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� Symbolic Time Series Analysis (STSA) has been used for low-complexity feature extraction.
� Discrete wavelet transformation (DWT) has been used for data segmentation.
� Algorithms have been validated on experimental data of pairs of current and voltage data from a lead-acid battery.
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This paper presents a dynamic data-driven method of pattern classification for identification of the
state-of-charge (SOC) parameter in battery systems for diverse applications (e.g., plug-in electric vehicles
and hybrid locomotives). The underlying theory is built upon the concept of symbolic dynamics, which
represents the behavior of battery system dynamics at different levels of SOC as probabilistic finite state
automata (PFSA). In the proposed method, (finite-length) blocks of battery data are selected via
wavelet-based segmentation from the time series of synchronized input–output (i.e., current–voltage)
pairs in the respective two-dimensional space. Then, symbol strings are generated from the segmented
time series pairs in the sense of maximum entropy partitioning and a special class of PFSA, called the
D-Markov machine, is constructed to extract the features of the battery system dynamics for pattern clas-
sification. To deal with the uncertainties due to the (finite-length) approximation of symbol sequences,
combinations of (a priori) Dirichlet and (a posteriori) multinomial distributions are respectively adopted
in the training and testing phases of pattern classification. The proposed concept of pattern classification
has been validated on (approximately periodic) experimental data that have been acquired from a
commercial-scale lead-acid battery.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction From these perspectives, real-time identification of battery SOC
The state-of-charge (SOC) is a crucial parameter for operation of
battery systems, which depicts the battery system’s current capac-
ity (i.e., the maximum charge that can be drawn from its fully
charged condition). Accurate estimates of SOC mitigate the risk
of battery cells being over-charged and over-discharged. Many
applications (e.g., plug-in electric vehicles and hybrid locomotives)
require large battery packs that may contain several hundreds of
battery cells to meet the large and dynamic power demands.
would enhance the efficiency of power and energy allocation
within the battery packs.

The current state-of-the-art methods of battery parameter
identification can be divided into three broad categories:
(i) empirical modeling; (ii) physics-based modeling; and (iii)
dynamic data-driven analysis, all of which need data bases of
experimental measurements for validation. Empirical modeling
methods (e.g., impedance measurements and open circuit voltage
testing [1]) often employ dedicated hardware and/or software
and require tested battery cells, and are essentially off-line.
Although these empirical methods provide good estimates in
specific cases, they are time-consuming and cost-prohibitive for
general applications. Physics-based modeling methods have been
extensively used for identification of battery parameters; examples
are reduced-order system identification, linear switch models [2],
and Kalman filtering [3]. However, physics-based modeling
methods require thorough knowledge of the electrochemical
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characteristics of the battery cells to arrive at appropriate model
structures for parameter identification at different operating
points of the nonlinear battery dynamics. In contrast, dynamic
data-driven methods (that do not explicitly rely on physical phe-
nomena of battery electrochemistry) could be more efficient in
terms of computation time and memory costs if adequate training
data are available. Several data-driven methods have been
reported in literature for battery SOC identification based on differ-
ent concepts of machine learning, which include artificial neural
networks (ANNs) [4], fuzzy logic [5], support vector regression
[6], and symbolic dynamics [7]. Changes in the battery SOC (e.g.,
frequent discharge by acceleration and regeneration by decelera-
tion in the operations of electric vehicles and locomotives) may
take place over small time-windows, the estimated values should
be updated frequently. Therefore, a crucial evaluation factor for
dynamic data-driven applications is to generate robust and accu-
rate identification of SOC in real time with limited lengths of test
data. Very few data-driven methods, available in current literature,
have addressed this particular issue. The reason being that most of
the data-driven methods require adequate length of training and
test data to make extracted features accurate and robust to
corresponding system operating condition, which usually lead to
a delayed SOC identification.

Li et al. [7] have reported a dynamic data-driven method, as a
feasible alternative to model-based methods, for identification of
SOC by using the time series of the battery voltage time series.
The underlying concept is built upon the theory of Symbolic
Time Series Analysis (STSA) [8–10] that extracts the dynamic infor-
mation as low-dimensional features by symbolization of sensor
time series and subsequently generation of probabilistic finite state
automata (PFSA). The performance of SOC identification in this
context has been studied under different training and test data
lengths. In 2015, Li et al. [11] have extended their earlier work in
[7] by making use of an ensemble of pairs of synchronized battery
input/output (i.e., current/voltage) time series for identification of
the state-of-health (SOH) parameter. In 2013, Wen et al. [12]
presented a general framework for statistically quantifying the
uncertainties of the extracted PFSA features due to finite-length
data in both training and testing phases of pattern classification.

As an extension of the authors’ earlier work [7,11], this paper
develops a method for identification of battery SOC as a pattern
classification problem by making use of ensemble of time series
pairs of synchronized battery inputs (i.e., charging/discharging cur-
rent) and battery outputs (i.e., voltage) for information compres-
sion and feature extraction. The uncertainties due to finite
lengths of both training and testing data are modeled as Dirichlet
and multinomial distributions respectively, based on the earlier
work of Wen et al. [12]. The proposed method has been validated
with experimental data of a (commercial-scale) lead-acid battery
under varying input–output (e.g., current–voltage) conditions.

The application part of this paper focuses on lead-acid batteries
that are widely used in automobiles and electric locomotives [13].
Nevertheless the proposed method of SOC identification can be
easily extended to other battery types (e.g., lithium-ion) and
identification of additional important operating parameters
(e.g., state-of-health) [7]. Significant contributions of the present
paper over the work reported in open literature and especially
the authors’ earlier work [7,11] on development of dynamic
data-driven application systems (DDDAS) [14] for battery parame-
ter identification are delineated below.

