
International Journal of Control, 2015
http://dx.doi.org/10.1080/00207179.2015.1017006

Topology optimisation for energy management in underwater sensor networks

Devesh K. Jhaa, Thomas A. Wettergrenb, Asok Raya,∗ and Kushal Mukherjeec

aDepartment of Mechanical & Nuclear Engineering, Pennsylvania State University, University Park, PA 16802-1412, USA; bNaval
Undersea Warfare Center, Newport, RI 02841-1708, USA and Department of Mechanical & Nuclear Engineering, Pennsylvania State

University, University Park, PA 16802-1412, USA; cUnited Technology Research Center, Cork, Ireland

(Received 28 October 2014; accepted 5 February 2015)

In general, battery-powered sensors in a sensor network are operable as long as they can communicate sensed data to
a processing node. In this context, a sensor network has two competing objectives: (1) maximisation of the network
performance with respect to the probability of successful search for a specified upper bound on the probability of false alarms,
and (2) maximisation of the network’s operable life. As both sensing and communication of data consume battery energy at
the sensing nodes of the sensor network, judicious use of sensing power and communication power is needed to improve the
lifetime of the sensor network. This paper presents an adaptive energy management policy that will optimally allocate the
available energy between sensing and communication at each sensing node to maximise the network performance subject to
specified constraints. Under the assumptions of fixed total energy allocation for a sensor network operating for a specified
time period, the problem is reduced to synthesis of an optimal network topology that maximises the probability of successful
search (of a target) over a surveillance region. In a two-stage optimisation, a genetic algorithm-based meta-heuristic search
is first used to efficiently explore the global design space, and then a local pattern search algorithm is used for convergence
to an optimal solution. The results of performance optimisation are generated on a simulation test bed to validate the
proposed concept. Adaptation to energy variations across the network is shown to be manifested as a change in the optimal
network topology by using sensing and communication models for underwater environment. The approximate Pareto-
optimal surface is obtained as a trade-off between network lifetime and probability of successful search over the surveillance
region.
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Nomenclature

A(rcom, f): acoustic attenuation
a(f): absorption coefficient related to acoustic emis-

sion
Ei: energy available to sensing node i
di: out-degree of node i
E: [E1, E2, . . . , EM]T

E : set of edges in a directed graph
f: signal frequency
G: directed graph

M : number of sensing nodes
N(f): noise power spectrum density
N i : expected number of transmission trials at

node i
ni: average rate of transmitted packets from

node i
ri
c: radius of communication for sensor i

rc: radius of communication vector
[
r1
c , r2

c , . . . ,

rM
c

]T

ri
d : radius of detection for sensor i

∗
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rd : radius of detection vector
[
r1
d , r2

d , . . . , rM
d

]T

S: surveillance region
T: life of the sensor network

T
goal: specified minimum life of the sensor network
V: set of vertices in a directed graph

Wi
N : nominal power draw for sensor i

Wi
c : average communication power for sensor i

Wi
d : detection power for sensor i

Wi
T : total power available at sensor i

Wi
TR: power for transmission of packets at node i

WT :
[
W 1

T ,W 2
T , . . . ,WM

T

]T

WN :
[
W 1

N,W 2
N, . . . ,WM

N

]T

WTR:
[
W 1

TR,W 2
TR, . . . ,WM

TR

]T

Wd :
[
W 1

d ,W 2
d , . . . ,WM

d

]T

Wc:
[
W 1

c ,W 2
c , . . . ,WM

c

]T

z: position of the cell k in the surveillance region
α: probability of successful packet transmission

�f: receiver noise bandwidth
πdet: probability of detection
π fa: probability of false alarm
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πmax
fa : maximum allowable probability of false alarm
π ss: probability of successful search of a target

πgoal
ss : specified probability of successful search

Acronym

CFAR: constant false alarm rate
FAR: false alarm rate
GA: genetic algorithm
PS: pattern search

SNR: signal-to-noise ratio

1. Introduction

Sensor networks for underwater persistent surveillance are
equipped with a small number of affordable sensors that
are expected to yield a high probability of correct detection
as long as possible, while not exceeding a specified rate of
false alarms; such sensor networks are designed to be cost
effective, reliable, and long-lasting. For example, in littoral
undersea networks, the operational period may extend up to
few months without the need for any external intervention.
These sensor networks have peculiar characteristics: they
have large propagation delay, high error rate, low band-
width, and limited energy (Ovalidis, Savage, & Kanakaris,
2010). Improving energy efficiency in such networks is
important since replacement of batteries is expensive. For
fixed (i.e., immobile) sensor networks deployed for persis-
tent surveillance, there are primarily two time-dependent
sources of power consumption:

• sensing/detection of targets,
• communicating the information of detection.

Efficient management of the available energy across a
battery-powered sensor network is necessary to achieve the
competing objectives of: (1) improvement of the network
performance over a fixed time-horizon, and (2) enhance-
ment of the network lifetime for a minimal performance
requirement. Most of the reported research in improving
lifetime expectancy of sensor networks (not necessarily re-
stricted to underwater networks) involves designing better
routing protocols (Climent, Capella, Meratnia, & Serrano,
2012; Wahid & Kim, 2012; Wu & Candan, 2007). In this
context, Badia, Mastrogiovanni, Petrioli, Stefanakos, and
Zorzi (2007) presented an integer-linear programming ap-
proach to jointly optimise routing, node-scheduling, and
node placement for underwater sensor networks. Martin,
Galvan-Guerra, and Egerstedt (2010) developed a sensor
footprint model based on energy availability of the sen-
sors which is then used to optimally control gain of sensors
for energy efficiency. Judarak, Baldi, and Lopes (2005)
proposed a cross-layer routing mechanism for power effi-
cient idle listening mode. Alferi, Bianco, Brandimarte, and

