and (6), each element P(q) of the stationary state
probability vector is estimated by frequency counting as

bPMAP qð Þ9 1þNðqÞ
jQ jþ∑q0 AQNðq0Þ

and bPMLE qð Þ9 NðqÞ
∑q0 AQNðq0Þ

;

8qAQ ð12Þ
where bP ðqÞMAP (respectively, bP ðqÞMLE) is an element of
the estimated stationary state probability vector, which
implies the estimated stationary probability of the PFSA
being in the state qAQ . Wen et al. [32] have statistically
modeled the error of estimating the state probability
vector from finite-length symbol strings.

Now the entropy rate (see Eq. (8) in Section 2.3) is
computed in terms of the elements of estimated state
probability vector and estimated morph matrix as

HðΣjQ Þ ¼ � ∑
qAQ

∑
sAΣ

PðqÞPðsjqÞ log PðsjqÞ

� � ∑
qAQ

∑
sAΣ

bPðqÞπ̂ ðq; sÞ log π̂ ðq; sÞ ð13Þ

Remark 3.2. Under limited availability of data, smoothing
algorithms may be used to estimate the morph matrix,
state probability vector, and entropy rate. Such techniques
have been implemented for probabilistic suffix trees and
variable-order Markov chains [37]; however, for suffi-
ciently long time series data, there would be no need
for smoothing. It is also noted that, for MAP estimation
of the state probability vector, the conditions ∑qAQbPMAPðqÞ ¼ 1 and bPMAPðqÞAð0;1Þ; 8qAQ satisfy criteria for
an irreducible PFSA [31]; in contrast, for MLE estimation,
these conditions become ∑qAQ

bPMLEðqÞ ¼ 1 and bPMLEðqÞA
½0;1�; 8qAQ . However, for sufficiently long time series
data, the MAP and MLE estimates of the state probability
vector in Eq. (12) tend to converge. Similarly, the prob-
ability maps in Eqs. (5) and (6) tend to converge for
sufficiently long data. The the MAP probability map has

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119112
been used in each of the three examples in Section 4,
because of very long data sets.

3.2. Development of the state merging algorithm

Once state splitting is performed, the resulting D-
Markov machine is a statistical representation of the
symbol string under consideration. Depending on the
choice of alphabet size jΣj and depth D, the number of
states after splitting may run into hundreds. Although
increasing the number of states of the machine may lead
to a better representation of the symbol string, it rapidly
increases the execution time and memory requirements.
The motivation behind the state merging is to reduce the
number of states, while preserving the D-Markov structure
of the PFSA. Of course, such a process may cause the PFSA
to have degraded precision due to loss of information. The
state merging algorithm aims to mitigate this risk.

In the state merging algorithm, a stopping rule is
constructed by specifying an acceptable threshold ηmrg on
the distance Φð�; �Þ between the merged PFSA and the PFSA
generated from the original time series. Before embarking
on the state merging algorithm, the procedure for merging
of two states is described below.

3.2.1. Notion of merging two states
The process of state merging is addressed by creating

an equivalence relation [38], denoted as � , between the
states. The equivalence relation specifies which states are
identified to belong to the same class, thereby partitioning
the original set of states into a smaller number of equiva-
lence classes of states, each being a nonempty collection of
the original states. The new states are, in fact, equivalence
classes as defined by � .

Let K1 ¼ fΣ;Q1; δ1; π1g be the split PFSA, and let q; q0AQ1

be two states that are to be merged together. Initially, an
equivalence relation is constructed, where none of the
states are equivalent to any other state except itself, i.e.,
each equivalence class is represented by a singleton set.
To proceed with the merging of states q and q0, an
equivalence relation is imposed between q and q0, denoted
as q� q0; however, the transitions between original
states may not be well-defined anymore, in the following
sense: there may exist sAΣ such that the states δ1ðq; sÞ
and δ2ðq0; sÞ are not equivalent. In essence, the same
symbol may cause a transition to two different states
from the merged state fq; q0g. As the structure of D-Markov
machines does not permit this ambiguity of non-
determinism [12], the states δ1ðq; sÞ and δ2ðq0; sÞ are also
required to be merged together, i.e., δ1ðq; sÞ � δ2ðq0; sÞ (this
procedure is known as determinization in the state mer-
ging literature). Therefore, the symbol s will cause a
transition from the merged state fq; q0g to the merged
state fδ1ðq; sÞ; δ2ðq0; sÞg. This process is recursive and is
performed until no ambiguity in state transitions occurs.
Indeed at each iteration, the number of states of the future
machine is reduced, and the machine where all the states
are merged is always consistent. Therefore, the number of
states is a decreasing sequence of positive integers, which
must eventually converge. The recursive operation of the
equivalence relation � is described in Algorithm 2.
Algorithm 2. Minimal equivalence relation given q� q0.