� Characterization of the battery dynamics based on the synchro-
nized input–output time series via symbolic dynamic analysis:
This representation of (possibly nonlinear) input–output char-
acteristics is analogous to a transfer function realization and
alleviates the need for linearization of the system dynamics.
� Wavelet-based segmentation of time series for separation of the
active parts (e.g., charge/discharge pulses) from the inactive parts
(i.e., constant charge/discharge): While battery systems may be
operated under constant load (i.e., when there are no significant
fluctuations) over a time span, the active dynamic responses of
the battery can be localized based on the information derived in
the time–frequency domain [15].
� Information compression in the form of low-dimensional features

extracted from symbolized time series of two-dimensional data:
Feature extraction is achieved by partitioning of (synchronized)
input–output pairs in the sense of maximum entropy and sub-
sequent analysis of the symbolized data in the setting of prob-
abilistic finite state automata (PFSA) via D-Markov modeling
[8,10].
� Incorporation of the effects of finite-length symbol strings on pat-

tern classification: The uncertainties due to finite-length symbol
strings are quantified by as a combination of a priori (training
phase) and a posteriori (testing phase) are quantified by
Dirichlet and multinomial distribution models, respectively
[12]. Experimental results have provided an insight for selection
of the lengths of training and testing data (e.g., number of con-
secutive cycles of charging followed by discharging) to achieve
the desired performance.

This paper is organized into six sections, including the present
section, and one appendix. Section 2 briefly describes the underly-
ing definitions and pertinent concepts of battery dynamics,
wavelet-based segmentation, symbolic dynamics, along with a
framework for online identification of battery state-of-charge
(SOC). Section 2 provides a very brief conceptual background of
battery dynamics and summarizes the fundamental concepts and
synopses of previous and related work that lead to the proposed
method for battery SOC estimation. Section 3 summarizes the gen-
eral framework of online pattern classification by symbolic analy-
sis of synchronized time-series pairs in the input–output space.
Section 4 presents the procedure of experimental data collection
as well as the data pre-processing procedure. Section 5 presents
the results of the application to a commercial-scale lead-acid
battery. Section 6 summarizes and concludes this paper along with
recommendations for future research. Appendix A lists the
algorithms that are developed in the main body of the paper to
generate the results.

2. Background and pertinent concepts

This section presents the underlying definitions and pertinent
concepts of battery dynamics, wavelet-based segmentation, parti-
tioning of segmented data for symbolization, and symbolic
dynamics-based information compression, along with a framework
for online pattern classification.

2.1. Battery system parameters

This subsection introduces standard definitions of pertinent
battery parameters, at a given ambient temperature [7,16].

Definition 2.1 (Battery capacity). The capacity CðtÞ of a battery at
time t is its maximum charge (in units of ampere-hours) that can
be drawn from its fully charged condition at a rate CðtÞ=30 (in units
of amperes).
Definition 2.2 (SOH). Let a new battery be put into service at time
t0. The state-of-health SOHðtÞ of the (possibly used) battery at the
current time t, where t P t0, is defined to be the ratio of the battery
capacities at time epochs t and t0, i.e.,
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SOHðtÞ ¼ CðtÞ
Cðt0Þ

for all time t P t0 ð1Þ
Definition 2.3 (DOD and SOC). Let a battery be fully charged at
time t and let IðsÞ be the applied current (in units of amperes) at
time s. Then, depth of discharge (DOD) and state-of-charge (SOC)
at time t þ Dt are respectively defined as

DODðt þ DtÞ ¼ 1
CðtÞ

Z tþDt

t
IðsÞ ds for Dt P 0 ð2Þ

SOCðt þ DtÞ ¼ 1� DODðt þ DtÞ for Dt P 0 ð3Þ
Remark 2.1. It is noted that SOH 2 ½0;1� and SOC 2 ½0;1� for all
time t P t0, where t0 is the time of putting a new battery into
service.
2.2. Wavelet-based time series segmentation

Recently Li et al. [11] proposed a wavelet-based segmentation
method to extract dynamic data segments. The objective here is
to capture the dynamic characteristics of the battery system from
the time series of mixed operating modes consisting of idle opera-
tion and frequent discharge & regeneration in the battery opera-
tion. In the time–frequency analysis of wavelet transform [15],
the coefficients of chosen scales corresponding to frequency points
in interest reflects the dynamic level of the system at each point in
the time domain. Details of wavelet-based segmentation are
reported in [11] and the underlying algorithm is listed as
Algorithm 1 in Appendix A.

The pertinent steps of the wavelet-based segmentation proce-
dure, depicted in Fig. 1, are as follows.

� Step 1: Collect (finite) time series data x½n�; n ¼ 1;2; . . . ;N for a
given sampling interval D. It is noted that the length N of the
time series is user-selectable.
� Step 2: Computation of the discrete Fourier transform x̂½k�; k ¼

1;2; . . . ;N and the corresponding PSD Sx½k�; k ¼ 1;2; . . . ;N.
� Step 3: Identify the frequency points of interest, um; m ¼

1;2; . . . ;M. In this step, the set fSx½um�g is formed in terms of
the M points with highest values of the PSD Sx½k�; k ¼
1;2; . . . ;N. [Note: M is usually significantly less than N].
� Step 4: Compute the corresponding wavelet scales

am; m ¼ 1;2; . . . ;M. This step follows am ¼ f C
um D with the corre-

sponding frequency points um and the central frequency f c of
the chosen wavelet basis function.
� Step 5: Compute the wavelet coefficients for each scale and get the

total summation. In this step, the values of the wavelet coeffi-
cients is obtained ~xam ½sm

‘ � ¼ ~x½am; sm
‘ �; ‘ ¼ 1;2; . . . ;N at each

scale am. Then the total summation of wavelet coefficients at
each time shift indices ~x½s‘� is computed.
Fig. 1. Procedure for wavele
� Step 6: Identification of the set, T, of all segmented time indices.
This step is completed by selecting the time shift indices s‘ as
the corresponding summated wavelet coefficients ~x½s‘� exceed-
ing the pre-defined threshold n.

2.3. Maximum entropy partitioning and symbolization

This subsection addresses the partitioning of the input–output
space for symbolization of the time series into a mutually exclusive
and exhaustive set of finitely many segments. In this setting, a
symbol string is generated from the (finite-length) time series by
assigning a unique symbol to each segment of the input–output
space.

The maximum-entropy partitioning (MEP) [9] of the time-series
data has been adopted in this paper to construct the symbol alpha-
bet R and to generate symbol strings. In this partitioning, the
information-rich regions of the data set are partitioned finer and
those with sparse information are partitioned coarser to maximize
the Shannon entropy of the generated symbol string from the ref-
erence data set. The MEP procedure is presented as Algorithm 2 in
Appendix A.

