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Dynamic data-driven prediction of
instability in a swirl-stabilized combustor
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Abstract

Combustion instability poses a negative impact on the performance and structural durability of both land-based and

aircraft gas turbine engines, and early detection of combustion instabilities is of paramount importance not only for

performance monitoring and fault diagnosis, but also for initiating efficient decision and control of such engines.

Combustion instability is, in general, characterized by self-sustained growth of large-amplitude pressure tones that

are caused by a positive feedback arising from complex coupling of localized hydrodynamic perturbations, heat

energy release, and acoustics of the combustor. This paper proposes a fast dynamic data-driven method for detecting

early onsets of thermo-acoustic instabilities, where the underlying algorithms are built upon the concepts of symbolic

time series analysis (STSA) via generalization of D-Markov machine construction. The proposed method captures the

spatiotemporal co-dependence among time series from heterogeneous sensors (e.g. pressure and chemiluminescence)

to generate an information-theoretic precursor, which is uniformly applicable across multiple operating regimes of the

combustion process. The proposed method is experimentally validated on the time-series data, generated from a

laboratory-scale swirl-stabilized combustor, while inducing thermo-acoustic instabilities for various protocols (e.g.

increasing Reynolds number (Re) at a constant fuel flow rate and reducing equivalence ratio at a constant air flow

rate) at varying air-fuel premixing levels. The underlying algorithms are developed based on D-Markov entropy rates, and

the resulting instability precursor measure is rigorously compared with the state-of-the-art techniques in terms of its

performance of instability prediction, computational complexity, and robustness to sensor noise.
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Introduction

Strict emission regulation has initiated a paradigm shift
in the nominal operating conditions of gas turbine
engines. Consequently, the technology of gas turbine
engines has gradually adapted to low equivalence
ratio combustion to suppress emissions of nitrogen
oxides (NOx), instead of combustion at near-
stoichiometric conditions. Ultra-lean premixed and
pre-vaporized combustors, while being environment-
friendly, are susceptible to combustion instability that
is characterized by pressure waves with sharp tones and
high amplitudes. The complexity of this instability
problem accrues from the mutual interactions among
the unsteady heat release rate, flow fields and acoustics,
which outline the general features of combustion

instability.1–3 The prediction of combustion instability
associated with swirl-stabilized flames is of particular
interest in gas turbine combustion. The dynamics of
three-dimensional swirl-stabilized flames are complex
in nature as they are subjected to interactions of fluid-
mechanical processes with the flame and acoustics,
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which give rise to complex growth and saturation
mechanisms. Reviews of swirl-stabilized flames and
their instabilities have been reported by Huang and
Yang4 and Candel et al.5 Significant studies in instabil-
ities of swirl flames have also been conducted in the
framework of flame transfer functions in the context
of frequency-amplitude dependence and the underlying
flow physics.6,7 In particular, flame transfer functions
provide low-order model-based tools that have been
used to predict instabilities by solving the nonlinear
dispersion relations as reported by Noiray et al.8

