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Abstract The underlying theory of symbolic time series
analysis (STSA) has led to the development of signal rep-
resentation tools in the paradigm of dynamic data-driven
application systems (DDDAS), where time series of sensor
signals are partitioned to obtain symbol strings that, in turn,
lead to the construction of probabilistic finite state automata
(PFSA). Although variousmethods for construction of PFSA
from symbol strings have been reported in literature, similar
efforts have not been expended on identification of an appro-
priate alphabet size for partitioning of time series, so that the
symbol strings can be optimally or suboptimally generated
in a specified sense. The paper addresses this critical issue
and proposes an information-theoretic procedure for parti-
tioning of time series to extract low-dimensional features,
where the key idea is suboptimal identification of boundary
locations of the partitioning segments via maximization of
the mutual information between the state probability vector
of PFSA and the members of the pattern classes. Robustness
of the symbolization process has also been addressed. The
proposed alphabet size selection and time series partitioning
algorithm have been validated by two examples. The first
example addresses parameter identification in a simulated
Duffing system with sinusoidal input excitation. The second
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example is built upon an ensemble of time series of chemilu-
minescence data to predict lean blowout (LBO) phenomena
in a laboratory-scale swirl-stabilized combustor apparatus.
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1 Introduction

Symbolic time series analysis (STSA) [1–3] has been used
for constructing statistical models of (possibly nonlinear)
dynamical systems, which rely on temporal and spatial dis-
cretization based on the fundamental concepts of symbolic
dynamics [4]. Along this line, Ray and coworkers [5–8] have
developed data-driven procedures for generation of proba-
bilistic finite state automata (PFSA)models, where themajor
role of STSA is to serve as a feature extraction tool for infor-
mation compression and pattern classification in dynamic
data-driven application systems (DDDAS) (see [9] and ref-
erences therein for details of the DDDAS concept); this
procedure has been used for early detection of anomalous
behavior as well as for pattern recognition in diverse physical
systems (e.g., see [10,11]). While extensive research work
(e.g., see [12]) has been reported for investigation of the prop-
erties and variations of transformation from a symbol space
to a feature space in the conversion of symbol strings into
PFSA models, similar efforts have not been expended on
how to find an optimal alphabet size for symbolization of
time series (e.g., see [13–15]).

The paper develops an information-theoretic procedure
of time series partitioning in the paradigm of dynamic
data-driven systems, where the objective is to extract low-
dimensional features from time series for pattern classifica-
tion via construction of probabilistic finite state automata
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(PFSA). In particular, symbol sequences are constructed
from sensor time series of the underlying process in such
a way that the (relatively slowly evolving) statistical changes
are captured over a given set of training data belonging to dif-
ferent classes. The key idea lies in optimal partitioning of the
time series via maximization of the mutual information [16]
between the state probability vector (treated as a feature [5])
of a PFSA and the members of the pattern classes.

Major contributions of this paper are stated below.

1. Partitioning of time series in a way that maximizes the
mutual information [16] between the symbolic dynamic
feature (e.g., the state probability vector of PFSA) and
the pattern class to which it belongs.

2. Development of robust algorithms of alphabet size selec-
tion for symbolization of time series so that the symbol
strings can be optimally generated in a specified sense.

3. Performance comparison of the proposed partitioning
technique with another commonly used method, namely
maximum entropy partitioning (MEP).

4. Validation of the proposed concepts on simulated data
from a sinusoidally excited Duffing system, and exper-
imental data from a laboratory-scale swirl-stabilized
combustor for lean blowout (LBO) prediction.

2 Motivation and preliminaries of STSA

This section briefly presents the preliminaries and concepts
of symbolic time series analysis (STSA) [2,5,8] and related
information-theoretic definitions [16].