Fig. 2 depicts the underlying concept of symbolization of a
2-dimensional time series, where each segment in the top plot is
labeled by a unique symbol and R denotes the alphabet of these
symbols. The segment, visited by the time series plot takes a
symbol value from the alphabet R. For example, having
R ¼ fa; b; c; dg in Fig. 2, a time-series x0x1x2 . . . generates a string
of symbols in the symbol space as: s0s1s2 . . ., where each
si; i ¼ 0;1;2; . . ., takes a symbol value from the alphabet R. This
mapping is called symbolic dynamics as it attributes a (physically
admissible) symbol string to the dynamical system starting from
an initial state (for example, see the symbol string at the middle
row in Fig. 2).

Li et al. [11] used four alternative types of partitioning in the
input–output space of battery response:

� Partitioning Type 1 (Cartesian coordinates): First partition in
the input axis (e.g., abscissa), and then partition in the output
axis (e.g., ordinate) at individual input segments.
� Partitioning Type 2 (Cartesian coordinates): First partition in

the output axis, and then partition in the input axis at individual
output segments.
� Partitioning Type 3 (Polar coordinates): First partition in the

magnitude, and then partition in the phase at individual magni-
tude segments.
� Partitioning Type 4 (Polar coordinates): First partition in the

phase, and then partition in the magnitude at individual phase
segments.

Each time series of the input–output (i.e., current–voltage) pair
is partitioned in the associated two-dimensional space to construct
a symbolic string.
t-based segmentation.



Fig. 2. Construction of finite state automata (FSA) from time series.
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2.4. Symbolic Time Series Analysis (STSA)

This subsection briefly describes the underlying concept of
Symbolic Time Series Analysis (STSA) upon which the proposed
dynamic-data-driven tool of battery parameter identification is
constructed; STSA encodes the behavior of (possibly nonlinear)
dynamical systems from the observed time series by symbolization
and construction of state machines (i.e., probabilistic finite state
automata (PFSA)) [8]. This is followed by computation of the state
emission matrices that are representatives of the evolving
statistical characteristics of the dynamical system.

The core assumption in the STSA analysis for construction of
probabilistic finite state automata (PFSA) from symbol strings is
that the symbolic process under both nominal and off-nominal
conditions can be approximated as a Markov chain of order D,
called the D-Markov machine, where D is a positive integer.
While the details of the D-Markov machine construction are
reported in [8,10], the pertinent definitions and their implications
are succinctly presented below.

Definition 2.4 (DFSA). A deterministic finite state automaton
(DFSA) is a 3-tuple G ¼ ðR;Q ; dÞ where:
(1) R is a non-empty finite set, called the symbol alphabet, with
cardinality 1 < jRj <1;

(2) Q is a non-empty finite set, called the set of states, with car-
dinality 1 < jQ j <1;

(3) d : Q � R! Q is the state transition map;

and RH is the collection of all finite-length strings with symbols
from R including the (zero-length) empty string �, i.e., j�j ¼ 0.
Remark 2.2. It is noted that Definition 2.4 does not make use of an
initial state, because the purpose here is to work in a statistically
stationary setting, where no initial state is required as explained
by Adenis et al. [17].
Definition 2.5 (PFSA). A probabilistic finite state automaton
(PFSA) is constructed upon a DFSA G ¼ ðR;Q ; dÞ as a pair
K ¼ ðG;pÞ, i.e., the PFSA K is a 4-tuple K ¼ ðR;Q ; d;pÞ, where:

(1) R;Q , and d are the same as in Definition 2.4;
(2) p : Q � R! ½0;1� is the probability emissivity function that

satisfies the condition
P

r2RpðrjqÞ ¼ 1 8q 2 Q . Denoting
pij as the probability of occurrence of a symbol rj 2 R at
the state qi 2 Q , the ðjQ j � RjÞ probability emissivity matrix
(also known as emission matrix) is obtained as P ¼ ½pij�.
Definition 2.6 (D-Markov). A D-Markov machine [8] is a PFSA in
which each state is represented by a (nonempty) finite string of
D symbols where

� D, a positive integer, is the depth of the Markov machine;

� Q is the finite set of states with cardinality jQ j 6 jRjD. The states
are represented by equivalence classes of symbol strings of
maximum length D, and each symbol in the sting belongs to
the alphabet R;
� d : Q � R! Q is the state transition map that satisfies the fol-

lowing condition if jQ j ¼ jRjD: There exist a; b 2 R and s 2 RH

such that dðas; bÞ ¼ sb and as; sb 2 Q .
Remark 2.3. It follows from Definition 2.6 that a D-Markov chain
is treated as a statistically stationary stochastic process
S ¼ � � � s�1s0s1 � � �, where the probability of occurrence of a new
symbol depends only on the last D symbols, i.e.,
P½snj � � � sn�D � � � sn�1� ¼ P½snjsn�D � � � sn�1�.

The construction of a D-Markov machine is based on: (i) state
splitting that generates symbol blocks of different lengths accord-
ing to their relative importance; and (ii) state merging that assim-
ilates histories from symbol blocks leading to the same symbolic
behavior. Words of length D on a symbol string are treated as
the states of the D-Markov machine before any state-merging is
executed. Thus, on an alphabet R, the total number of possible
states becomes less than or equal to jRjD; and operations of state
merging may significantly reduce the number of states [10].

The PFSA states represent different combinations of blocks of
symbols on the symbol string. In the graph of a PFSA, the direc-
tional edge (i.e., the emitted event) that interconnects a state (i.e.
a node) to another state represents the transition probability
between these states. Therefore, the ’’states’’ denote all possible
symbol blocks (i.e., words) within a window of certain length,

and the set of all states is denoted as Q ¼ q1; q2; . . . ; qjQ j
n o

and

j Q j is the number of (finitely many) states. The procedure for esti-
mation of the emission probabilities is presented next.
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Given a (finite-length) symbol string S over a (finite) alphabet R,
there exist several PFSA construction algorithms to discover the
underlying irreducible PFSA model K of S, such as causal-state
splitting reconstruction (CSSR) [18] and D-Markov [8,10]. These algo-
rithms start with identifying the structure of the PFSA K , ðQ ;R; d;pÞ.
To estimate the state emission matrix, a jQ j � jRj count matrix C is
constructed and each element ckj of C is computed as:

ckj , 1þ Nkj ð4Þ

where Nkj denotes the number of times that a symbol rj is gener-
ated from the state qk upon observing the symbol string S. The max-
imum a posteriori probability (MAP) estimates of emission
probabilities for the PFSA K are computed by frequency counting as

p rjjqk

� �
,

ckjP
‘ck‘
¼ 1þ Nkj

jRj þ
P

‘Nkj
ð5Þ

The rationale for initializing each element of the count matrix C to 1
is that if no event is generated at a state q 2 Q , then there should be
no preference to any particular symbol and it is logical to have
pðrjqÞ ¼ 1

jRj 8r 2 R, i.e., the uniform distribution of event genera-

tion at the state q. The above procedure guarantees that the PFSA,
constructed from a (finite-length) symbol string, must have an (ele-
mentwise) strictly positive emissivity map P and that the state
transition map d in Definitions 2.4 and 2.6 is a total function.