Chiasserini (2007) developed algorithms that turn sensors
on/off in groups to conserve energy. Cardei and Du (2005)
developed a heuristic to organise the sensors into a maxi-
mal number of disjoint set covers that are activated succes-
sively. The advantage is that complete coverage is ensured
by picking up set covers while not using all sensors at the
same time. Recently, Jaleel, Rahmani, and Egerstedt (2013)
presented a dynamic scheduling algorithm for sensors by
taking advantage of the power decay effects on the per-
formance of the individual sensors and the entire network.
Specifically, the concepts of stochastic geometry (Stoyan,
Kendall, & Mecke, 1995) were used to ensure probabilistic
coverage (Hall, 1988) of the surveillance region to design
a dynamic duty scheduling over the network. Most of the
work in current literature do not consider the runtime con-
straints, such as false alarms and changes in the resource
availability. Consequently, there could be an inconsistency
in design and operation (Jaleel et al., 2013) as the dynamics
of sensing and communication in the network are decou-
pled. For example, the network communication topology
is not considered while deciding the sensing capabilities
(or variables) for the network. In this paper, a network de-
sign procedure is presented with the goal of maintaining a
minimum desired performance level when there are hard
constraints of resource availability for the expected life of
the network.

In a majority of the work reported in open literature,
efforts have been expended to develop energy-efficient
data-packet routing protocols and to build efficient detec-
tion models; a clear trade-off between performance and
longevity of the network has been apparently ignored. The
work, proposed in this paper, differs from those reported
in the existing literature in the sense that tools of network
topology optimisation have been employed to judiciously
allocate the available battery power between the operations
of sensing and node-to-node communications to maximise
the performance of the sensing nodes as a network. While
a majority of the existing work is concentrated on find-
ing the best communication and detection rules (which are
not necessarily energy-efficient), the goal here is to im-
prove the network performance for given routing protocols
with fixed criteria for operational activities (e.g., target de-
tection). All such design procedures miss a critical com-
ponent, i.e., making a trade-off between performance and
network lifetime. The current paper addresses the problem
of striking a trade-off between performance and sustainable
lifetime of networks by making optimal energy allocation
between sensing and communication at the node level. To
this end, it is imperative to develop optimisation tools for
maximising the network performance under a variety of
operating conditions.

The objective of this paper is to construct a reliable
and long lasting sensor network that will adaptively make
trade-off decisions between the sensing power and the com-
munication power; such decisions should be independent
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of each sensing node. From these perspectives, optimised
node-level energy management algorithms have been de-
veloped to extend the average battery life at the sensing
nodes by maintaining an acceptable level of the sensor net-
work’s performance. For example, to increase the detection
capabilities, a larger number of sensing channels on a node
may need to be activated, which could draw more power;
similarly, communications with distant nodes, while reduc-
ing false alarms via decision fusion, would also draw more
power. As the network operations evolve, the intermittency
of target events may cause some of the sensors to lose
much of their energy reserves, and the remaining sensors
may be required to conserve available energy to maintain
the same level of network performance. It is noted that this
paper is not proposing a new sensor scheduling algorithm,
rather it is optimising the connectivity of the sensor nodes
so that the network performance is maximised. A two-stage
optimisation procedure is proposed to solve the resulting
problem.

(1) The optimisation procedure is initiated with a ge-
netic algorithm (GA) that efficiently explores the
global design space to yield a nearly optimal solu-
tion.

(2) Solutions of the GA are fed into a pattern search
(PS) algorithm that produces an optimal solution
by gradient-free local search.

The above two-stage optimisation procedure yields the
node-level power for sensing and communication, which
will maintain the required performance over the desired
life of the sensor network.

The paper is structured as follows. Starting with a de-
scription of the sensor power dynamics, the paper formu-
lates the fixed-time-horizon power trade-off problem with
the probability π ss (Wettergren, 2008) of successful search
as the cost function, where π ss is shown to be a function of
the network topology under specified constraints. This func-
tion is then optimizsd using a GA search and is followed by
PS to yield the optimal network topology. All the sensing
nodes communicate with the sink node that acts as the com-
putation node of the network; the sink node also keeps an ac-
count of the energy levels across the network. Even though
the sensors start with homogeneous batteries with the same
amount of energy, variations in the energy level occur be-
cause different sensors may use different amounts of energy
for detection and communication purposes. Based on the
current energy levels, the sink node recalculates the optimal
topology which is then broadcasted across the network to
adapt to energy variations over the network’s lifetime. The
Pareto-optimal surface (Miettinen, 1998) is obtained as a
trade-off between network lifetime and the performance of
the network (measured in terms of probability of success-
ful search. Even though this paper uses models relevant
to underwater communication and detection, the overall

framework of energy management presented could be very
well suited for other types of sensor network.

2. Network communication and target detection

This section presents simple models of network commu-
nication and target detection for underwater surveillance.
Figure 1 shows the schematic of a typical sensor network
deployed for surveillance, where the sensing nodes commu-
nicate with the sink node to provide the information on both
successful and false detections. The numerical results pre-
sented in this paper are based on the models detailed in the
current section. However, the applicability of the proposed
framework is not limited to any particular model.

2.1 Network communication model

A network communication link is said to be functional if
the signal-to-noise ratio (SNR) is above a nominal speci-
fied value. For underwater applications, acoustic modems
are known to be the most efficient communications mech-
anism (Urick, 1994), where messages are transmitted with
a communication radius ri

c for sensor i at a frequency f and
the resulting narrow-band SNR is approximated as

SNR[rc, f ] = WTR

A[rc, f ] · N [f ] · �f
, (1)

where WTR is the transmitted power for communication
(for sensor i), A[rc, f] is the acoustic attenuation, N[f] is the
noise power spectrum density, and �f is the receiver noise
bandwidth that is normalized to unity. The superscript i is
dropped for simplicity in the following equations, because

Figure 1. Detection, false alarm, and communication in a
typical sensor network. Arrows denote the directed links for
communication.
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acoustic attenuation of all sensor signals is given as