Full-scale computational-fluid-dynamic (CFD)
models and/or reduced-order models have been devel-
oped to predict and characterize the combustion
instabilities and specifically to identify the instability
conditions; however, the underlying assumptions and
inherent complexity in modeling the system dynamics
as well as computational restrictions may result in
imperfect validation by experimental observations.
The other approach relies on time series data of phys-
ical sensors to identify the features that are capable of
exclusively characterizing combustion instabilities. The
resulting dynamic data-driven approach, based on
time-series analysis, is less system-specific than the
model-based approach as the former is more strongly
dependent on the general features of various regimes in
a combustor. In this regard, Nair and Sujith9 have used
the decay of Hurst exponents as precursors to detect
impending combustion instabilities; other measures of
instability like loss of chaotic behavior in the system
dynamics have also been formulated.10 The data-
driven approach is, in general, expected to predict
instabilities across the parameter space, within which
the combustor operates. A key parameter is the inlet
Reynolds number (Re), a variation of which has been
observed to clearly mark the stable and unstable
regimes of a combustor. Chakravarthy et al.11 have
reported the dawn of ’’lock-on’’, a term representing
the frequency locking of natural duct acoustics and a
dominant hydrodynamic mode as an essential feature
of combustion instability. Specifically, ’’lock-on’’ is a
generic feature and is independent of any geometric
and fuel-based parameters. The hallmark feature of
Re variations is the break in the dominant frequency,
which corresponds to onset of combustion instability.
Thus, the frequency break can be thought of as a reli-
able precursor for combustion instability. However, a
major drawback is the bifurcation in the combustor
behavior at the frequency break-point; therefore, it
may not be used as a tool of early warning, thus moti-
vating the need for a fast predictive tool that is generic.
Both analytical and experimental investigations on the
onset of thermo-acoustic instabilities have been
reported by several researchers, for example,
Lieuwen,12 Gotoda et al.,13,14 and Murugesan and

Sujith.15 Some of these recent studies have shown the
possibility of encountering low-dimensional chaotic
oscillations in combustors by employing several meth-
ods of nonlinear time series analysis. Recently, Nair
et al.16 have utilized recurrence quantization analysis
(RQA) for prediction of instabilities, which detects a
route of intermittency filled with random bursts of
high amplitude oscillations.

The concept of symbolic time series analysis (STSA)
has been used for anomaly detection in internal com-
bustion engines by Daw et al.17 as an extension of their
earlier work18 as well as by Mukhopadhyay et al.19 and
Unni et al.20 for prediction of lean blowout and
instability, respectively, in gas turbine combustors,
which use the sensor data with little post-processing.
The tools of STSA are further developed by
Mukherjee and Ray21 who have used an entropy-
based method of state splitting and state merging as
an extension of the earlier work of Ray and cowor-
kers.22–24 which requires a very modest amount of
signal post-processing with the pay-off of a significantly
enhanced capability for early prediction of the onset of
anomalous behavior. Recently, Ramanan et al.25 have
used STSA with unity depth (memory) of the
D-Markov machine to predict combustion instabilities
from single sensor data for variations in Re. Along this
line Sarkar et al.26 have applied the notion of STSA
with the generalized D-Markov machine construction
(i.e. depth greater than one) to predict lean blow-out
from chemiluminescence sensor time series for vari-
ations in equivalence ratio (�).

This paper proposes a fast STSA approach built
upon the generalized D-Markov machine21 to construct
a complexity-based measure for detecting an early
onset of thermo-acoustic instability in swirl-stabilized
combustors. The proposed approach models spatio-
temporal co-dependence among time series from
heterogeneous (e.g. pressure and chemiluminescence)
sensors to generate a data-driven precursor which is
uniformly applicable across multiple experiment proto-
cols with various premixing levels. From the perspec-
tives of dynamic data-driven application systems
(DDDAS) (e.g. see Darema27 and references therein)
and novel usage of STSA and D-Markov machine
tools for analysis of combustion instability, major con-
tributions of this paper are delineated below.

. Formulation of a robust measure of anomalous
behavior in dynamical systems as a generalization
of the D-Markov machine:21,26 the objective is
early prediction of combustion instability, which is
robust to spurious disturbances.

. Development of an information-theoretic
approach:28 the underlying concept is built upon
the entropy rates among heterogeneous sensors and
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serves to construct alternative precursors for predic-
tion of combustion instability.

. Experimental validation of the proposed concept
of instability prediction: The test apparatus is a
swirl-stabilized combustor, where thermo-acoustic
instabilities are induced via different protocols (e.g.
increasing Reynolds number (Re) at a constant fuel
flow rate (FFR) and reducing equivalence ratio (�)
at a constant air flow rate (AFR)) at varying levels of
fuel premixing.