Having computed the emission probabilities p rjjqk

� �
for

j 2 f1;2; . . . ; jRjg and k 2 f1;2; . . . ; jQ jg, the estimated emission
probability matrix of the PFSA is obtained as:

P ,

p r1jq1ð Þ . . . p rjRjjq1

� �
..
. . .

. ..
.

p r1jqjQ j
� �

� � � p rjRjjqjQ j
� �

2
6664

3
7775: ð6Þ

Bahrampour et al. [19] presented a comparative evaluation of
Cepstrum, Principal Component Analysis (PCA) and Symbolic
Time Series Analysis (STSA) as feature extractors for target
detection and classification. The underlying algorithms of feature
extraction were executed in conjunction with three different
pattern classification algorithms, namely, support vector machines
(SVM), k-nearest neighbor (k-NN), and sparse representation clas-
sifier (SRC). The results of comparison show consistently superior
performance of STSA-based feature extraction over both
Cepstrum-based and PCA-based feature extraction in terms of
successful detection, false alarm, and wrong detection and classifi-
cation decisions. The procedure of STSA for feature extraction,
which makes use of the estimated emission probability matrix P,
is presented as Algorithm 3 in Appendix A.

2.5. Online pattern classification

This subsection presents a general framework for online pattern
classification problems in the symbolic domain; the patterns are
constructed from (finite-length) symbol strings as probabilistic
finite state automata (PFSA) with (possibly) diverse algebraic
parameters (e.g., alphabet size jRj and state cardinality jQ j). The
uncertainties due to the finite length of the symbol string in both
training and testing phases, which could influence the final
classification decision, are formulated as (a priori) Dirichlet and
(a posteriori) multinomial distributions [20]. While the details
are reported by Wen et al. [12] and there is an application fault
detection in gas turbine by Sarkar et al. [21], the essential concepts
and procedures of the proposed method are succinctly summa-
rized below for completeness of the paper.

Let there be L classes of symbolic systems of interest, denoted by
C1;C2; . . . ;CL, over the same symbol alphabet R. During the training

phase, a symbol string Si
, si

1si
2 . . . si

Ni
of (finite) length Ni is obtained
from each class Ci. Then, a PFSA Ki ¼ ðQi;R; di;piÞ is obtained for

each class, whose structures (i.e., Q i and di) may not necessarily
be the same [12]. Thus the only indeterminate pi (i.e., the numeri-
cally generated estimate of the emission matrix) is selected as the
feature vector for classification. The distribution of pi for each class
i is fitted as a Dirichlet distributions in the training phase. In the

testing phase, the probability of an observed symbol string eS
belonging to the ith class of PFSA is modeled as a multinomial distri-
bution that is fitted based on the (numerically generated) emission

probability matrix Pi and the classification decision is made by
choosing the class that maximizes that the posterior probability.

In the training phase, each row Pi
mðm ¼ 1;2; . . . ; jQ jÞ of the

emission probability matrix Pi is treated as a Dirichlet distribution

conditioned on a symbol string Si:

f Pi
m jSi ðhi

mÞ � DirichletðN i
m þ 1Þ ð7Þ

where hi
m is a realization of the random vector Pi

m as:

Pi
m ¼ Pi

m1 Pi
m2 . . . Pi

mjRj

h i
and the vector N i

m in Eq. (4) is generated as:

N i
m ¼ Ni

m1 Ni
m2 . . . Ni

mjRj

h i
By the Markov property of the PFSA Ki, the ð1� jRjÞ row-vectors,

fPi
mg;m ¼ 1; . . . jQ j, are statistically independent of each other.

Therefore, the a priori density f Pi jSi of the emission probability

matrix Pi, conditioned on the symbol string Si, is given as

f Pi jSi ðhiÞ ¼
YjQi j

m¼1

f Pi
m jS

i hi
m

� �
¼
YjQi j

m¼1

Ni
m þ jRj � 1

� �
!
YjRj
n¼1

ðhi
mÞ

Ni
mn

ðNi
mnÞ!

0
@

1
A ð8Þ

where hi
, ðhi

1Þ
T ðhi

2Þ
T

. . . ðhi
jQ jÞ

T
h iT

2 ½0;1�jQ j�jRj. The details of

derivation of Eq. (8) can be found in [12].

In the testing phase, let eNi
mn be the number of times the symbol

rn is emanated from the state qi
m 2 Qi in the test symbol string eS,

which is similar to Ni
mn, defined earlier for Si. The probability mass

function PrðeNi
mjP

i
mÞ of the random row-vector eN i

m is modeled as a
multinomial distribution conditioned on a given state and an emis-
sivity function Pi

m:

eN i
m ¼ eNi

m1
eNi

m2 . . . eNi
mjRj

h i
� MultiðPi

mÞ ð9Þ

and the conditional probability is

PrðeN i
mjP

i
mÞ ¼ ðeNi

mÞ!
YjRj
n¼1

ðPi
mnÞ
eNi

mn

ðeNi
mnÞ!

ð10Þ

where eNi
m ,

PjRj
n¼1
eNi

mn and Cð�Þ is the standard gamma function
with CðnÞ ¼ ðn� 1Þ! 8n 2 N1. The details of derivation of Eq. (10)
can be found in [12].