A[rc, f ] = c0 · (rc)η · a[f ]rc , (2)

where c0 is a constant for unit normalisation, η is the spread-
ing factor, and a[f] is the absorption coefficient. While de-
tection problems typically make the distinction between
spherical (η = 2) and cylindrical (η = 1) spreading, the
acoustic communications community resorts to a value of
η = 1.5, which is referred to as the practical spreading
coefficient. The last term in Equation (2) is the absorption
coefficient that is given by Thorp’s formula (Urick, 1994)
that is valid in the range of hundreds of Hz to 50 kHz:

10 log10 a[f ] ≈ 0.11f 2

1 + f 2
+ 44f 2

4100 + f 2

+ 2.75 × 10−4f 2 + 0.03. (3)

The noise power spectrum density N[f] in Equation (1)
results from a number of sources, such as turbulence, ship-
ping, waves, and thermal effects. A reasonable approxi-
mation is to take the net effects of noise (Urick, 1994) as
follows:

10 log10 N [f ] ≈ 50 − 18 log10 f, (4)

where the frequency f is in the units of Hz. This approxima-
tion is valid for the frequency range of tens of Hz up to tens
of kHz in a wide variety of ocean regions (Urick, 1994).

The power used for packet transmission determines the
radius of communication for individual nodes. It follows
from Equations (1) to (4) that WTR is a monotonically in-
creasing function of communication radius rc and the nom-
inal SNR threshold required to establish a link. The vector
representing the communication radii of all sensing nodes
rc defines the topology of the sensor network. For fixed
sensor locations, each sensing node has neighbours at fixed
distances, i.e., the power required for establishing commu-
nication links with the neighbours is fixed. Hence, for a
finite number of sensors, there is a finite set of power re-
quirement parameters that are used by a sensor to establish
communication links with other nodes in the network.

2.2 Target detection model

A constant false alarm rate (CFAR) (Poor, 1994) model has
been used for target detection, where

(1) each sensing node in the surveillance region has a
CFAR, and

(2) each sensor has a sensing radius rd, within which
the sensor detects a target with probability πdet.

The probability of successful search, π ss, over the
surveillance region has been used as the performance mea-
sure for the sensor network. The major steps in calculating

Figure 2. Flowchart showing calculation of π ss.

π ss over the surveillance region have been listed in the
flowchart shown in Figure 2 and are briefly explained next.

As the sensing radius is calculated under the assumption
of Gaussian noise by using the following relationship:

ri
d = kd (Wi

d )0.25, (5)

where kd is the proportionality constant that is assumed to
be the same for all sensors. For a specified value of CFAR,
the probability of successful search π ss can be enhanced by
increasing the power for detection (Urick, 1994). However,
without using additional power for detection, an increase in
π ss may also increase the false alarm rate (FAR). Figure 3
elucidates a typical surveillance region with the correspond-
ing sensor footprint calculated according to the detection
model in the presence of additive Gaussian noise. The prob-
ability of successful search is calculated by taking the mean
of the probability of detection over the surveillance region.
For enhancement of computation, the surveillance region
is discretised into a finite number of grid cells, where each
cell is labelled by its centre at the location z[x, y]. The prob-
ability of target detection at the cell, labelled by z, is then
calculated as

πdet[z] = 1 − (1 − πdet)
kz , (6)

where kz is the number of sensors that can detect a possible
target in the cell z. A binary function, χ i(z) is defined as

χi(z) �
{

1 if node i can detect a target at z
0 otherwise,

(7)
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Figure 3. Sensor footprints in a typical surveillance region. The
content of a square box indicates the number of sensors that
overlap.

where the sensing node i ∈ 1, 2, . . . , M. Then, kz is calculated
as

kz =
M∑
i=1

χi(z). (8)

The probability of successful search π ss is obtained by
taking the average over the entire surveillance region S as

πss =
∑

z∈S πdet[z]

Area[S]
, (9)

where Area[S] denotes the area of the surveillance region S.
Remaining details of the passive sensing used for detection
are available in VanTrees (2001) and Picinbono (1995). It is
noted that, at any t ∈ (

0, T
goal

]
, the performance measure

π ss is a function of the vector Wd as a result of the Equations
(5)–(9).

2.3 Network connectivity model

The network is modelled as a directed graph G(V, E), where
V = Vs ∪ Vsink with Vs being the set of sensing nodes and
Vsink the (singleton) set of the sink node. If there are M nodes
in Vs , the cardinality of the node set V is MV = (M + 1),
because there is only one sink node. The edge set E rep-
resents a collection of ME edges that provide intercon-
nections or links in the network. The sensor field under
consideration is constrained with fixed sensor locations, so
that every sensor has the information about all other sensors
and the sink node.

The directed graph G is required to have the property
that there exists a path from every sensing node to the sink
so that the data packets, sent by each sensor, are able to reach

the sink node. It is noted that this notion is different from
that of connectivity of directed graphs, where there must
exist a path between every pair of nodes. Hence, the con-
cepts of graph Laplacian and its spectrum may not be used
to ensure the connectivity. For a given topology of the net-
work, the routes from every sensing to the sink are found by
using Dijkstra’s algorithm (LaValle, 2006). If there exists a
route from each sensing node to the sink, then the network
is said to be connected. That is, every node is connected to
the sink node via the shortest possible route for a given net-
work topology; it is noted that the routes, thus found, will
depend on the network topology. The metric used in mea-
suring the distance of such routes is the energy requirement
for establishment of communication links. Hence, the route
requiring the minimum amount of energy for data packet
transmission to the sink is the shortest route. Presence of
a route, either single-hop or multi-hop, from each of the
sensing nodes to the sink ensures the network connectivity.