Input: δ, q, q0 , Initial equivalence relation �
Output: Updated equivalence relation �
NOTE: Recursive function ð � Þ≔Mergeðδ; q; q0 ; � Þ
Set q� q0;
for all sAΣ do

if δðq; sÞ≁δðq0 ; sÞ then
Set �≔Mergeðδ; δðq; sÞ; δðq0; sÞ; � Þ;

end if
end for
return �
Let K1 ¼ fΣ;Q1; δ1; π1g be the split PFSA that is merged to
yield the reduced-order PFSA K2 ¼ fΣ;Q2; δ2; π2g, where
the state-transition map δ2 and the morph function π2
for the merged PFSA K2 are defined on the quotient set
Q29Q1=� , and ½q�AQ2 is the equivalence class of qAQ1.
Then, the associated morph function π2 is obtained as

π2 q½ �; sð Þ ¼ P siþ1 ¼ sj ⋃
~qA ½q�

fXi ¼ ~qg
" #

¼
∑

~qA ½q�
P½siþ1 ¼ s;Xi ¼ ~q�

∑
~qA ½q�

PðXi ¼ ~qÞ

¼
∑

~qA ½q�
P½siþ1 ¼ sjXi ¼ ~q�PðXi ¼ ~qÞ

∑
~qA ½q�

PðXi ¼ ~qÞ

�
∑

~qA ½q�
π̂1ð ~q; sÞ � bP1ð ~qÞ

∑
~qA ½q�

bP1ð ~qÞ
ð14Þ

As seen in Eq. (14), the morph function π2 of the
merged PFSA K2 is estimated as the sum of π̂1 weighted
by the stationary state probabilities bP1 of the PFSA K1. By
construction, δ2 is naturally obtained as

δ2ð½q�; sÞ ¼ ½δ1ðq;sÞ� ð15Þ
Algorithm 3 presents the procedure to obtain the PFSA,

where the objective is to merge the states q and q0.

Algorithm 3. Minimal PFSA K2 after merging of two
states.

Input: K1 ¼ fΣ;Q1 ; δ1 ; π1g, q, q0
Output: Merged PFSA K2 ¼ fΣ;Q2 ; δ2 ; π2g
Compute the equivalence relation � using Algorithm 2;
Set Q2≔Q1=� ; % Q2 is the quotient set of Q1 under �
Compute the stationary-probability vector bP1 of the PFSA K1;
for all ½q�AQ2 do

for all sAΣ do
Set δ2ð½q�; sÞ≔½δ1ðq;sÞ�;
Compute π2ð½q�; sÞ using Eq. (14);

end for
end for
return K2 ¼ fΣ;Q2 ; δ2 ; π2g
3.2.2. Identification of the states to be merged
The next task is to decide which states have to be

merged. States that behave similarly (i.e., have similar
morph probabilities) have a higher priority for merging.
The similarity of two states, q; q0AQ , is measured in terms
of morph functions (i.e., conditional probabilities) of future
symbol generation as the distance between the two rows

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 113
of the estimated morph matrix bΠ corresponding to the
states q and q0. The ℓ1-norm (i.e., the sum of absolute
values of the vector components) has been adopted to be
the distance function as

Mðq; q0Þ9‖π̂ ðq; �Þ� π̂ ðq0; �Þ‖ℓ1 ¼ ∑
sAΣ

jπ̂ ðq; sÞ� π̂ðq0; sÞj ð16Þ

A small value of Mðq; q0Þ indicates that the two states
have close probabilities of generating each symbol. Note that
this measure is bounded above as Mðq; q0Þr2 8q; q0AQ ,
because 0r∑sAΣπ̂ ðq; �Þr1 and 0r∑sAΣπ̂ ðq0; �Þr1. Now
the procedure of state merging is briefly described below.

First, the two closest states (i.e., the pair of states
q; q0AQ having the smallest value of Mðq; q0Þ) are merged
using Algorithm 3. Subsequently, distance Φð�; �Þ (see
Eq. (9) in Section 2.4) of the merged PFSA from the initial
symbol string is evaluated. If Φoηmrg where ηmrg is a
specified threshold, then the machine structure is retained
and the states next on the priority list are merged. On the
other hand, if ΦZηmrg , then the process of merging the
given pair of states is aborted and another pair of states
with the next smallest value of Mðq; q0Þ is selected for
merging. This procedure is terminated if no such pair of
states exists, for which Φoηmrg . The operation of the
procedure is described in Algorithm 4.

Remark 3.3. In the state merging algorithm, each of the two
metrics, Mðq; q0Þ in Eq. (16) and ΦðK1;K2Þ in Eq. (9), serves
its own purpose. While Mðq; q0Þ represents the distance
between the distributions of symbols at two states q and q0

of a PFSA, independent of the respective future distributions,
ΦðK1;K2Þ is a metric defined between two PFSA, which
takes into account all future distributions of symbols. If
ΦðK1;K2Þ¼0, then K1 and K2 are the same PFSA. Denoting
K1 as the unmerged PFSA and K2 as the merged PFSA, it is
possible to use the metric ΦðK1;K2Þ directly for state mer-
ging. Since the computation of Φ is expensive, the metric
Mðq; q0Þ should be used as an initial check of the feasibility of
merging two states to save (possibly) unnecessary computa-
tions of Φ. A small value of Mðq; q0Þ does not guarantee that
ΦðK1;K2Þ is small. However, a large value of Mðq; q0Þ does
guarantee that ΦðK1;K2Þ is large.

Algorithm 4. State merging in PFSA.
Input: PFSA K ¼ ðΣ;Q ; δ; πÞ and symbol sequence fsig
User defined parameter: Threshold ηmrg for state merging
Output: Merged PFSA Km ¼ ðΣ;Qm ; δm ; πmÞ
Set Km≔K;
for all q; q0AQm do

if qaq0 then
Set LIST_STATES ðq; q0Þ ¼Mðq; q0Þ using Eq. (16);

else
Set LIST_STATES ðq; q0Þ ¼ 2;

end if
end for
sort (LIST_STATES); % Place the pair ðq; q0Þwith the smallest Mðq; q0Þ

on top of the list
Set ðq; q0Þ≔pop (LIST_STATES); % Select the pair ðq; q0Þ that is on top

of the sorted list
loop

Compute K1 from Km by merging the states q and q0 via
Algorithm 3;

if d½K1 ; fsig�oηmrg then
Set Km≔K1;
Recompute LIST_STATES;
Set ðq; q0Þ≔pop (LIST_STATES);
else
Set ðq; q0Þ≔pop (LIST_STATES);

if q¼¼q0 then
Break loop;

end if
end if

end loop
return Km ¼ ðΣ;Qm ; δm ; πmÞ

Remark 3.4. Given a data set of finite length, while the
constructed PFSA may yield degraded performance after
state merging due to loss of information, the performance
may also be increased because the frequency counting
estimation of probability parameters could be improved
due to possible reduction in the number of states.