Partitioning for Symbolization: Stauer et al. [17] reported
a comparison of maximum entropy partitioning and uniform
partitioning, where it is concluded that maximum entropy
partitioning is, in general, a better tool for change detection
in symbolized time series than uniform partitioning. Buhl
and Kennel [13] reported symbolic false nearest neighbor
partitioning (SFNNP) to optimize generating partitions by
avoiding topological degeneracy. However, SFNNP suffers
from high computational complexity and low robustness to
noise. Rajagopalan and Ray [6] introduced wavelet space
partitioning (WSP),where thewavelet transform largely alle-
viates the above shortcoming and is particularly effective
with noisy data. Subbu and Ray [7] introduced Hilbert-
transform-based analytic signal space partitioning (ASSP) as
an alternative toWSP.Nevertheless, these techniques empha-
sizes onmodelingmore than anomaly detection. Jin et al. [18]
reported the theory and validation of a wavelet-based feature
extraction tool that used maximum entropy partitioning of
the space of wavelet coefficients. Even if this partitioning is
optimal (e.g., in terms of maximum entropy or some other
criteria) under nominal conditions, it may not remain opti-
mal at other conditions. Along this line Sarkar et al. [14]

proposed a time series partitioning procedure to extract low-
dimensional features from time series while optimizing the
class separability; however, this method is strongly depen-
dent on the choice of the classifier tool.

The goal of the work, reported in the current paper, is to
overcome the difficulties of the above-mentioned partition-
ing methods with the objective of making STSA a robust
data-driven feature extraction tool based on an information-
theoretic concept. Symbol string generation from time series
data is posed as a two-time-scale problem. The fast scale is
related to the response time of the process dynamics. In con-
trast, the slow scale is related to the time span over which
non-stationary evolution of the system dynamics may occur.
Encoding of the data space of time series is accomplished by
introducing a partition that consists of finitely many mutu-
ally exclusive and exhaustive cells. Let the jth cell be labeled
by a symbol σ j ∈ Σ and data points of the time series,
which visit the jth cell, are denoted as σ j . The finite set
Σ = {σ0, ..., σ|Σ |−1} is called an alphabet, and its cardi-
nality |Σ | ≥ 2 is called the alphabet size.

ConstructionofPFSA:Aprobabilistic finite state automa-
ton (PFSA) is constructed from the symbol string and is

modeled as a quadruple K = (Σ, Q, δ, π), where

– The symbol alphabet Σ is a (nonempty) finite set;
– The set Q of automaton states is (nonempty) finite;
– The state transition function δ : Q × Σ → Q;
– The morph function π : Q × Σ → [0, 1], where

∑
σ∈Σ π(q, σ ) = 1 for all q ∈ Q. Themorph function π

generates the
(|Q|× |Σ |)morph matrixΠ . To compress

the information further, the state probability vector of the
PFSA is used as an extracted feature.

Construction of D-Markov Machines: A D-Markov
machine [5,8] (a type of PFSA) is a statistically stationary
symbol string . . . s−1s0s1 . . ., where each si is a symbol inΣ

and the probability of occurrence of a new symbol depends
only on the last D symbols (Depth), i.e.,

P[sn | . . . sn−D . . . sn−1] = P[sn | sn−D . . . sn−1] (1)

It is noted that D-Markov machines belong to the class of
shifts of finite type [4]. In a D-Markov machine, a word
w ∈ ΣD can be associated with a state of the machine. Let
νi j be the number of times that a symbol σ j is generated from
the state qi upon observing a symbol string. The maximum a
posteriori probability (MAP) estimate of the probability map
for the PFSA is computed by frequency counting [8] as:

π̂MAP (qi , σ j ) � 1 + νi j

|Σ | + ∑|Σ |
�=1 νi�

(2)
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The rationale for initializing each element of the countmatrix
to 1 is that: If no event is generated at a state q ∈ Q, then
there should be no preference to any particular symbol. Then,
π̂MAP (q, σ ) = 1

|Σ | ∀σ ∈ Σ , i.e., uniform distribution of
event generation at the state q.