An important characteristic of a connected network is
its tendency to use single-hop links against multi-hop links.
The preference of multi-hop or single-hop communication
would depend on the relative position of the sensors and
the processing node (e.g., the sink node). The number of
single-hop links to the sink might increase the energy used
in communication by individual nodes. However, it should
make the network robust to link failures as there are more
nodes which can act as bottleneck nodes, other sensors can
transmit through nodes directly connected to the sink. This
would, in general, also depend on the relative placement of
the sensors and variations in energy availability across the
network. It is noted that, at any time t ∈ (

0, T
goal

]
, the con-

nectivity of G(t) depends on the vector WTR and thus Wc.

2.4 Network protocol model

For perfect communication, all packets are received at the
sink in the first attempt and there are no retries or loss of
information. Associated with the sensing nodes, the packet
drop probability is α = 0. Data packets are sent to the sink
by finding the shortest route through the network depending
on the topology. Every time a sensor detects the possibility
of a target being present, it transmits data over a short
time interval (e.g., on the order of seconds); otherwise,
the sensors are directed to communicate with the sink at a
predefined frequency so that the sink can maintain a count
of live sensors and their battery levels.

For imperfect communication, there is a packet drop
probability associated with packets sent by the sensing
nodes, i.e., the packet drop probability α > 0. The expected
number of trials needed to send the data packets to the sink
is calculated by using the packet drop probability. Hence,
the situation of imperfect communication is modelled by
increasing the packet transmission time by an appropriate
factor depending on the packet drop probability. Although
this paper makes the assumption of perfect communication
with no limit on the amount of data at a node, the situation
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6 D.K. Jha et al.

of imperfect communication can be analysed by increasing
the time for packet transmission by an appropriate factor
that is dependent on the packet drop probability. Such a
model is presented below.

Given the packet drop probability α ∈ (0, 1), the ex-
pected value of the number of trials at node i is evaluated
as

N i(α) = [
1 · (1 − α) + 2 · α · (1 − α)

+ · · · + N · αN−1 · (1 − α) + · · · ]
= 1

1 − α
. (10)

It follows from Equation (10) that, for perfect communica-
tion (i.e., α = 0), the parameter N i(0) = 1.

The expected number, ni, of data packets transmitted
per unit time by node i is obtained as

ni ∝ FAR · di · N i(α), (11)

where the network design parameters, FAR, and out-degree
di of the node i, are available for any topology of the sensor
network.

The expected energy requirements for data transmis-
sion is obtained from N i(α). The network protocol model
together with the communication model, described in Sec-
tion 2.1, determines the transmission power vector WTR

and thus the average communication power vector Wc. For
imperfect communication (i.e., α > 0), the average power
for communication for a node i would increase by a factor
of N i(α), i.e.,

Wi
c (α) = Wi

c (0)

1 − α
, where Wi

c (α) ∝ ni.

3. Problem formulation

From the above perspectives, the problem of energy man-
agement in underwater sensor networks is treated as adap-
tive optimal sharing of the available battery power between
sensing and communication. This multi-objective cost func-
tional leads to non-dominant optimisation. Such a prob-
lem is formulated as a Pareto-optimal trade-off (Miettinen,
1998) between network performance and lifetime in the un-
derwater sensor network. In this setting, each passive sens-
ing node needs to adaptively select the appropriate sensing
radius based on the current level of its battery life and the
projected remaining life of the sensor network that requires
communications connectivity to remain functional. From
this perspective, sensor networks have two competing ob-
jectives.

• Maximisation of network performance with respect
to the probability of successful search with a specified
FAR for a given coverage area.

• Maximisation of the network’s operational life.

The goal here is to synthesise an adaptive energy man-
agement policy for a given sensor network that will opti-
mally allocate available power between the operations of
sensing and communication at each node to maximise the
network performance under the following assumptions.

(1) The 2 − D sensor network consists of M sensing
nodes (without the sink node) that are located at
fixed positions i = 1, 2, . . . , M to perform coop-
erative surveillance. (It is noted that the locations
are randomly generated but they are fixed.) Each
sensing node is allocated a fixed amount of energy
(i.e., the ith sensing node has energy Ei) and this
allocated energy is to be shared for sensing, com-
munication and associated fixed nominal overhead
expenses.

(2) Sensing nodes have power requirements for basic
operational overhead (e.g., for central processing)
as well as for receiver capabilities, with a constant
nominal power draw Wi

N for each sensing node i.
(3) The average power for communication is obtained

by time averaging of expected communication
power for the remainder of the network life.

(4) The communication of data packets from all sensors
to sink is perfect (i.e., no lost packets). As such, no
acknowledgement of the data packets received are
sent by the sink back to the sensing nodes.

(5) The packet size of target detection messages, trans-
mitted by a sensing node, is small (e.g., in the order
of a few seconds) compared to the network opera-
tional time.

(6) Target detection algorithms are constructed for
specified CFAR.

(7) The sensing radius is calculated in the presence
of Gaussian noise by using the relationship, ri

d ∝
(Wi

d )0.25.
(8) The sensing radius at a node is calculated from

the sensing power of a signal in the presence of
Gaussian noise (Poor, 1994) by using the square-
law detection model (Picinbono, 1995).

(9) The network remains connected, i.e., data packets
from all sensing nodes reach the processing node
(i.e., the sink node) in a finite number of hops.

Remark 3.1: The network is designed based on the steady-
state behaviour when it is allowed to have a specified
number of false alarms. Hence, all calculations for energy
allocation are made using the allowable number of false
alarms. During operation, however, the network may come
across multiple targets.

The life T of a sensor network is defined as the time
over which the network maintains an effective probability
of successful search π ss of at least πgoal

ss , i.e.,

T � inf
{
t : πss[t] > πgoal

ss

}
. (12)
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In the above setting, a dual problem is to design the
sensor network to remain functional for a specified time
T

goal and maximise the minimal value of the probability
of successful search π ss for the network over the specified
life. Sufficient information has to reach a sink node for ver-
ification of target detection, which uses multi-sensor deci-
sion fusion rules (e.g., k-detections or track-before-detect)
(Mukherjee, Ray, Wettergren, Gupta, & Phoha, 2011; Wet-
tergren, 2008) to decide the presence of a target or a false
alarm. However, the sink node has no sensing capabilities
of its own.