4. Examples

This section presents three examples. In the first
example, a symbolic sequence is generated from a non-
D-Markov PFSA and the symbol string under consideration
is modeled as a reduced-order D-Markov machine. In the
second example, time series data, generated from a chaotic
dynamical system, is partitioned. The resulting symbolic
string is modeled as a D-Markov machine by using the
algorithms developed in Section 3. The third example is
based on experimental data collected from a laboratory
apparatus for detection of fatigue crack damage in a
polycrystalline alloy. It demonstrates the efficacy of the
algorithms for order reduction of PFSA models in a
physical process. The following procedures have been
adopted in these examples.
�
 For state splitting, the stopping rule in Algorithm 1 is
based on the maximal number of states (Nmax) instead
of the threshold parameter (ηspl).
�
 The MAP probability has been used for estimation of
the morph probabilities (see Eq. (5)) and state prob-
abilities (see Eq. (12)). Referring to Remark 3.2, since
the data length in each example is sufficiently long, the
results obtained by using either π̂MAPð�; �Þ (see Eq. (5)) or
π̂MLEð�; �Þ (see Eq. (6)) are expected to be numerically
similar.

Example 4.1 (Symbol string model from a non-D-Markov
PFSA). The PFSA K0 in Fig. 4 is a variation of the even shift
machine [3] with three symbols, i.e., Σ ¼ f0;1;2g, which is
not a shift of finite type because the minimal set of
forbidden strings has a subset f01ð2k�1Þ0; 02ð2k�1Þ0:
kANg that does not have a finite cardinality. Hence, K0 ia
a non-D-Markov machine. A data set of 1,000,000 points is
generated from K0 and Algorithm 1 for state splitting is
used to obtain a D-Markov PFSA (K1) with depth D¼8 and
alphabet size jΣj ¼ 3 from the symbol string that is
obtained by partitioning the data set. Note that, without
sequential state splitting, the PFSA would have at most
jΣjD ¼ 38 ¼ 6561 possible states. The selected parameter
for state splitting (see Algorithm 1) is Nmax ¼ 32 and that
for state merging (see Algorithm 4) is ηmrg ¼ 0:010.
The evolution of the entropy rate during state splitting is

presented in Fig. 5. Moreover, the entropy rate of K1

5 10 15 20 25 30 35
0.65

0.7

0.75

0.8

0.85

0.9

Number of states |Q|

E
nt

ro
py

 ra
te

 H

Split machine K1

Entropy rate of K0

Fig. 5. Monotonic decrease of entropy rate in Example 4.1.

A

B C

1/1.0
2/1.0

1 / 0.25

0 / 0.5

2 / 0.25

= {0,1,2}

Fig. 4. The PFSA K0 to generate the symbol sequences in Example 4.1.

1050 1100 1150 1200 1250 1300 1350 1400

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Iteration n

Lo
gi

st
ic

 m
ap

 (x
n)

(x
n
)

Partitioning
Partitioning

{0}

{1}

{2}

Fig. 6. Output fxng of the logistic map in Example 4.2.

Table 1
Results of Example 4.1.

PFSA Φð�;K0Þ Φð�; fsngÞ jQ j depth

K0 0 0.0010 3 non D-Markov
K1 0.0009 0.0003 31 8
K2 0.0088 0.0085 11 8

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119114
approaches that of the initial machine K0 as the number of
states increases. This is evident from the fact that K1 would
represent K0 better if the number of states is increased.
Algorithm 1 splits the states 111⋯1 and 222⋯2 that are
the non-synchronizing words2 of the PFSA K0. State split-
ting is continued until the probability of being in one of
these states becomes very low. The state merging algo-
rithm (see Algorithm 4 in Section 3.2.2) is used to
construct a reduced-order D-Markov PFSA (K2).
Although there is a loss of information by modeling K0 as

K2, the results in Fig. 5 and Table 1 show that this loss is
monotonically decreasing. The D-Markov machine has an
alphabet size jΣj ¼ 3 and a depth D¼8; its order is
diminished to only 11 states from 38¼6561. This example
illustrates how a non-D-Markov PFSA can be modeled by a
significantly reduced order D-Markov machine by making
a trade-off between the number of D-Markov states
and the modeling error. Table 1 summarizes the pertinent
results.