Similar to the argument provided in the training phase, all row
vectors in the emission matrix for the testing phase are also statis-
tically independent of each other. Therefore, the probability of

observing eS conditioned on the emission probability matrix Pi is
given as:

Pr eSjPi
� �

,

YjQi j

m¼1

PrðeN i
mjP

i
mÞ ð11Þ

¼
YjQi j

m¼1

ðeNi
mÞ!
YjRj
n¼1

Pi
mn

� �eNi
mn

ðeNi
mnÞ!

0
BB@

1
CCA ð12Þ



Fig. 3. Flow chart for parameter identification via symbolization of input–output
data.
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The results, derived in the training phase and the testing phase,

are now combined. Given a symbol string Si in the training phase,

the probability of observing a symbol string eS in the testing phase
is

PrðeSjSiÞ ¼
YjQi j

m¼1

ðeNi
mÞ! Ni

m þ jRj � 1
� �

!

eNi
m þ Ni

m þ jRj � 1
� �

!
�
YjRj
n¼1

ðeNi
mn þ Ni

mnÞ!
ðeNi

mnÞ!ðN
i
mnÞ!

ð13Þ

where XjRj , ½0;1�jRj is the sample space of dimension jRj. The
details of derivation of Eq. (13) can be found in [12].

The posterior probability of the observed symbol string eS
belonging to the class Ci is denoted as PrðCijeSÞ and is given as

PrðCijeSÞ ¼ PrðeSjSiÞPrðCiÞPL
j¼1PrðeSjS jÞPrðCjÞ

; i ¼ 1;2; . . . ; L ð14Þ

where PrðCiÞ is the known prior distribution of the class Ci. Then,
the classification decision is made as follows.

Dclass ¼ arg max
i

PrðCijeSÞ ¼ arg max
i

PrðeSjSiÞPrðCiÞ
� �

ð15Þ

If no prior information on PrðCiÞ is available, it is logical to
assume a uniform distribution over the classes. In that case, the
rule of classification decision becomes

Dclass ¼ arg max
i

PrðeSjSiÞ ð16Þ
Remark 2.4. If the information on Ni
mn’s and eNi

mn’s are available,
no other information is needed to obtain the statistics of the

symbol strings Si’s and eS. Therefore, Ni
mn’s and eNi

mn’s are sufficient

statistics of Si’s and eS, respectively.
3. Framework of pattern classification

This section summarizes the general framework of online pat-
tern classification by symbolic analysis of synchronized
time-series pairs in the input–output space.

The flow chart in Fig. 3 summarizes the basic procedures of the
proposed information compression method for two-dimensional
time series of synchronized input–output data. First, the raw data
are normalized such that they have the properties of zero-mean
and unit-variance. Second, the segments that contain dynamic
information of the system are extracted from the normalized data
and are then concatenated after wavelet-based segmentation in
the time–frequency domain. Third, the concept of Maximum
Entropy Partitioning (MEP) [9] is adopted to partition the concate-
nated dynamic data set into multiple states in the 2-dimensional
input–output data space. Finally, symbol strings are generated
from the partitioned data sets by labeling each partition segment
with assigning a unique symbol. The collection of these symbols
is the alphabet of the PFSA.

The proposed sequential online identification method consists
of an off-line training phase and an online testing phase, as
depicted in Fig. 4. All training and testing data sets are symbolized
distinctively and, in the same way, the classification process is con-
ducted based on the generated symbol strings. In the training

phase, probabilistic finite state automata (PFSA) Ki; i ¼ 1;2; . . . ; L,

are constructed from the symbol strings Si for every class. Then,
the probability density function f Pi jSi of the emission probability

matrix Pi, conditioned on the symbol string Si, is fitted as a

Dirichlet distribution [22] based on the emission counts fNi
mng. In

the testing phase, a symbol string eS of finite length is fitted into

every PFSA Ki and the associated emission counts feNi
mng are
computed accordingly for each class. Then, the probability

PrðeNijPiÞ of observing the test symbol string eS conditioned on a

given state Qi and emission matrix Pi is modeled as a multinomial

distribution [22]. Thus, the probability PrðeSjSiÞ of observing a sym-

bol string eS in the testing phase given a symbol string Si in the

training phase is computed by combining PrðeNijPiÞ and f Pi jSi (see

Eq. (13)). A classification decision is made by choosing the class,

corresponding to the maximum of posterior probability PrðCijeSÞ
(see Eq. (14)).

4. Experimental validation

This section validates the algorithms of battery parameter iden-
tification with an ensemble of experimental data that have been
collected from a commercial-scale lead-acid battery.

4.1. Data acquisition and pre-processing

A fresh (12V AGM VRLA with 56 Ah capacity) lead-acid battery
has been used in the experiments. The battery was charged/dis-
charged according to given input (current) profiles at room tem-
perature and an ensemble of synchronized time-series of the
input charge/discharge current and output voltage responses has
been collected at the sampling frequency of 1 Hz. A typical input
current profile for this experiment is shown in Fig. 5.

The input profile are repeated ‘‘hotel-pulses’’ cycles. Each indi-
vidual ‘‘hotel-pulses’’ cycle (i.e., duration of �120 s) consists of a
‘‘hotel’’ load (i.e., relatively steady discharge due to ‘‘hotel’’ needs
like lighting and other electrical equipments) and a discharge pulse
(i.e., acceleration) followed by a charge (i.e., regenerative braking)
pulse [23], as shown in Fig. 5. The amplitude of the ‘‘hotel’’ load
and the discharging & charging pulses are numerically fluctuating
in the experiment, which made each cycle different from others.
This pattern of input cycles largely simulates a real-time working
condition for an electric locomotive.

Remark 4.1. In many instances of industrial applications, the
designer may not have the detailed knowledge of the anticipated
load profile to which the battery system will be subjected. This



Fig. 4. Flow chart of the proposed method training and testing phases.
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Fig. 5. Profile of input current data for the battery experiment.
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procedure of battery testing under a ‘‘hotel-pulses’’ load is anal-
ogous to pseudo-random excitation [24] that is a standard practice
for system identification of electromechanical systems in various
industrial applications when testing in the actual operating
environment may not be feasible. The rationale for this procedure
is that a ‘‘hotel-pulses’’ signal could be viewed as a combination of
different types of excitation signal that the battery could be
subjected to. Since the proposed algorithm is executed on the
synchronized pair of input (current) and output (voltage) time
series, testing in an industrial setting is expected to yield satisfac-
tory results.