As discussed earlier, the sensors start with batteries
having fixed energy and the detection rules are based on
CFAR. Given these design criteria and the expected net-
work lifetime T

goal, each sensing node calculates its total
available power. To meet its expected performance, each
sensing node i allocates its total available power Wi

T as: (1)
sensing power Wi

d and (2) the average power for commu-
nicating detection information Wi

c . Sensors communicate
only when they detect the presence of a target (including
false alarms), which is a sparse and an intermittent event.
Hence, the power used for transmission Wi

TR of data packets
is different from the average power used for communication
Wi

c that is calculated by time averaging of the power Wi
TR

for transmission of data packets.
For a sensing node i, the total power balance is then

expressed as

Wi
T (t) = Wi

N (t) + Wi
d (t) + Wi

c (t) ∀t ∈ (
0, T

goal
]
, (13)

where Wi
N (t) is considered to be a constant in this paper.

As shown in Section 2, the variables Wi
d and Wi

c could be
expressed as functions of ri

d and ri
c , respectively, when other

factors, such as SNR and a(f), are kept constant. The vectors
rd and rc (and thus Wd and Wc) together define the network
performance by determining π ss and the connectivity of the
sensors with the sink. Under the assumption of constant
Wi

N , the optimisation problem is to maximise the network
performance π ss under the constraints of fixed network life
and energy availability by identifying the optimal vectors
W�

d and W�
c . More formally, the objective is to find W�

d

and W�
c (and thus the corresponding r�

d and r�
c) such that

(W�
d , W�

c) =
argmax

(Wd , Wc) πss(Wd , Wc) (14)

under the constraints imposed by the following conditions.

• Power balance in Equation (13).
• πss [t] > πgoal

ss ∀ t ∈ (
0, T

goal
]

• G(t) is connected ∀ t ∈ (
0, T

goal
]

• π fa(t) ≤ πmax
fa ∀ t ∈ (

0, T
goal

]

The above static optimisation process finds out the best
network topology (i.e., r�

c) that maintains the network con-
nectivity and maximises π ss. It is noted that every feasible

network topology, represented by the vector rc, uniquely
identifies a detection radius vector rd (see Equation (13)).
However, the converse is not true (see Section 4 for details).

The network needs to be self-adaptive to the changes in
the remaining battery life and target behaviour to maintain a
satisfactory performance level. The associated dynamic (or
adaptive) optimisation is executed every time a significant
event is detected. The network is supposed to operate over
a sufficiently large period of time; real-time adaptation for
the network is not required. The network reconfigures over
a slow time scale as compared to the dynamics of the likely
events (targets) in the network. In this setting, behavioural
changes in network topology could be measured in terms
of the ratio of multiple hop and single-hop paths present
in the network under the optimal and average operating
conditions.

To obtain the optimal performance conditions over dif-
ferent operational conditions of the network, a Pareto sur-
face (Miettinen, 1998) is generated as a trade-off between
network lifetime and network performance for successful
detection of targets, which helps the choice of an operating
point. Depending on the situation, the network may select
another search strategy by reducing T

goal or vice versa.
The problem of sensor network design, addressed in the

paper, is stated as follows.

Design of an energy-constrained sensor network that will
optimally allocate available power at each node for sensing
and communication to maximize the network performance
under constraints of fixed life. It is noted that the network
performance is measured in terms of π ss and its connectivity
which are global variables. As a result, the decision vari-
ables (i.e., choice of sensing and communication power) of
sensors are tightly coupled and need to be decided simul-
taneously.

4. Proposed approach

The major steps involved in solution of the optimisation
problem are shown as a flowchart in Figure 4. As discussed
in the last section, the optimisation process optimally al-
locates available power at each node for sensing and com-
munication to maximise the network performance that is
measured in terms of probability, π ss, of successful detec-
tion of a target, which is obtained from Equations (5) to (9)
and represents the global behaviour of the network. Under
the current detection model, presented in Section 2.2, π ss

is obtained as a function of Wd . On the other hand, the
network connectivity (or topology) depends on the power
vector Wc and hence on rc. Thus, every sensor must decide
which neighbouring node it should communicate with so
that the network remains connected and its performance
is maximised. It is noted that these variables need to be
decided simultaneously for the all sensors, because the ob-
jective function i.e., π ss is a global property of the network.

Figure 5 shows the profiles of variations of communica-
tion radius with sensing radius at different nominal thresh-
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8 D.K. Jha et al.

Figure 4. Flowchart showing major steps in the solution
approach.

olds of SNR to set-up inter-node communication links, un-
der the constraints of a CFAR and fixed energy. These rela-
tionships are obtained by using Equations (1)–(3) in Section
2.1 at a frequency of approximately 1 kHz. At a fixed alarm
rate, the sensing radius is evaluated from the energy left for
detection (for a fixed time-horizon) after meeting the com-
munication requirements (over the same time-horizon). It
is seen in Figure 5 that the sensing radius is less sensitive to
changes in the communication radius at relatively smaller
SNR as the family of curves becomes more flat at larger
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Figure 5. Effects of communication signal-to-noise ratio (SNR)
on detection in networks with constrained energy reserves.
Higher requirements on SNR for establishment of communication
requires more transmission power (WTR) to set-up a communica-
tion link leaving less energy for sensing.

SNR. In essence, the communication radius has less sig-
nificant effects on the sensitivity of the sensing radius at
larger SNR. The implication is that, with a small SNR, a
good part of the available power would be used to ensure
successful communication and it would consequently result
in a narrow range of detection radius. Furthermore, since
communication power Wi

c varies superlinearly with com-
munication radius ri

c at high SNR, the bulk of the available
power would be used for communication even with the near-
est neighbours resulting in low detection radius. Optimisa-
tion will be meaningful only in scenarios where changes
in the communication radius have significant effects on
the sensing radius. Otherwise, the network can only have
a small range of feasible probability of successful search
π ss while still being connected and the optimal behaviour
would not significantly differ from average behaviour in
those cases. Therefore, while designing a network, the bat-
tery energy levels at the sensing nodes should be chosen
appropriately with due consideration to the communication
SNR. In other words, an ill-designed sensor network may
suffer from having a narrow region of performance, where
a trade-off between sensing and communication may not
able to significantly improve the network performance.