Example 4.2 (Time series from a chaotic system). The time
series fxkg is generated iteratively from the logistic map
[28,39]:

xkþ19rxkð1�xkÞ ð17Þ
The onset of chaos for the logistic map [28] in Eq. (17)

begins from r� 3:57. In this example, the initial state
2 Non-synchronizing words are symbol blocks that do not uniquely
determine the current state of the PFSA.
is chosen as x090:5 and the parameter r¼3.75. The
iterations xk always lie in the interval [0, 1]. The space [0,
1] is partitioned into three mutually disjoint intervals that
are associated with the symbols 0, 1 and 2. The boundaries
of disjoint intervals are shown in horizontal dashed lines
in Fig. 6. A symbol string with symbols in skAf0;1;2g is
generated by replacing the value of xk by the correspond-
ing symbol associated with the cell of the partition within
which xk lies. The symbol sequence is assumed to be
statistically stationary, thereby permitting the use of PFSA
to model its stochastic behavior.
The logistic map exhibits two types of behaviors as seen

in Fig. 6. The first behavior is represented as oscillations
between a high value and a low value, and the second
behavior is represented as oscillations of small amplitude
around 0.73. Table 2 shows an excerpt of the symbol
sequence, where the two behaviors are well reproduced
in terms of ‘0202’ blocks alternating with ‘11’ blocks.
The selected parameters for state splitting (see Algorithm 1)

and state merging (see Algorithm 4) are Nmax ¼ 55 and
ηmrg ¼ 0:005, respectively. The pertinent results of this state
merging are presented in Table 3. It is seen that the merging
step allows reduction of the number of states from 55 to 8,
represented by PFSA K1 and K2.
Tables 4, 5 and 6 respectively present the lists of merged

states, state transition map δ:Q � Σ-Q (see Definition 2.1,
and the estimated morph matrix π̂MAPð�; �Þ (see Eq. (5)) to
elucidate how the operations of state splitting and subsequent
merging take place in the 11-state merged PFSA K2 in the
third row of Table 3. It is noted that each εi, i¼2, 4, 6, 8, 9 in
Table 6 is in the order of N�1, i,e,, εi �OðN�1Þ, where N is
number of time series data points. Since N¼ 106 in this

Table 2
Excerpt of the symbol sequence in Example 4.2fsng.

…2 0 1 1 0 2 0 2 0 1 1 1 1 1 0 2 0 2 0 1 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 1 1 1 2 0 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0
1 2 0 2 0 1 1 1 1 1 1 2 0 2 0 1 1 1 1 1 1 2 0 2 0 1 0 2 0 2 0 0 2 0 2 0 1 2 0 2 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 0 2 0 2 0 1 1 0 2 0 2 0 1 1 1 2 0 2
0 1 2 0 2 0 1 2 0 2 0 1 1 1 …

Table 3
Results of Example 4.2.

PFSA Φð�; ðsnÞÞ jQ j depth

K1 0.00012 55 10
K2 0.00269 8 6

Table 4
The states of the merged 11-state PFSA in Example 4.2.

State Corresponding suffix of symbol string

A {0, 2111111}
B {01, 21111111}
C {011, 0111, 01111, 011111, 0111111,

01111111, 11111111}
D {211111}
E {21111}
F {2111}
G {211}
H {21}
I {02, 12}
J {022, 122}
K {222}

Table 5
State transition map (δ) for the 11-state PFSA in Example 4.2.

Symbols 0 1 2

States
A A B I
B A C I
C A C I
D A A I
E A D I
F A E I
G A F I
H A G I
I A H J
J A H K
K A H K

Table 6
Morph matrix for 11-state PFSA in Example 4.2.

Symbols 0 1 2

States
A 0.5 0.25 0.25
B ε2 1�2ε2 ε2
C 0.4 0.4 0.2
D ε4 1�2ε4 ε4
E 0.5 0.25 0.25
F ε6 1�2ε6 ε6
G 0.5 0.25 0.25
H ε8 1�2ε8 ε8
I ε9 ε9 1�2ε9
J 0.5 0.25 0.25
K 0.25 0.125 0.625

where each εi40 for i¼ 2;4;6;8;9 is in the order of 10�6 because the
number of time series data points is 1,000,000 in this example.

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 115
example, the approximation of εi � 0 would yield numerically
similar results as if the estimated morph matrix π̂MLEð�; �Þ was
used instead of the estimated morph matrix π̂MAPð�; �Þ.

Example 4.3 (Order reduction in PFSA-based fatigue
damage modeling in a polycrystalline alloy). This example
addresses the construction of a PFSA model and the associ-
ated model order reduction based on time series of
ultrasonic signals for fatigue damage detection in mechan-
ical systems [40]. The rationale for using the PFSA model to
predict the fatigue damage-induced anomalous behavior
of structural materials (e.g., polycrystalline alloys) is briefly
presented below.
Following Fig. 1 in Section 1 and referring to Definitions 1.1
and 1.2, anomalous behavior of fatigue damage dynamics can
be identified as a two-time-scale model because the under-
lying physical process has stationary dynamics on the fast
time scale of ultrasonic waves and the observable non-
stationary slow-time scale evolution of fatigue damage is
associated with the gradual changes in the material defor-
mation (e.g., grain dislocation). In the context of early
detection of fatigue damage in structural materials, statisti-
cally stationary load fluctuations may take place on the fast
time scale. The resulting damage evolution and anomaly
growth may occur on the slow-time scale only; in essence,
the fatigue damage behavior can be safely assumed to
be statistically invariant on the fast time scale [40,41]. It is
also noted that PFSA-based D-Markov machine models are
suitable for real-time execution on in situ microprocessors as
reported in earlier publications [16–18].
Fig. 7(a) shows a picture of the experimental apparatus

that is built upon a computer-instrumented and computer-
controlled uniaxial fatigue testing machine. The apparatus
is instrumented with ultrasonic flaw detectors and an
optical traveling microscope; the details of the operating
procedure of the fatigue test apparatus and its instrumen-
tation and control system are reported in [40]. Tests have
been conducted using center-notched 7075-T6 aluminum
specimens (see Fig. 7(b)) under a periodically varying load,
where the maximum and minimum (tensile) loads were
kept constant at 87 MPa and 4.85 MPa at 12.5 Hz fre-
quency. Each specimen is 3 mm thick and 50 mm wide,
and has a slot of 1.58 mm�4.5 mm at the center. The
central notch increases the stress concentration factor
that ensures crack initiation and propagation at the notch
ends [40]. The ultrasonic sensing device is triggered at a
frequency of 5 MHz at each peak of the cyclic load. The
time epochs, at which data are collected, are chosen to be
1000 load cycles (i.e., � 80 s) apart. At the beginning of

Fig. 7. Test apparatus and a test specimen in Example 4.3. (a) Computer-instrumented test apparatus. (b) Cracked 7075-T6 aluminum alloy specimen.