3 Problem formulation

The success of a time series partitioning methodology
depends on how much information embedded in the time
series is captured by the PFSA (e.g., the state probability
vector p). A lower bound of the probability PE of incorrect
estimation Ĉ of the true class C (i.e., PE = Pr [Ĉ �= C ]) is
obtained from the weak form of Fano’s inequality [16] as:

PE ≥ H(C |P) − 1

log2 |C | = H(C ) − I (P;C ) − 1

log2 |C | (3)

where the random vector P represents the input feature
extracted from a given time series whose pattern class
(belonging to C = {c0, c1, . . . , c(|C |−1)}) may be unknown;
H(C ) and H(C |P) are the entropy and conditional entropy
of pattern class C , respectively; and I (P;C ) is the mutual
information between the input feature and the pattern class.
Since H(C ) and |C | are fixed, the lower bound of PE is
minimized when I (P;C ) reaches its maximum.

As the continuity and higher order differentiability of the
partitioning function in the range spaceofmutual information
is neither guaranteed nor adequately analyzed, a sequen-
tial search-based technique has been adopted for optimized
alphabet size selection instead of a gradient-based optimiza-
tion procedure. The process of constructing a search space
is started with an initial fine grid size, where each of the
grid boundaries denotes a possible cell boundary of trial par-
titions. These boundaries can be obtained, e.g., via either
uniform partitioning (UP) or maximum entropy partitioning
(MEP) [6] of the range space of the time series.

At the beginning, the time series is divided into L regions
on its signal space that is marked by (L − 1) boundaries
ϒ (excluding the end points) for search via MEP or UP.
The positive integer L , where L > |Σ |, is to be selected
by the user. Thus, for an alphabet Σ , there are (|Σ | − 1)
partitioning boundaries to choose from (L − 1) possibilities,
which is equivalent to making one choice in the space of all
possible partitioning vectors (i.e. selecting one (|Σ | − 1)-
dimensional partitioning vector from (L−1)C(|Σ |−1) different
choices). It follows that the space P of all possible partition-
ing boundaries may become significantly large as L and |Σ |
are increased. For example, if L � |Σ |, then computational
complexity increases approximately by a factor of L/|Σ | as
|Σ | is increased by one. The cost function to bemaximized is
the scalar-valued mutual information I (P;C ), while deci-

sions aremade in the spaceP of partitioning boundaries. The
cost is dependent on a specific partitioning Λ, because the
extracted feature P is a function of the chosen (|Σ | − 1)-
dimensional partitioning vector Λ; the cost is denoted by
I (P(Λ);C ). This suboptimal partitioning scheme involves
sequential estimation of the elements of the partitioning vec-
tor Λ.

The partitioning process is initiated by searching the opti-
mal cell boundary that divides the data range into two cells,
i.e., Λ2 = {λ1}, where λ1 is optimized as:

λ∗
1 = arg max

λ1∈ϒ

I (P(Λ2);C ) (4)

Now, the two-cell optimal partitioning is given byΛ∗
2 = {λ∗

1}.
The next step is to partition the data range into three cells as
Λ3) by dividing either of the two cells of Λ∗

2 by placing a
new partition boundary at λ2, where λ2 is evaluated as:

λ∗
2 = arg max

λ2∈ϒ\Λ∗
2

I (P(Λ3);C ) (5)

where Λ3 = {λ∗
1, λ2}. The optimal 3-cell partitioning is

obtained asΛ∗
3 = {λ∗

1, λ
∗
2}. In this (local) optimization proce-

dure, the cell that provides the largest increment in I (P;C )

upon further segmentation ends up being partitioned. Itera-
tively, this procedure is extended to obtain the parameter |Σ |
of cell partitioning as follows:

λ∗|Σ |−1 = arg max
λ|Σ |−1∈ϒ\Λ∗|Σ |−1

I (P(Λ|Σ |);C ) (6)

where Λ|Σ | = Λ∗|Σ |−1 ∪ {λ|Σ |−1} and the optimal |Σ | is
given by Λ∗|Σ | = Λ∗|Σ |−1 ∪ {λ∗|Σ |−1}.