Since the sensor locations are assumed to be fixed,
every sensor should have neighbours at fixed distances
(e.g., as seen in Figure 6). Thus, there exists a discrete
finite set of communication radii for each sensor (e.g.,
if |Vs ∪ Vsink| = M + 1, then ri

c ∈ {ri1
c , . . . , riM

c }. Con-
sequently, new links in the network are established only
at discrete values Wi

TR and there are discrete values for
feasible Wi

c , which can be used for communication. The
sensing nodes would encounter only a discrete set of power
levels that they may use for communication. Using any

Figure 6. Discretisation of the solution space under the assump-
tion of fixed sensor locations. The neighbours of a sensor (e.g.,
the one shown in the figure) could be mapped to unique indices
and a feasible solution is a vector rc ∈ R

M .
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other power level in between these discrete levels for the
same task may not have any advantage for communication
as no new links could be established. It is reasonable to use
discrete power levels of communication in the optimisation
process, while the remaining power at each node is available
for sensing of targets. Using the current model for com-
munication, the vectors WTR and Wc could be expressed
as implicit functions of the communication radius vector
rc. The vector rc is an M-dimensional discrete vector (e.g.,
rc = {r1p

c , . . . , rMr
c } as there are M sensors in the network)

and it can be mapped to the lattice Z
M in the Euclidean

space R
M . Formally, there exists a map defined as

f : rc 
→ (I1, I2, . . . , IM ) , (15)

where Ik,k ∈ {1, 2, . . . , M} is an integer and (I1, I2,

. . . , IM ) ∈ Z
M . It is noted that the map f is bijective, imply-

ing that the vector rc can be uniquely mapped to M-tuple
of integers. Probability of successful search of targets over
the surveillance region, which serves as the performance
measure for the network, is calculated in terms of a
feasible vector Wd . Therefore, rd can attain values in the
continuous Euclidean space R

M . Under the relation shown
in Equation (13) and the facts that WT is fixed and that Wc

can attain only discrete values, the vector Wd is constrained
to belong to a discrete set; consequently, the sensing radius
vector rd belongs to a discrete set. As discussed earlier, the
objective function πss(Wd , Wc) is expressed as an implicit
function πss(Wd, Wc) = πss(Wc) of the communication
power vector Wc when WT = Wd + Wc (see Equation
(13)). In this setting, the objective function π ss becomes an
implicit function of the communication radius vector rc,
because Wc is determined by rc on a fixed time-horizon.

Remark 4.1: In view of the above arguments, the optimi-
sation problem is now reduced to identification of the vector
r�
c that uniquely determines W�

c and W�
d on a fixed time-

horizon. The optimal r�
c keeps the network connected and

simultaneously maximises the probability π ss of successful
search over the surveillance region. Since a feasible operat-
ing point belongs to an M-dimensional space, Finding the
optimal solution is a combinatorial optimisation problem.
An exhaustive search for finding the optimal combination
could be NP-complete (Sipser, 2012).

Next a two-stage optimisation process is introduced to
solve the discrete optimisation problem.

(1) The optimisation process is initiated by a global
search of the M-dimensional solution space by
using GA-based meta-heuristic search (Bishop,
2006). This step is expected to provide a solution
to a close vicinity of the global optimal solution.

(2) Solutions obtained by GA are fed as initial con-
ditions into gradient-free local search algorithm,
known as PS (Bishop, 2006). This step leads to

a local refinement of the solution by making small
perturbations in the solutions obtained from the GA
search.

4.1 Genetic algorithm

GA belong to a class of computationally efficient meta-
heuristic tools for searching optima in large parameter
spaces with a limited structure (Michalewicz & Fogel,
2004). Examples of other directed random search tech-
niques, which could be used to obtain solutions close to
the global optima, are the following:

• cultural algorithms that add a macro-evolutionary be-
lief function to the value of each rc;

• particle swarm algorithms in which iterative varia-
tions of rc are imposed by comparison to the best
value of rc obtained to that point; and

• ant colony optimisation that involves adding artificial
pheromone levels to good values of rc to draw further
iterations toward that direction.

Since all of the above alternative techniques involve
problem-specific tuning, this paper focuses on GA as a
method that can be applied generically to the problem at
hand. In the setting of GA, a feasible solution rc is an
M-dimensional vector representing the communication ra-
dius for every sensing node, for which the set of all possible
neighbours (excluding itself) is created. Such a set is sorted
in the ascending order relative to the respective distances
from that node. A bijective map f (see Equation (15)) from
the sorted set to the integer lattice Z

M is then created. Then,
rc can be represented as an M-tuple of integers, which is
represented as a binary string and fed into GA to initiate
the optimisation process. Formally,

f (rc) 
→ (I1, I2, . . . , IM )


→ 00010 . . . . . . 01.

A sufficient number of runs of the GA would lead to a
small neighbourhood of the optimal solution. The numer-
ical details of GA are presented in the next section. The
solutions obtained by GA are used as initial conditions for
PS, which performs a local greedy perturbation and a local
improvement of the solution is obtained. The PS optimisa-
tion method is described next.

4.2 Pattern search optimisation

The idea is to be able to get closer to the optimal solution
by doing a finer gradient-free search around the solution
obtained from GA using a direct search method. The PS al-
gorithm starts with an initial guess to evaluate the objective
function and, after initialisation, the algorithm searches
for a set of points around the initial point. The objective
function is calculated at each of the points around the initial
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10 D.K. Jha et al.

point and the best point is searched in that neighbourhood.
The initial point is then moved to this ‘best neighbour’ and
the process is terminated if either the tolerance constraints
are satisfied, or a maximum number of iterations is reached.