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119116
each time epoch, the ultrasonic data points have been
collected for 50 load cycles (i.e., � 4 s) which produce a
time series of 15,000 data points, i.e., 300 data points
around each load peak. It has been observed that no
significant changes occur in the fatigue crack behavior of
the test specimen during the tenure of data acquisition at a
given time epoch.
The set of time-series data at the nominal condition

(i.e., time epoch τ0) is first converted into a symbol
sequence based on the maximum entropy partitioning
(MEP) [13], where the alphabet size is obtained as jΣj ¼ 6
by following Eq. (3) with the selected parameters α¼0.5
and c¼0.16; this partitioning is retained for all subsequent
epochs, τ1; τ2;…. It is noted that each partition segment is
associated with a unique symbol in the alphabet and
each symbol sequence characterizes the evolving fatigue
damage.
Since the ground-truth PFSA are unknown in the experi-

mental data sets, it is only possible to compare the
predictive capabilities (e.g., entropy rates) of the PFSA
after state splitting and state merging. With depth D¼2
(i.e., jΣjD ¼ 36), the number of states of the PFSA model is
reduced to 9 (i.e., jQ j ¼ 9) by state merging. This PFSA of
order 9 satisfies the convergence condition in Algorithm 4
with the threshold parameter ηmrg ¼ 0:010.
Let bP0

MAP be the MAP state probability vector (see
Eq. (12)) of the resulting probabilistic finite state auto-
maton (PFSA) model at the epoch τ0 and let bPk

MAP be the
MAP state probability vector of the (possibly evolved) PFSA
model at an epoch τk. Starting from the initial (zero-
magnitude damage) at the epoch τ0, the fatigue damage
at an epoch τk is expressed in terms of bP0

MAP and bPk
MAP as a

(scalar) damage divergence that is defined as

mk9dðbPk
MAP ;

bP0
MAPÞ ð18Þ

where dð�; �Þ is an appropriate metric. In this paper, dð�; �Þ is
chosen to be the standard Euclidean distance, while other
choices can also be made (for example, see [12]).
The two-dimensional (optical microscope) images of the

specimen surface, the corresponding profiles of ultrasonic
sensor wave outputs, and the computed histograms of
PFSA state vectors are respectively presented in the top,
middle and bottom rows of Fig. 8, which display the
gradual evolution of fatigue damage at time epochs,
approximately at 1, 23, 34 and 47 kilocycles. The nominal
condition at the time epoch τ0 is chosen to be 1.0 kilocycles
to ensure that the electro-hydraulic system of the test
apparatus had come to a steady state and that no sig-
nificant damage has occurred till that point, i.e., zero
damage at the time epoch τ0. The fatigue damage at
subsequent time epochs, τ1; τ2;…:τk⋯, is then calculated
with respect to the nominal condition at τ0. The set
consists of data collected at 56 consecutive epochs. The
plates at the top of Fig. 8(a) and (b) show that no surface
crack is yet visible under the optical microscope and the
respective profiles of ultrasonic signals are largely similar.
Nevertheless, over the span of 22 kilocycles (i.e., from the
nominal condition of 1 kilocycles to 23 kilocycles) of
load fluctuations, internal damage has already occurred
in the specimen and is continually evolving, which is not
detected by the optical microscope until � 34 kilocycles,
but there is a clearly visible change in the respective
histograms in the bottom rows of Fig. 8(a) and (b).
The histogram of PFSA state probability in Fig. 8(b) at
23 kilocycles has been modestly distorted from the origi-
nal histogram in Fig. 8(a) at the nominal condition of
1.0 kilocycles as a consequence of microstructural pheno-
mena (e.g., possible reallocations of voids and inclusions)
in the specimen. The cumulative effects of these irrever-
sible changes are commonly called fatigue damage in
the crack initiation phase in the fracture mechanics litera-
ture [42].
The plate at the top of Fig. 8(c) shows the appearance of

a visible crack on the optical microscope image of the
specimen surface in the vicinity of 34 kilocycles, while the
respective profile of ultrasonic signal is clearly attenuated,
accompanied by a significant change in the histogram of
the PFSA state probability vector. This point is considered
to be a transition of the crack initiation phase to the crack
propagation phase in the fracture mechanics literature
[42]; from this point onwards, the damage growth rate
becomes significantly larger. Eventually, at � 47 kilocycles,
the amplitude of the ultrasonic signal very rapidly
decreases as seen in Fig. 8(d) when the surface crack is
fully developed. It appears from Fig. 8 that the reduced-
state PFSA (i.e., reduction from 36 states to 9 states) is
adequate for representation of damage divergence (see
Eq. (18)) in polycrystalline alloys. The effects of the PFSA
model order reduction are explained below in more detail.

0 1 2 3 4 5 6

x 104

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cycles

D
am

ag
e

D
iv

er
ge

nc
e

Original Model
Reduced Model

Fig. 9. Evolution of damage divergence in Example 4.3.

0 5 10 15 20 25 30 35
0.5

0.6

0.7

0.8

0.9

1

Number of States

En
tr

op
y

R
at

e

State Splitting Only
State Splitting and Merging
Uniform Depth States

Fig. 10. Trade-off between entropy rate and # of states in Example 4.3.