This experiment has been conducted over a wide range of SOC
at different battery aging stages (i.e., different values of the battery
state-of-health (SOH)). Table 1 presents the coverage of battery
operating conditions within the operating range of the experiment.

The raw time series of input current and output voltage are
individually normalized, followed by wavelet-based segmentation
based on the time series of output voltage. While segmentation
extracts the relevant segments of normalized data based on the
information of their frequency contents, normalization involves
time translation and (down or up)-scaling of the raw data for
conversion into zero-mean unit variance time series as:

x½n� ¼ xraw½n� � lN½n�
rN½n�

ð17Þ
Table 1
Experiments at different SOH stage and SOC range.

SOH stage SOC range

1 (new) 0.53–0.99
0.92 0.50–0.99
0.86 0.49–0.99
0.82 0.47–0.99
0.80 0.42–0.99
where lN½n� is the mean value and rN½n� is the standard deviation of
the time series over a time span of N data points centered at the
time index n. The experimental data of each duty cycle (i.e., both
input current and output voltage) are normalized in this moving
average fashion. First, the data set is smoothed under moving aver-
age with a shift window of 240 s (i.e., 240 consecutive data points).
Then, each element of that data set is divided by its own standard
deviation. Finally, the normalized data turn out to be zero-mean
and unit-variance time series. Fig. 6(b) and (e) provide two exam-
ples of normalized current and voltage data.

Fig. 7 elucidates the notion of wavelet-based segmentation over
a small window of normalized output. It depicts the normalized
output voltage, the segmented normalized output, and the corre-
sponding normalized sum of absolute values of wavelet coeffi-
cients that are obtained from the chosen scales. The dynamic
characteristics of the tested battery are identified from the seg-
ments of discharging and charging pulses in each ‘‘hotel-pulses’’
cycle, which are in the domain of absolute values of wavelet
coefficients. Using the wavelet-based segmentation algorithm
(see Section 2.2), dynamic segments of the output time series are
drawn from the original data and an appropriate choice of the
threshold is made for the summed wavelet coefficients. Then,
the information-relevant segments are concatenated together, tail
to head, in the order of the original data. The resuslting segmented
time series sets contain only ‘‘hotel-pulses’’ dynamic parts (i.e., the
parts of the original data containing low-amplitude noise, which
carry no significant information, are discarded).

Fig. 6(c) and (f) exhibit typical results for synchronized input
current and output voltage after segmentation based on the volt-
age data only. It is noted that the data length after wavelet-based
segmentation is much shorter than the original data length.

Fig. 8 exemplifies typical profiles of normalized and segmented
input–output pairs from the ensembles of ‘‘hotel-pulses’’ cycles at
different charging conditions, where the dynamic responses under
the same input current pattern are significantly distinguishable at
different levels of SOC. Fig. 9 presents the symbol strings generated
corresponding to four different types of partitioning as specified in
Section 2.3, where the identical alphabet size of 4 was chosen for
all (i.e., jRjin ¼ jRjout ¼ 4 and jRjmagnitude ¼ jRjphase ¼ 4, and total
alphabet size jRj ¼ 4� 4 ¼ 16). It is observed from Fig. 9 that the
symbol strings generated from different partitioning are different
as the symbols represent regions in the input–output space.

5. Results and discussion

This section presents the details of the proposed SOC identifica-
tion scheme that is built upon online pattern classification and
STSA-based feature extraction from time series pairs of input–
output (i.e., battery current–voltage) data. The performance and
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(c) Segmented current data
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(e) Normalized voltage data
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(f) Segmented voltage data

Fig. 6. Typical examples of normalization and segmentation of synchronized input current and output voltage data.
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Fig. 7. Wavelet-based segmentation for normalized output.
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robustness of SOC identification are investigated by cross valida-
tion [25] at different operating conditions of the battery and
parameter settings in proposed method.

5.1. Performance of SOC class identification

This subsection presents the parameters for feature extraction
(via STSA analysis) and pattern classification to generate the
results.

� The partition type I in Cartesian coordinates is applied. The
alphabet size for input is jRjin ¼ 3 and alphabet size for output
is jRjout ¼ 5, and the total alphabet size is jRj ¼ jRjout � jRjin ¼ 15.
� The depth in the D-Markov machine is set at D ¼ 1, which

implies that jRj ¼ jQ j.
� The training/tested data are collected at the battery operating

condition at SOH ¼ 1 (new) and the SOC range of 0.53–0.99.
� The number of SOC classes assigned for classification problem is
NCSOC ¼ 8. The ‘‘hotel-pulses’’ cycles are equally assigned to
each class. The SOC range for each class is demonstrated in
Table 2.
� The length of training data is Ltrain ¼ 5000.

Since the number of ‘‘hotel-pulses’’ cycles are required to be the
same for each class, the SOC range for each class may differ from
each other (see Table 2) due to uneven data collection at different
SOC range.

Fig. 10 shows typical profiles of posterior probability of each
class as functions of the length of observed test data at three differ-
ent values of SOC. Fig. 10(a) exhibits correct classification even for
very short data lengths (e.g., �150), which implies that the algo-
rithm is able to correctly predict the class after observing test data
that are of very short length. Fig. 10(b) shows a more general sce-
nario, where modestly longer (e.g., �200) test data are needed for
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(f) Symbol strings type 2
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Fig. 9. Examples of symbol strings for four different types of partitioning; jRjin ¼ jRjout ¼ 4 and jRjmagnitude ¼ jRjphase ¼ 4.

Table 2
SOC range for different classes.

Class index SOC range Number of cycles

1 0.53–0.63 230
2 0.63–0.68 232
3 0.68–0.72 232
4 0.72–0.76 232
5 0.76–0.80 231
6 0.80–0.84 232
7 0.84–0.88 232
8 0.88–0.99 233
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correct classification. Fig. 10(c) portrays a worse scenario, which
shows the need of having significantly longer test data to achieve
acceptable levels of accurate classification.

5.2. Robustness of SOC class identification

To evaluate the robustness of SOC class identification at differ-
ent operating conditions and parameter settings, cross validation
testing [25] is introduced by randomly choosing training/testing
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Fig. 10. Profiles of classification accu
data sets from the ensemble of experimental data. For each class
at corresponding SOC range, 50 training/testing processes have
been conducted by randomly selecting training data of required
data length. Presented below are the cross validation results of
average misclassification rate for SOC identification at different
lengths of test data. (Note that, under different situations, same
parameters settings and the operating conditions have been used
as provided in the previous subsection unless any changes are
specifically mentioned.)