In this optimization procedure, the mutual information
increasesmonotonically with additional sequential operation
provided that the mutual information is computed correctly.
This monotonicity property allows formulation of a rule for
termination of the sequential optimization algorithm. The
process of creating additional partitioning cells is stopped if
the normalized mutual information, relative to H(C ) with
a uniform class prior, crosses a specified positive threshold
Imax ∈ [0, 1]. The stopping criterion is: Λ∗|Σ | is the optimal
partitioning and |Σ | is the optimal alphabet size if

I (P(Λ∗|Σ |);C )

H(C )
> Imax (7)

An alternative form of the stopping criterion in Eq. (7)
is based on the normalized mutual information gain being
less than a specified positive scalar threshold ηstop as stated
below:

I (P(Λ∗|Σ |);C ) − I (P(Λ∗|Σ |−1);C ) ≤ ηstop (8)
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Fig. 1 Information-theoretic framework for time series partitioning
and alphabet size selection

In contrast to the direct search of the entire partitioning
space, the computational complexity in the current setting
increases linearly with |Σ |. Thus, the proposed approach
would allow a finer grid size for the partitioning search with
relatively low computational complexity. Figure 1 elucidates
an outline of the alphabet size selection method explained
above for |C | = 2.

Robustness: This subsection addresses robustness of clas-
sification performance when perturbed in partition locations.
In this procedure, a zero-mean Gaussian noise is added to
generate samples of random boundary locations. If a large
number of samples are drawn, the effect of the perturbations
is realized from the statistical characteristics of the set of
mutual information values corresponding to each sample. To
this end, i th partition boundary location is drawn as sam-
ples from a Gaussian distribution N(λi , σi ) (i.e., with mean
λi and standard deviation σi ). In particular, σi ’s are cho-
sen to be fractions of min(λi − λi−1, λi+1 − λi ). At each
step, M samples are drawn from the distribution centered at
a partition location λi that is not yet included in the parti-
tion set, i.e., the jth independent and identically distributed
(iid) sample λi

j ∼ N(λi , σi ), j = 1, . . . , M . The mutual
information corresponding to the features extracted after
incorporating λi

j into the existing partition set is obtained as
(I (P(Λ

j
i );C ), where Λ

j
i = Λ∗

i−1 ∪ {λ j
i }.

The mutual information of the feature vectors resulting
from adding λi into the existing partition set in this paper as
95th percentile of the set of mutual information values corre-
sponding to M samples drawn from the distribution centered
at λi , i.e.,

I (P(Λi );C ) = P95{I (P(Λ
j
i );C ), j = 1, . . . , M} (9)

Hence, at the i th step, the (suboptimal) partition location λ∗
i

is obtained as:

λ∗
i = argmax

λi
((I (P(Λi );C ))) (10)

ParzenWindowbasedMutual Information: This subsec-
tion explains usage of the Parzen windowmethod [19,20] for
estimation of mutual information at each step of sequential
optimization. In classification problems, a class has discrete
values, while the input featuresP (i.e., state probability vec-
tors p of PFSA) are usually continuously varying. Similar to
its usage in Eq. (3), the mutual information between input
featureP and class C becomes:

I (P;C ) = H(C ) − H(C |P) (11)

where H(C ) is obtained with a uniform class prior. The con-
ditional entropy H(C |P) based on the input featureP (that
is a |Q|-dimensional random vector) is obtained as:

H(C |P) = −
∫

P
pP (p)

×
|C |−1∑

i=0

pC |P (ci |p) log2 pC |P (ci |p) dp (12)

Via applying the Bayesian rule and
|C |−1∑

i=0
pC |P (ci |p) = 1

for any given p, the probability pC |P (c|p) is becomes:

pC |P (c|p) = pP|C (p|c)pC (c)
∑|C |−1

i=0 pP|C (p|ci )pC (ci )
(13)

The Parzen window estimator at each class c ∈ C is
obtained as:

p̂P|C (p|c) = 1

nc

∑

i∈Ic

ϕ(p − pi , hc) (14)

where nc is the number of training samples belonging to the
class c ∈ C and Ic is the set of the respective indices of
training samples (i.e., |Ic| = nc); ϕ is the Parzen window
function; and hc is the Parzen window width parameter for
the pattern class c ∈ C . In this paper, a d-variate Gaussian
window (with covariance matrix S) is chosen as the Parzen
density estimator.