0 1 2 3 4
−150

−100

−50

0

50

100

150

times (sec)

0 1 2 3 4
−150

−100

−50

0

50

100

150

times (sec)

0 1 2 3 4
−150

−100

−50

0

50

100

150

time (sec)

0 1 2 3 4
−150

−100

−50

0

50

100

150

time (sec)

A B C D E F G H
0.0

0.5

1.0

PF
SA

 S
ta

te
 P

ro
ba

bi
lit

y

PFSA State Nomenclature

I A B C D E F G H
0.0

0.5

1.0

PF
SA

 S
ta

te
 P

ro
ba

bi
lit

y

PFSA State Nomenclature

I A B C D E F G H
0.0

0.5

1.0

PF
SA

 S
ta

te
 P

ro
ba

bi
lit

y

PFSA State Nomenclature

I A B C D E F G H
0.0

0.5

1.0

PF
SA

 S
ta

te
 P

ro
ba

bi
lit

y

PFSA State Nomenclature

I

Fig. 8. Test results on a typical 7075-T6 aluminum alloy specimen investigated in Example 4.3: optical microscope images (top row); ultrasonic wave
profiles under fatigue damage evolution (middle row); and histograms of PFSA state probability vector (bottom row). (a) Nominal: 1 kilocycles. (b) Internal
damage: 23 kilocycles. (c) Surface crack: 34 kilocycles. (d) Full crack: 47 kilocycles.

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 117
Fig. 9 displays a comparison of a pair of damage evolu-
tion profiles over the entire period of 47 kilocycles.
The plot in solid line corresponds to the original model
of 36-state PFSA (i.e., jΣj ¼ 6 and D¼2) and the plot in
dashed line corresponds to the reduced-order model of 9-
state PFSA as a consequence of state merging. These two
profiles of damage divergence are observed to be very
close to each other. It is apparent from Fig. 9 that the PFSA
model order reduction by state merging not only does not
compromise the quality of damage detection, but also the
merging of the redundant states in the reduced-order
9-state model makes it more robust in the sense that small
ripples are removed in the damage divergence profile,
produced by the original 36-state model. A possible reason
for the increase of robustness is better accuracy of the
computed PFSA state probabilities (by frequency counting
as seen in Eq. (12)) due to a significantly smaller number of
PFSA states for the same data length of 15,000 data points.
Fig. 10 evaluates the efficacy of model order reduction by

state merging in the PFSA-based D-Markov machine. Three
Pareto optimal [43] curves, obtained as the convex hull of
finitely many Pareto optimal points, are displayed in the
space of entropy rate and the number of states. The top-
most curve in Fig. 10 yields worst performance in terms of
larger entropy rate, where each of the two points (marked
by a ⋆) is obtained by uniform-depth D-Markov states
with D¼1 and D¼2 i.e., for jΣj ¼ 6, the corresponding
maximum state cardinalities of D-Markov machines are
jQ j ¼ 6 and jQ j ¼ 62 ¼ 36, respectively. The trade-off curve
in the middle of Fig. 10 is obtained by using only the state

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119118
splitting algorithm and yields superior performance rela-
tive to the uniform-depth D-Markov machine. The curve at
the bottom in Fig. 10 is obtained by using a combination of
state splitting and state merging. Although state merging
may involve loss of information and thus increase the
entropy rate of the PFSA, it yields a large decrease in
the number of states (due to merging) that outweighs
the shortcoming of modest increase in the entropy rate.
Consequently, the Pareto optimal front for the state split-
ting and the state merging algorithm produces a signifi-
cant improvement over the algorithm that implements
state-splitting only.
5. Summary, conclusions, and future work

This paper presents the underlying concepts and algo-
rithms for modeling dynamical systems as probabilistic
finite history automata from symbol sequences as a special
class of probabilistic finite state automata (PFSA). These
PFSAs, called D-Markov machines [12], are structurally
simple and computationally efficient to execute. While a
larger depth D in the D-Markov machine is achieved by
state splitting to provide a longer history resulting in a
(possibly) better model prediction, it is accompanied by
exponential growth of the number of PFSA states. The state
merging algorithm focuses on order reduction in the
D-Markov machine model. The underlying algorithms of
state splitting and state merging in D-Markov machines
are validated with three test examples. The first example
presents a D-Markov machine model of a PFSA that is not a
shift of finite type [3]. The second example develops
D-Markov machines from the logistic map [28,39]. The
third example presents the results of analysis of ultrasonic
time series data, generated from laboratory experimenta-
tion, for detection of fatigue crack damage in a polycrystal-
line alloy.

The state merging algorithm, presented here, is sub-
optimal [12]. An important topic for future research is to
investigate this issue and extend the general problem of
approximation of a probability distribution by a PFSA, and
more specifically by a D-Markov machine. In this regard,
several key topics of future research are delineated as
follows:
(1)
 Investigation of alternative methods of alphabet size
selection by making use of tools of machine learning.
(2)
 Development of a rigorous framework for approxima-
tion of the probability distribution by making use of a
general class of PFSA.
(3)
 Identification of a general relationship between the
bound of modeling error and the number of states of
the D-Markov machine.
(4)
 Investigation of other evaluation measures (e.g., per-
plexity [44]), used in speech recognition and natural
language processing, for performance analysis of
D-Markov machines.
(5)
 Investigation of numerical computation and robust-
ness issues in the algorithms of D-Markov machines as
needed for real-time in situ execution at the nodes of a
sensor network.
(6)
 Extension of the proposed method to model symbolic
sequences with limited data length by using Bayesian
learning of transition probabilities. The Dirichlet dis-
tribution and the multinomial distribution are viable
candidates for modeling the uncertainties resulting
from (finite length) symbol strings [32].
(7)
 Elaborate validation of the proposed method using
advanced experimental apparatuses of damage mea-
surements (e.g., surface interferometer [41,45]).
(8)
 Investigation of a combined analytical and experimen-
tal procedure to demonstrate the usage of the pro-
posed method for anomaly detection and pattern
classification in diverse classes of physical processes.
Acknowledgments

The authors gratefully acknowledge the technical con-
tributions of Mr. Patrick Adenis in this work.