The neighbourhood of a point is constructed in the so-
lution space as a set of points in which one of the indices
of the communication vector have been perturbed by one.
Therefore, every point in the solution space will have 2M
neighbours except the boundary points. For example, if the
GA returns a solution rc = {r1k

c , r2l
c , . . . , r

Mp
c } where k, l,

p ∈ {1, 2, . . . , M}, then one of the possible neighbours of
rc = {r1(k+1)

c , r2l
c . . . , r

Mp
c }. Consequently, rc will have 2M

neighbours if it is not on the boundary of a feasible set.
The objective function is calculated at each of those neigh-
bours and the best neighbour is made the next initial guess.
Further details of the algorithms are provided in Section 5.

A series of Monte-Carlo simulation runs have been
conducted under random network topologies of the sensor
network, and their respective performance is evaluated for
comparison with the optimised behaviour that is obtained
by the two-stage process as discussed earlier. The major
steps involved in the optimisation process are delineated in
Algorithm 1.

Algorithm 1 Two-stage optimisation for node-level energy
management
Output: W�

c, W�
d

1: Fix FAR, T
goal, E and WN .

2: Assume a model for communication and a communi-
cation protocol for the sensor network.

3: Calculate WTR and Wc using the specified design vari-
ables.

4: Calculate the average power left for detection as an
implicit function of Wc, and thus, rc.

5: Find the radius of detection of sensors using the power
for detection available at individual sensors.

6: Obtain probability of search, πss as an implicit function
of rc.

7: Represent rc as unique M-tuple of integers and thus,
create binary representations for the same.

8: Use πss as an implicit function of rc as the objective
function. Initiate a GA search by using a feasible rc in
binary representation as the initial point. (This begins
the first stage of optimisation.)

9: Use the solution obtained by genetic algorithm as an
initial point for the PS optimisation. (This finishes the
optimisation process.)

10: Using the optimised vector r�
c and the network lifetime,

compute W�
c.

11: Using W�
c, WT and WN , calculate W�

d .

5. Results and interpretation of numerical
simulation for example problems

This section presents the results of the proposed method
of network performance optimisation. Examples are pre-
sented to demonstrate the operations of the optimisation
algorithms and the results are generated via simulation of
the following two sensor networks.

(1) Network#1 that consists of eight sensing nodes (i.e.,
M = 8) and a sink node.

(2) Network#2 that consists of 32 sensing nodes (i.e.,
M = 32) and a sink node.

As stated earlier, the sink node receives all information
for processing, but it transmits no messages except when
it has to broadcast the planned or re-planned topology of
the network. The network is required to remain active for
a fixed time-horizon T

goal and the batteries of all sensing
nodes are initialised to be at the same energy level. To
find the optimal operating conditions, the design space of
optimisation is first explored with a GA that is executed for
a predefined number of generations (i.e., iterations). Then,
the best solution of GA is used as the starting point in the
next stage for execution of a PS algorithm. The optimal
solution of PS is then compared with the average behaviour
obtained by using Monte-Carlo simulation for performance
evaluation of the optimisation scheme.

Figure 7 shows the results derived from simulation of
Network#1, where node 1 through 8 serve as the sensing
nodes, each having the probability of detection, πdet =
0.6, while the node 9 is the sink. The sensors have been
randomly placed within a 1500m × 1500m surveillance
region. A feasible solution is obtained by GA by execution
over 30 generations, where each generation contains 100
members. Each member of a generation is represented as
a combination of discrete communication levels for the
sensing nodes, which is a binary string of length L=24.
Only the fittest member of a population is carried over to
the next generation and the mutation probability is taken
to be 1

L
. The PS is terminated when there is no further

improvement in the performance of the network with a
local change in the solution point. The same termination
condition is used for PS in all the simulations presented in
this section.

Figure 7(a) shows the topology of Network#1, gener-
ated by GA, where the achieved probability of successful
search π ss is ∼0.86. The operating point obtained by GA
is used as an initial condition for local PS optimisation that
eliminates the insignificant links in the network to make
more power available for target detection. Figure 7(b) shows
the corresponding network topology, where three out of the
eight sensing nodes in Network#1 use single-hop links to
communicate to the sink (i.e., node 9). Consequently, π ss is
improved to ∼0.89.
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Figure 7. Optimised performance of Network#1 (The arrows
denote the directions of information flow). (a) Topology generated
by the genetic algorithm (GA). (b) Topology generated by pattern
search (PS) with additional local optimisation.

Figure 8(a) presents the convergence of GA used in
Figure 7(a) for Network#1. Being a relatively small net-
work, GA efficiently explores the solution space as seen
from the trend of convergence over the generations as seen
in Figure 8(a). The results of Monte-Carlo simulation in
Figure 8(b) are approximately fitted with Gaussian distri-
bution by the regular χ2 goodness of fit (Brunk, 1975). The
mean performance is ∼0.54 and the standard deviation is
∼0.24. Three out the eight nodes in the network use single
link communication with the sink in the optimised scenario.