Fig. 11 presents the results of cross validation under partition
type 1 with varying alphabet size jRjout for output while the alpha-
bet sizes of the input held fixed at jRjin ¼ 3. As jRjout is increased,
dynamic characteristics of the output are expected to be captured
to a larger extent through the symbolization process, which leads
to reduction of the misclassification rate as seen in plots of
Fig. 11. The misclassification rate with jRjout ¼ 6 is approximately
half the value with jRjout ¼ 3 when the length of the tested data
is of 400 and larger. The classification accuracy is also improved
as more testing data is used. The improvement in performance
due to increased length of test data is more significant for the first
10 cycles of observed test data.
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Fig. 11. Cross validation with different output alphabet size jRj.
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Fig. 13. Cross validation with different lengths of training data.
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Fig. 12 presents the cross validation results under different
partition types. These results have been generated for alphabet
sizes assigned as: jRjin ¼ jRjout ¼ 4 for partition types 1 and 2;
and jRjmagnitude ¼ jRjphase ¼ 4 for partition types 3 and 4. The
misclassification rates for all four partition types become increas-
ingly similar as the length of test data is increased. It is noted that
the results for partition type 1 presented in Fig. 12 have better
performance as compared to those in Fig. 11 for jRjout in the range
of 3–5. Increasing the size jRjin of the input alphabet also improves
the classification accuracy.

Fig. 13 presents the results of cross validation for different
lengths of training data. For each training/testing process in cross
validation, training data are randomly selected from all available
data for each class. The results present the average misclassifica-
tion rate from all 50 training/testing processes. The SOC parame-
ters identified in the training phase become more accurate as the
training data length is increased, which reduces the misclassifica-
tion rate. It is observed that the improvement in accuracy by
increasing the length of training data beyond 4000 is insignificant.

Fig. 14 presents the results of cross validation at different bat-
tery aging stages (i.e., different SOH values). Since the dynamic
characteristics of the battery evolve its age (i.e., SOH) [7,11], the
training data are selected distinctively at each SOH stage. The
results shows that the proposed method has consistent
performance at different battery aging stages, expect from
the noticeable difference when the battery is quite aged (i.e.,
SOH = 0.80). This robustness property increases the reliability of
predicted performance at different battery operating conditions,
which is determined by two major factors: SOC and SOH.

Fig. 15 presents the results of cross validation with assignment
of different SOC classes. As the number of classes is increased, the
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Fig. 12. Cross validation with different types of partitioning.
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Fig. 15. Cross validation with different number of SOC classes.
average resolution of the SOC range for each class becomes finer, as
shown in Table 3. Keeping the length of training data fixed, as the
number of SOC classes is increased, it is possible to use shorter test
data for each class. However, for a larger number of SOC classes,
the misclassification rate tends to increase significantly and the
convergence rate of the algorithms becomes slower.
5.3. Computational costs

This subsection presents a statement of the computational costs
(i.e., execution time) of the SOC parameter identification algorithm.



Table 3
Average SOC resolution for different class assignments.

Number of classes Average SOC resolution

5 0.082
6 0.068
7 0.058
8 0.051
9 0.045
10 0.041

Table 4
Execution time for test data with a length of 1000 under different conditions.

Time unit: second Number of SOC classes (NCSOC )

jRjin � jRjout 5 6 7 8 9 10

3� 3 ¼ 9 10.11 12.21 14.23 15.89 17.82 20.44
3� 4 ¼ 12 13.73 16.35 19.06 21.49 24.06 26.58
3� 5 ¼ 15 17.70 21.01 24.51 27.79 31.27 34.40
3� 6 ¼ 18 22.76 26.46 30.87 35.20 39.71 43.82
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In this paper, all results have been generated on a single core
3.6 GHz CPU with 12 GB RAM.

Li et. al. [11] addressed the issue of computation cost of a sim-
ilar feature extraction tool with a much longer data set. It shows
that the proposed STSA tool for online feature extraction requires
very small execution time and memory. Since the training phase
is conducted off-line and the length of training data for SOC iden-
tification is much less than that for SOH identification in [11], the
computation cost of the proposed SOC identification does not have
a major significance in the training phase.

In the testing phase, when a new set of input–output pair is
acquired, the posterior probabilities for all classes need to be
updated in real time. For example, if the sampling frequency is
1Hz in the experiment, then the execution time of the online algo-
rithm should in the order of a fraction of a second. There are two
major parameters in the feature extraction process that may affect
the execution time: (i) the number of SOC classes NCSOC and
(ii) total alphabet size jRj. Table 4 presents the required execution
time for analyzing test data with a length of 1000 under different
combinations of the two parameters, NCSOC and jRj. The proposed
method is capable of analyzing test data of length 1000 well within
50 s for the combinations shown in Table 4, so that the updating of
posterior probabilities is capable of safely accommodating a
sampling frequency as high as 20 Hz. This observation satisfies
the requirement of online execution for a vast majority of practical
applications.
6. Summary, conclusions, & future work

The proposed method of pattern classification for battery
state-of-charge (SOC) identification is built upon the concept of
Symbolic Time Series Analysis (STSA) [8]. In this setting, time series
of synchronized pairs of battery input (i.e., current) nd output (i.e.,
voltage) has been analyzed for information compression and fea-
ture extraction via D-Markov machine modeling. The online bat-
tery SOC identification is posed as a pattern classification
problem that is addressed in terms of the Dirichlet/multinomial
distribution for training/testing data. The performance and robust-
ness of proposed method has been validated on experimental data
of a commercial scale lead-acid battery. The pertinent conclusions
drawn from the work reported in this paper are summarized
below.

� Symbolic Time Series Analysis (STSA), as a low-complexity fea-
ture extraction tool, is capable of real-time execution on in-situ
computational platforms (e.g., sensor nodes of battery cells). It
provides a computationally efficient and electrochemistry-
independent method of identifying the battery SOC parameter
as an alternative to physics-based modeling analysis.
� Extracted STSA features capture the information, embedded in

the input–output time series, for SOC identification. The under-
lying software can be implemented on a large scale package of
battery cells.
� By combined Dirichlet/multinomial distribution fittings in the

training/testing phases, the proposed identification method
provides good and consistent performance with short-length
test data under different operating conditions. For Kalman fil-
tering based approaches, the converge time from initial SOC
estimation.