References

[1] C. Daw, C. Fenney, E. Tracy, A review of symbolic analysis of
experimental data, Rev. Sci. Instrum. 74 (February (2)) (2003)
915–930.

[2] H. Kantz, T. Schreiber, Nonlinear Time Series Analysis, 2nd ed.
Cambridge University Press, Cambridge, UK, 2004.

[3] D. Lind, B. Marcus, Symbolic Dynamics and Coding, Cambridge
University Press, Cambridge, UK, 1995.

[4] P. Dupont, F. Denis, Y. Esposito, Links between probabilistic automata
and hidden Markov models: probability distributions, learning
models and induction algorithms, Pattern Recognit. 38 (9) (2005)
1349–1371.

[5] G. Pola, P. Tabuada, Symbolic models for nonlinear control systems:
alternating approximate bisimulations, SIAM J. Control Optim. 48 (2)
(2009) 719–733.

[6] K. Deng, P. Mehta, S. Meyn, Optimal Kullback-Leibler aggregation via
spectral theory of Markov chains, IEEE Trans. Autom. Control 71 (12)
(2011) 2793–2808.

[7] E. Vidal, F. Thollard, C. de la Higuera, F. Casacuberta, R. Carrasco,
Probabilistic finite-state machines—Part I and Part II, IEEE Trans.
Pattern Anal. Mach. Intell. 27 (2005) 1013–1039.

[8] M. Vidyasagar, The complete realization problem for hidden Markov
models: a survey and some new results, Math. Control Signals Syst.
23 (1–3) (2011) 1–65.

[9] P. Adenis, Y. Wen, A. Ray, An inner product space on irreducible and
synchronizable probabilistic finite state automata, Math. Control
Signals Syst. 23 (1) (2012) 281–310.

[10] P.F. Brown, P.V. deSouza, R.L. Mercer, V.J.D. Pietra, J.C. Lai, Class-
based n-gram models of natural language, Comput. Linguist. 18 (4)
(1992) 467–479.

[11] M. Mohri, F. Pereira, M. Riley, Weighted finite-state transducers in
speech recognition, Comput. Speech Lang. 16 (1) (2002) 69–88.

[12] A. Ray, Symbolic dynamic analysis of complex systems for anomaly
detection, Signal Process. 84 (7) (2004) 1115–1130.

[13] V. Rajagopalan, A. Ray, Symbolic time series analysis via wavelet-
based partitioning, Signal Process. 86 (11) (2006) 3309–3320.

[14] S. Iyenger, P. Varshney, T. Damarla, A parametric copula-based
framework for hypothesis testing using heterogeneous data, IEEE
Trans. Signal Process. 59 (2011) 2308–2319.

[15] A. Sundaresan, P. Varshney, Location estimation of a random signal
source based on correlated sensor observations, IEEE Trans. Signal
Process. 59 (2011) 787–799.

[16] C. Rao, A. Ray, S. Sarkar, M. Yasar, Review and comparative evalua-
tion of symbolic dynamic filtering for detection of anomaly patterns,
Signal Image Video Process. 3 (2) (2009) 101–114.

[17] X. Jin, S. Sarkar, A. Ray, S. Gupta, T. Damarla, Target detection and
classification using seismic and PIR sensors, IEEE Sens. J. 12 (2012)
1709–1718.

[18] S. Bahrampour, A. Ray, S. Sarkar, T. Damarla, N. Nasrabadi, Perfor-
mance comparison of feature extraction algorithms for target

http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref1
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref1
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref1
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref2
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref2
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref3
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref3
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref4
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref4
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref4
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref4
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref5
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref5
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref5
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref6
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref6
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref6
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref7
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref7
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref7
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref8
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref8
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref8
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref9
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref9
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref9
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref10
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref10
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref10
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref11
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref11
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref12
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref12
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref13
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref13
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref14
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref14
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref14
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref15
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref15
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref15
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref16
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref16
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref16
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref17
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref17
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref17
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref18
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref18

K. Mukherjee, A. Ray / Signal Processing 104 (2014) 105–119 119
detection and classification, Pattern Recognit. Lett. 34 (16) (2013)
2126–2134.

[19] C. Bishop, Pattern Recognition, Springer, New York, NY, USA, 2006.
[20] T. Liao, Clustering of time series data—a survey, Pattern Recognit. 38

(2005) 1857–1874.
[21] C. Shalizi, K. Shalizi, Blind construction of optimal nonlinear recur-

sive predictors for discrete sequences, in: AUAI '04: Proceedings of
the 20th Conference on Uncertainty in Artificial Intelligence, AUAI
Press, Arlington, VA, USA, 2004, pp. 504–511.

[22] A. Paz, Introduction to Probabilistic Automata, Academic Press, New
York, NY, USA, 1971.