ϕ(p, h) = 1

(2π)d/2hd |S|1/2 exp
(

− pT S−1p
2h2

)
(15)

where the parameter h controls the tradeoff between vari-
ance and bias of the estimator. An increment in h would
reduce the variance at the expense of increased bias and vice-
versa for a decrement in h. Following [19], the current paper
uses hc = 1

2 loge(nc)
for each c ∈ C . Parzen [20] showed

that the estimated density converges to the true density if ϕ
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and h are selected properly. By combining Eqs. (13), (14)
and (15), the Parzen window estimator is constructed [19]
as:

p̂C |P (c|p) =
∑

i∈Ic
exp

(
− (p−pi )T S−1(p−pi )

2h2

)

∑|C |−1
k=0

∑
j∈Ik

exp
(
− (p−p j )T S−1(p−p j )

2h2

)

(16)

If the integration in Eq. (12) is replaced by summation
of the sample points with equal sample probability, then the
conditional entropy (based on an input feature P) derived
from the training data belonging to all classes in C becomes:

Ĥ(C |P) = −1

n

n∑

j=1

|C |−1∑

i=0

p̂C |P (ci |p j ) log2 p̂C |P (ci |p j )

(17)

wheren �
∑|C |−1

i=0 nci is the total number of training samples
under consideration and p j is the feature vector computed
from the jth training data in the ensemble of all classes.
Finally, the estimated mutual information is obtained from
Eqs. (16) and (17). For |C | � n, the computational com-
plexity of Parzen window estimation [19] in Eq. (17) is of
the order n2 × d; this implies that, unlike the histogram-
based methods, Parzen window estimation does not require
excessive memory.

Pattern Classification using STSA Features: The sub-
optimal partitioning obtained by the above-mentioned pro-
cedure is used to construct a PFSA from each training and
testing time series ; the state probability vector of the PFSA
is the extracted feature for each time series. In this paper, two
commonly used pattern classifiers, namely, k nearest neigh-
bor (k-NN) and support vector machine (SVM) have been
adopted [21].

4 Algorithm validation and results

This section presents two examples for validation of the pro-
posed procedure.

Example #1: Duffing System Simulation: The exoge-
nously excited Duffing system is nonlinear and exhibits
complex behavior with chaotic and bifurcation properties;
its governing equation is:

d2y

dt2
+ β

dy

dt
+ αy(t) + y3(t) = A cos(ωt) (18)

where the amplitude A = 22.0, excitation frequencyω = 5.0,
and the initial conditions are: y(0) = 1.0 and dy

dt (0) =
0.0; however, these initial conditions have no significance
because only the steady-state oscillatory responses have been

analyzed. At first, only two classes of Duffing system are
defined based on the range of β, that are: (i) Class 1 (0.100 ≤
β ≤ 0.147) and (ii) Class 2 (0.147 ≤ β ≤ 0.194). Two
hundred simulation runs of the Duffing system have been
conducted for each class to generate data set for analysis
among which 30 samples are chosen for determining the
optimal partitioning, and three-fold cross validation has been
performed on the remaining data set to determine the clas-
sification results. Parameters α and β are chosen randomly
from independent uniformdistributionswithin the prescribed
ranges. The length of the simulation timewindow is 80s sam-
pled at 100 Hz, which generates 8000 data points. The range
of time series is divided into 40 grid cells via Uniform Parti-
tioning.