For model-based SOC estimation, equivalent-circuit models
make use of extensive empirical data for parametrization [26],
while electrochemical models are usually partially observable
[27] and their embedded nonlinear and coupled nature requires
certain model simplification (e.g., model order reduction) before
they can be used for industrial application. On the other hand,
Kalman filtering for SOC estimation is prone to the problem of
non-convergence of the estimation error. Although a data-driven
approach may require adequate data length for both training and
testing phases, the proposed method provides quantitative
evaluation of the average estimation accuracy that is dependent
on training and testing data lengths. More importantly, the pro-
posed method is robust to measurement noise [8] and there is no
issue of overfitting that is very common in data-driven methods
[4–6].

Further theoretical and experimental research is needed to
resolve several issues before the proposed method can be applied
in practice. For example, all experimental data used in this paper
are generated from the same battery. Although the proposed
method has been demonstrated to be robust under different train-
ing and testing data sets via cross validation process, it is desirable
to generate training and testing data from different battery cells
with similar specifications to evaluate the performance of the pro-
posed method. Nevertheless, authors suggest the following topics
of future research for application of the proposed method for
SOC identification.

� Usage of D-Markov machines [10] with D P 1 to accommodate
longer memory of synchronized symbolic input–output time
series.
� Extension of the proposed method to achieve robust perfor-

mance for changing patterns of the input profiles (e.g., for
stochastic nature of the charging and discharging current
inputs) in actual operating environments.
� Investigation of the impact of temperature changes on battery

dynamics for SOC identification.
� Validation of the proposed method for other types of batteries

(e.g., Li-ion and Ni-MH) as well as for different discharge or
charge cycle patterns.
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Appendix A. Algorithms

This appendix lists three algorithms that are used in the main
body of the paper.

Algorithm 1. Wavelet-based Segmentation

Require: Perform the following:

Select the sampling time period D.

Collect finite-length time series x½n�;n ¼ 1; . . . c;N.

Select a wavelet basis function w with central frequency
f c; and the (scalar) threshold parameter nT for selection of
wavelet coefficients for segmentation.
Ensure: From the collected time series, execute the following:

Compute power density Sxðf Þ of the time series x½n� for the
frequency window f 2 ½0; 1

2D� at N discrete points. Choose a

sequence of frequency points fumg
M
m¼1 at local peaks of

the energy density coefficients.

1:
 for m ¼ 1 to M do

2:
 Compute the corresponding wavelet scale am by

substituting frequency points um.

3:
 Obtain the wavelet coefficients for the scale am as

translated versions along time series ~xam ½sm
‘ � ¼ ~x½am; sm

‘ �.

4:
 end for

5:
 Compute the summation of the wavelet coefficients at

each time shift indices ~x½s‘�

6:
 Identify the set of time indices T by thresholding on the

summated wavelet coefficients T ¼ fs‘j~x½s‘� > ng.
Algorithm 2. Maximum Entropy Partitioning for 2-dimensional
Time Series

Require: A 2-dimensional string X½n� ¼ x1½n�x2½n�½ � for
n ¼ 1;2;3; . . . ;N of synchronized and normalized time
series data set; Alphabet size jR1j for the first coordinate of
the 2-dimensional data and alphabet size jR2j for the second
coordinate of the 2-dimensional data.

Ensure: Partition vector }1 2 RjR1jþ1 for first coordinate data;
Partition Matrix }2 2 RjR1j�ðjR2 jþ1Þ for the 2-dimensional
data set.
1:
 Assign }1ð1Þ = �1, i.e., the minus infinity

2:
 Assign }2ðm;1Þ = �1, for m ¼ 1;2; . . . ; jR1j

3:
 Assign }1ðjR1j þ 1Þ = 1, i.e., the positive infinity

4:
 Assign }2ðm; jR2j þ 1Þ = 1, for m ¼ 1;2; . . . ; jR1j

5:
 Sort the data string x1 in the ascending order as xs

1

6:
 Let K ¼ lengthðxs

1Þ

7:
 for i ¼ 1 to jR1j do

8:
 if i – jR1j then � �h i

9:
 }1ðiþ 1Þ = xs

1 ceil i�K
jR1 j
10:
 end if

11:
 Define xi

2 , fx2½n�j}1ðiÞ < x1½n� < }1ðiþ 1Þg

12:
 Sort the data string xi

2 in the ascending order as xis
2

13:
 Let L ¼ lengthðxis
2 Þ
14:
 for j = 1 to jR2j � 1 do� �h i

15:
 }2ði; jþ 1Þ = xis

2 ceil j�L
jR2 j
16:
 end for

17:
 end for
Algorithm 3. Symbolic Time Series Analysis (STSA) for Feature
Extraction

Require Symbolic strings of length N obtained at I different
operating conditions of system under analysis:
Si ¼ fs1

i ; s
2
i ; s

3
i ; . . . ; sN

i g; i ¼ 0;1; . . . ; I � 1; the alphabet size
jRj ¼ jR1j � jR2j; the depth D of Markov machine; and

number of states jQ j, where jQ j 6 jRjD.
Ensure Extracted emission matrices

Pi 2 RjRj
D�jRj; i ¼ 0;1; . . . ; I � 1 for each symbol string and

the feature divergences fmigI�1
i¼0 .
1:
 Initialize R ¼ fr1;r2; . . . ;rjRjg, and Q ¼ fq1; q2; . . . ; qjQ jg.

2:
 for i ¼ 0 to I � 1 do

3:
 for k ¼ 1 to jQ j do

4:
 for j ¼ 1 to jRj do

5:
 Count the number of event that symbol rj occurs

after symbol (combination) of qk ¼ frk
1 . . .rk

jDjg, denoted

as Nðrj; qkÞ, from the symbol string Si.

6:
 end for

7:
 for j ¼ 1 to jRj do

8:
 compute the estimated emission probability

pðrjjqkÞ (see Eq. (5)).

9:
 end for
10:
 end for

11:
 Construct the estimated emission matrix Pi for

symbol string Si (see Eq. (6)).

12:
 end for
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