[23] J. Hopcroft, R. Motwani, J. Ullman, Introduction to Automata Theory,
Languages, and Computation, 2nd ed. ACM, New York, NY, USA,
2001, 45–138.

[24] M. Sipser, Introduction to the Theory of Computation, 3rd ed.
Cengage Publishing, Boston, MA, USA, 2013.

[25] G. Mallapragada, A. Ray, X. Jin, Symbolic dynamic filtering and
language measure for behavior identification of mobile robots,
Trans. Syst. Man Cybern. Part B: Cybern. 42 (2012) 647–659.

[26] R. Carrasco, J. Oncina, Learning stochastic regular grammars by
means of a state merging method, in: Grammatical Inference and
Applications, Springer-Verlag, 1994, pp. 139–152.

[27] A. Clark, F. Thollard, PAC-learnability of probabilistic deterministic
finite state automata, J. Mach. Learn. Res. 5 (2004) 473–497.

[28] C. Beck, F. Schlog̈l, Thermodynamics of Chaotic Systems: An Intro-
duction, Cambridge University Press, Cambridge, U.K, 1993.

[29] P. Adenis, K. Mukherjee, A. Ray, State splitting and state merging in
probabilistic finite state automata, in: American Control Conference,
San Francisco, CA, USA, 2011, pp. 5145–5150.

[30] F. Thollard, P. Dupont, C. de la Higuera, Probabilistic DFA inference
using Kullback-Leibler divergence and minimality, in: Seventeenth
International Conference on Machine Learning, Morgan Kauffman,
2000, pp. 975–982.

[31] A. Berman, R. Plemmons, Nonnegative Matrices in the Mathematical
Sciences, SIAM Publications, Philadelphia, PA, USA, 1994.

[32] Y. Wen, K. Mukherjee, A. Ray, Adaptive pattern classification for
symbolic dynamic systems, Signal Process. 93 (2013) 252–260.
[33] T. Cover, J. Thomas, Elements of Information Theory, 2nd ed. Wiley,
Hoboken, NJ, USA, 2006.

[34] L. Rabiner, A tutorial on hidden Markov models and selected
applications in speech processing, Proc. IEEE 77 (2) (1989)
257–286.

[35] I. Chattopadhyay, Y. Wen, A. Ray, S. Phoha, Unsupervised inductive
learning in symbolic sequences via recursive identification of self-
similar semantics, in: Proceedings of American Control Conference,
San Francisco, CA, USA, 2011, pp. 125–130.

[36] T. Niesler, P. Woodland, A variable-length category-based n-gram
language model, in: IEEE Conference on Acoustics, Speech, and
Signal Processing, vol. 1, May 1996, pp. 164–167.

[37] C. Kermorvant, P. Dupont, Improved smoothing for probabilistic
suffix trees seen as variable order Markov chains, in: T. Elomaa, H.
Mannila, H. Toivonen (Eds.), Machine Learning:ECML 2002, Lecture
Notes in Computer Science, vol. 2430, Springer, Berlin, Heidelberg,
2002, pp. 185–194.

[38] P. Halmos, Naive Set Theory, Van Nostrand, Princeton, NJ, 1960,
26–29.

[39] K. Alligood, T. Sauer, J. Yorke, Complexity: Hierarchical Structures
and Scaling in Physics, Springer-Verlag, York, NY, USA, 1996.

[40] S. Gupta, A. Ray, E. Keller, Symbolic time series analysis of ultrasonic
data for early detection of fatigue damage, Mech. Syst. Signal
Process. 21 (2) (2007) 866–884.

[41] D. Singh, S. Gupta, A. Ray, Symbolic dynamic analysis of surface
deformation during fatigue crack initiation, Measur. Sci. Technol. 21
(3) (2010) 043003. (7 pp.).

[42] S. Suresh, Fatigue of Materials, 2nd ed. Cambridge University Press,
Cambridge, UK, 1998.

[43] K. Miettinen, Nonlinear Multiobjective Optimization, Kluwer Aca-
demic, Norwell, MA, USA, 1998.

[44] M. Popel, D. Mareček, Perplexity of n-gram and dependency
language models, in: P. Sojka, et al. (Eds.), TSD 2010, Lecture Notes
in Artificial Intelligence, vol. 6231, Springer-Verlag, Berlin, Germany,
2010, pp. 173–180.

[45] D. Jha, D. Singh, S. Gupta, A. Ray, Fractal analysis of crack initiation in
polycrystalline alloys using surface interferometry, Eur. Phys. Lett.
98 (4) (2012) 44006. (6 pp.).

http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref18
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref18
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref19
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref20
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref20
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref22
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref22
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref23
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref23
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref23
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref24
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref24
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref25
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref25
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref25
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref27
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref27
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref28
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref28
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref28
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref31
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref31
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref32
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref32
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref33
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref33
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref34
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref34
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref34
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref38
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref38
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref39
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref39
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref40
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref40
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref40
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref41
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref41
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref41
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref42
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref42
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref43
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref43
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref45
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref45
http://refhub.elsevier.com/S0165-1684(14)00150-9/sbref45

	State splitting and merging in probabilistic finite state automata for signal representation and analysis
	Introduction
	Mathematical preliminaries and background
	Symbolization of time series
	Selection of alphabet size

	D-Markov machines
	Entropy rate
	Metric for the distance between two PFSA

	Algorithm development
	Development of the state splitting algorithm
	Development of the state merging algorithm
	Notion of merging two states
	Identification of the states to be merged

	Examples
	Summary, conclusions, and future work
	Acknowledgments
	References