The proposed sequential partitioning optimization proce-
dure is then employed to identify the optimal partitioning
and alphabet size. Figure 2a, b depict the nature of mutual
information between the state probability vector and the class
labels for the depth of the D-Markov machine of the input
feature being D = 1 and D = 2, respectively. For D = 2,
normalized mutual information converges to 1 much earlier
for alphabet size |Σ | = 5 than that for D = 1 and |Σ | = 9. In
each case, stopping criterion follows Eq. (8) with the para-
meter ηstop = 0.01. Figure 3a–c show the classification
performance of the k-NN classifier [21] with k = 5 for three
different levels of robustness, i.e., different variances that are
fractions, 0.67, 0.5, 0.25, of the inter partition width, respec-
tively. It is observed that the classification errors are smaller
with smaller variance which is a consequence of smaller
robustness variance fractions. Figure 2c shows the nature
of mutual information between the state probability vector
and the class labels for the Duffing system with 4 classes,
corresponding to four different combinations of the ranges:(
(0.100 ≤ β ≤ 0.147), (0.147 ≤ β ≤ 0.194), (0.934 ≤

α ≤ 1.067), (0.8 ≤ α ≤ 0.934)
)
, within which the para-

meters α and β in Eq. (18) are located. The convergence
rate of the normalized mutual information is smaller in this
case than that for the binary classification scheme because
a larger alphabet is required to capture the information of
four classes. The stopping criterion follows Eq. (8) with the
parameter ηstop = 0.01.

Example #2: LBO Prediction in a Combustor: Ultra-
lean combustion is commonly used for NOx reduction and is
susceptible to thermo-acoustic instabilities and lean blowout
(LBO) [22]. It is well known that occurrence of LBO could
be detrimental for operations of both land-based and aircraft
gas turbine engines. In essence, a sudden decrease in the
equivalence ratio may lead to LBO in gas turbine engines,
which could have serious consequences. This event calls for
early detection and accurate prediction of LBO for adequate
control.

The proposed procedure of time series partitioning and
alphabet size selection has been evaluated under multiple
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Fig. 2 Mutual information as a function of alphabet size |Σ | for two-class Duffing system with a D = 1, b D = 2; for c four-class Duffing system
with D = 1 and ηstop = 0.01
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Fig. 3 Misclassification error for two-class problem (D = 1) with variance fraction: a 0.67, b 0.5, c 0.25

operating conditions (e.g., airflow rates and premixing levels
of fuel and air) on a laboratory apparatus, a detailed descrip-
tion ofwhich is reported in [22]. A series of experiments have
been conducted on this laboratory apparatus with liquefied
petroleum gas (LPG) fuel at airflow rates of 150, 175 and 200
liters per minute (lpm) for two different fuel-air premixing
lengths (i.e., distance of fuel injection port from the dump
plane) of L f uel = 25 cm, and 15 cm for Port 3, and Port 5,
respectively [22]. For each experiment protocol, chemilumi-
nescence time series data were collected while reducing the
fuel-air ratio φ in steps till the combustor system reached
LBO. The main challenge here is to predict quantitatively
how far a combustion process is from the onset of LBO in
real time. It is easier to predict LBO under high premixing
(i.e., port 3) as the precursor events are more dominant [22]
than that under lower premixing (i.e., port 5).

A nested classification architecture [22] is proposed in
accordance with the range of the non-dimensional equiv-
alence ratio of φ/φLBO for early detection of LBO. In
the training phase, the chemiluminescence time series of
duration 3 s (at the sampling rate of 2 kHz) for each pre-
mixing length are grouped into two classes as: Alarm (1 ≤
φ/φLBO ≤ 1.20) and Nominal (φ/φLBO > 1.20). The
class Alarm is subdivided into two finer classes as: Impend-
ing LBO (ILBO) for 1 ≤ φ/φLBO ≤ 1.1, and Progressive
LBO (PLBO) for 1.1 < φ/φLBO ≤ 1.2. Identification of
the PLBO phase is critical for avoidance of LBO as control
actions need to be initiated typically near the PLBO-ILBO