A sensor network is expected to adapt to the variations
of energy availability at different sensor nodes. Along this
line, Figure 9 presents typical results of adaptation to en-
ergy variations across Network#1. Since the GA parameters
are the same as in the previous cases of Figures 7 and 8,
the structure of the sensor network is essentially unchanged
with the exception of assigning different sensor locations in
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Figure 8. Monte-Carlo simulation for convergence and stability
analysis and performance evaluation of Network#1. (a) Conver-
gence and stability of genetic algorithm (GA). (b) Performance
evaluation by Monte-Carlo simulation; GA= genetic algorithm,
PS = pattern search.
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Figure 9. Energy availability across Network#1.
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12 D.K. Jha et al.

the surveillance region. After a certain period of operation,
node 5 in Network#1 happens to have maximum battery
energy left, as seen in Figure 9. The optimal network topol-
ogy is achieved when all sensors have equal energy as seen
in Figure 10(a). Apparently, node 1 becomes as the poten-
tial bottleneck, because a vast majority of the remaining
nodes transmit their data packets via node 1. By making
use of the information on variations in energy availability
across the sensor network, the optimal network topology
is presented Figure 10(b), where node 5 becomes the new
bottleneck instead of node 1 as all neighbouring nodes now
communicate through node 5. Figure 10(c) shows the results
of Monte-Carlo simulation for variable energy availability.
The results are approximated with Gaussian distribution by
the regular χ2 goodness of fit (Brunk, 1975). The mean
performance is ∼0.51 and the standard deviation is ∼0.21.
The GA optimisation is able to achieve a π ss of 0.76, which
improves to 0.79 via the local direct search by PS.

Figure 11 shows the results of GA for Network#2, where
node 1 through 32 serve as sensing nodes, each having
probability of detection, πdet = 0.6, while node 33 is the
sink. The sensors have been randomly placed in the 1500m
× 1500m surveillance region, which is similar to that for
Network#1. The communication noise for Network#2 is in-
creased to maintain a comparable level of performance with
a larger number of sensors, which would require augmen-
tation of the energy level of the transmitted signal.

Similar to what was done for Network#1, GA is run
for 200 generations, where each generation contains 500
members, to arrive at a near-optimal solution for the topol-
ogy of Network#2. Each member in GA is represented as a
combination of discrete communication energy level for the
sensing nodes, which is a binary string with length, L=160.
The best fitting member of a population is carried over to
the next generation. Taking the mutation probability to be
1
L

, GA converges to the near-global optimal solution where
probability of successful search π ss is approximately 0.81.
The operating point, obtained by GA, is used as an initial
condition for PS optimisation, where the local optimisation
removes some of the redundant communication links in the
network. This makes more power available for detection
with an improved π ss ≈ 0.83, where about a third of the
nodes use single-link communication with the sink. Conse-
quently, no single node is overloaded with packets, which
makes the network robust to an unanticipated node failure.

Since the solution space of Network#2 is larger than
that of Network#1, a larger number of GA generations is
required before the search converges; however, the search
is reasonably stable and does converge to a neighbour-
hood of the optimal solution, as seen in Figure 11(a). The
near-global optimality of GA is shown by the convergence
of mean and standard deviation of the objective function
over the generations of GA as seen in Figure 11(b); af-
ter the transient phase of search is over, the population
of the successive generations slightly fluctuates around the
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Figure 10. Optimised performance of Network#1. Arrows de-
note the direction of information flow (a) Optimal plan with equal
energy across the network. (b) Adaptation to energy availability
across the network. (c) Monte-Carlo results for network perfor-
mance (fitted with Gaussian distribution) when there is energy
variation across the network; GA= genetic algorithm, PS = pat-
tern search.
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Figure 11. Convergence and performance of genetic algorithm
for Network#2. (a) Convergence of the genetic algorithm. (b)
Statistics of π ss over generations of GA.

optimal solution. The results of the Monte-Carlo simulation
in Figure 12 are approximated with a Gaussian distribution
by using the regular χ2 goodness of fit (Brunk, 1975). The
mean performance is ∼0.41 and the standard deviation is
∼0.10. For clarity of presentation, all results are also listed
in Table 1.

Using a combination of GA and PS algorithms,
Figure 13 shows a Pareto-optimal surface obtained as a

Table 1. Comparison of optimised behaviour vs. the average
behaviour.

MC MC standard
Network GA GA + PS average deviation

1 0.86 0.89 0.54 0.24
1 (Case 2) 0.76 0.79 0.51 0.21
2 0.81 0.83 0.41 0.10
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Figure 12. Results of Monte-Carlo simulation for Network#2;
GA = genetic algorithm, PS = pattern search.
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Figure 13. Optimal trade-off between lifetime and performance
in Network#2.

trade-off between network lifetime and performance for
Network#2 under the constraints of CFAR, constant total
energy, and fixed (communication) SNR. As the statistics
of GA runs suggest, this Pareto-optimal surface (Miettinen,
1998) is expected to be in a close vicinity of the true global
optimal surface.

6. Conclusions and future work

This paper presents optimisation of energy-efficient sensor
networks for persistent surveillance in an underwater en-
vironment. The proposed optimisation algorithm allocates
the available energy between sensing and communication
at individual nodes, both of which are required for an active
sensor network. The problem is posed as optimal identi-
fication of the power requirements for data-packet trans-
mission for each node in the sensor network. It is shown
by simulation on two networks of different size that the
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14 D.K. Jha et al.

proposed algorithm adapts to changes in the energy avail-
ability across the sensor network, which might occur due
to non-uniform power requirements in different parts of
the network; a Pareto-optimal surface shows the trade-off
between performance and network lifetime.

The proposed algorithm is validated by using stan-
dard statistical tools on simulated surveillance scenarios.
Although this paper uses models relevant to underwater
communication and detection, the framework of energy
management could be very well-suited for other types of
sensor network.

Future research is recommended in the following areas
for the enhancement of the proposed method in the follow-
ing areas.

(1) Improvement in computational efficiency of net-
work optimisation for distributed execution on large
sensor networks: this research area would require
identification of the critical parameters in an ab-
stract model, which can be optimised locally by
each node with local information. For example, de-
pending on the relative position of the neighbour-
ing nodes, each sensor node will decide to choose
the link that uses minimum energy. Simultaneously,
in order to make the network more robust to link
failures, each sensor may attempt to increase the
number of connections to its neighbouring nodes.

(2) Optimal sensor placement for energy efficiency: in
view of the fact that optimal network topology is a
function of sensor location, energy-efficient sensor
placement will tend to maximise the probability
of successful search with fixed energy availability
constraints.
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