boundary. The proposed sequential partitioning optimization
scheme starts with 20 grid cells. The robustness is chosen
as σ fraction of 0.25. Figure 4a shows the variations of
mutual information between the D-Markov feature vectors
with D = 1 and the class labels for both premixing lev-
els; Figure 4b presents a similar analysis for D = 2. It is
observed from these results that the normalizedmutual infor-
mation converges to 1 with a much smaller alphabet size |Σ |
for D = 2 than that for D = 1, reflecting the fact that
D-Markov features with larger memory should be able to
capture the same class information with a smaller |Σ |; how-
ever, the number of PFSA states for D = 2 could be larger
than that for D = 1. Normalizedmutual information for high
premixing (port 3) converges to 1 for a smaller |Σ | than that
for low premixing (port 5). This phenomenon is more appar-
ent for D = 1, where the alphabet size for port 3 and port 5 is
chosen as |Σ | = 7 and |Σ | = 12, respectively, according to a
stopping rule of Imax = 1 (see Eq. (7)). The rationale for this
observation is attributed to large class separability for high
premixing due to the presence of dominant precursor events
leading to LBO. Support vector machines (SVM) with radial
basis functions [21] have been used based on 70% training at
each layer of the nested classification. Variance of the radial
basis function is optimized for each layer of the nested clas-
sification via a grid search method, and it is found to be 1
in most of the cases. Figure 4c, d present the variations of
classification error, while the proposed partitioning scheme
sequentially increases |Σ | for both D = 1 and D = 2. The
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Fig. 4 Top: Mutual information as a function of alphabet size |Σ | for Port 3 and Port 5 levels of premixing with a D = 1 and b D = 2 Bottom:
variation of classification error as a function of alphabet size |Σ | for Port 3 and Port 5 levels of premixing level with c D = 1 and d D = 2
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Fig. 5 Comparison of classification error with varying alphabet size for (Port 5) premixing: a D = 1, b D = 2

error bars correspond to standard deviations of the classifi-
cation error over 10-fold cross validation. The classification
error is smaller for high premixing (port 3) than that for low
premixing (port 5). It is also observed that relatively smaller
classification error occurs at D = 2 than that at D = 1,
especially for small |Σ |.

Performance Comparison: Performance of the proposed
partitioning is compared with that of a benchmark partition-
ing method, namely, maximum entropy partitioning (MEP).
Figure 5 shows the profiles of classification error in the pro-
posed approach and inMEP as a function of |Σ | for the port 5

scenario. By applying normalized mutual information stop-
ping criterion as mentioned earlier, the classification error is
seen to be smaller for the proposed scheme at D = 1 and
|Σ | ≥ 6 in Figure 5a and at D = 2 and |Σ | = 4 in Figure 5b.

5 Summary and conclusions

This paper addresses the issues of: (i) alphabet size selection
and partitioning of time series data for symbolization of time
series, and (ii) information-theoretic analysis with a focus on
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feature extraction and pattern classification from sensor data
in dynamic data-driven application systems (DDDAS) [9].
The feature extraction algorithmmaximizes themutual infor-
mation between the input features and pattern classes in
the framework of symbolic time series analysis (STSA) [2].
The proposed technique is validated on two examples:
(i)simulation data for an exogenously excited Duffing sys-
tem [23] and (ii) experimental data of chemiluminescence
time series generated from a swirl-stabilized combustor [22]
for lean blowout (LBO) prediction.

The proposed partitioning technique yields satisfactory
performance of pattern classification in several test phases.
Nevertheless, its efficacy may depend on the very nature
of the time series under consideration. Incorporation of an
explicit term for class separability in the proposed objec-
tive function is a topic of future investigation. Apart from
this issue, the following research topics are recommended
for future research: (i) implementation of simultaneous opti-
mization techniques instead of sequential ones, (ii) tradeoff
between the performance gain and the loss of computational
speed, and (iii) validation of the proposed algorithm for other
applications of pattern classification.
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