. Performance evaluation and comparison: The pro-
posed instability precursor measure is compared
with state-of-the-art techniques in terms of predic-
tion performance (e.g. accuracy), computational
complexity (i.e. memory requirement and execution
time), and robustness to sensor noise.

The paper is organized in five sections, including the
present one. ‘‘Description of the experimental appar-
atus’’ section describes the laboratory-scale swirl-
stabilized combustor, which serves as a test apparatus
for experimental validation of the proposed method of

thermo-acoustic instability prediction. ‘‘STSA for
instability prediction’’ section reviews the concept of
STSA and presents extensions of STSA tools for mod-
eling single time series and co-dependence among mul-
tiple time series. This section also formulates an
anomaly measure for predicting combustion instability
from single sensor and (possibly heterogeneous) mul-
tiple sensor data. ‘‘Results and discussion’’ section pre-
sents the capabilities and advantages of the proposed
approach for instability prediction over different ranges
of parameters and also provides a comparison with
other state-of-the-art statistical measures for instability
prediction. Finally, the paper is summarized and con-
cluded in ‘‘Summary, conclusions and future work’’
section with selected recommendations for future
research.

Description of the experimental
apparatus

The experimental apparatus is built upon a laboratory-
scale combustor (see Figure 1) that has a swirler of

Figure 1. Schematic diagram of the laboratory-scale combustor apparatus.
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diameter 30mm with 60� vane angles, thus yielding a
geometric swirl number of 1.28. Air to the combustor is
fed through a settling chamber of diameter 280mm
with an abrupt contraction leading to a square cross
section of side 60mm. This provides an area ratio of
around 17, which thus acts as an acoustically open con-
dition at the contraction. A mesh and honeycomb are
mounted in the immediate downstream of the contrac-
tion to provide uniform flow to the swirler. As seen in
the schematic diagram of Figure 1, the combustor con-
sists of the following major components: (i) an inlet
section of length 200mm; (ii) an inlet optical access
module (IOAM) of length 100mm to provide optical
access to the fuel tube; (iii) a primary combustion
chamber of length 370mm, and a secondary duct of
the same length; and (iv) extension ducts of the same
cross section to provide length flexibility. The overall
length of the constant area ducts is 1340mm.

As shown in the top right hand corner of Figure 1,
the fuel injection tube is coaxial to the mixing tube that
has the same diameter as the swirler. The bypass air
that does not enter the mixing tube passes through
slots on the surface of swirl plate. The slots on the
fuel injection tube are drilled at designated distances
upstream of the swirler in different inserts; these are
called upstream distances Xi corresponding to the
designated location i of fuel injection. The larger is
this distance, more fuel mixes with the primary air
upstream in the mixing tube, thus leading to increased
premixing. Two upstream distances of Xi, 1 ¼ 1, 2 have
been used for the experimental work reported in this
paper, where X1 ¼ 90 mm causes partial premixing of
the fuel with air and is referred to as the partially pre-
mixed case, and X2 ¼ 120 mm provides better premix-
ing of the fuel with the air and is referred to as the well
premixed case. It has been observed from laboratory
experiments that these fuel inlet positions yield suffi-
ciently different premixing lengths, which are capable
of classifying the resulting flames as well premixed and
partially premixed. Exact quantification of the extent of
premixing for fuel injection at these two locations is
outside the scope of this paper and they are merely
adopted as test cases to demonstrate the diversity of
conditions under which the proposed STSA-based pre-
cursor prediction is validated.

In the experiments, 99.5% pure methane gas (CH4)
has been used as the fuel. Both air and FFRs are con-
trolled by (Alicat Scientific make) mass flow controllers
in the range of 0–4000 liters per minute (LPM) for air
and 0–100 LPM for fuel.

Two major protocols have been followed in conduct-
ing the experiments.

. Protocol 1—Constant FFR, while varying the inlet
air Re: the FFR is kept constant at 0.55 g/s for both

the injection locations (i.e. X1 ¼ 90mm and
X2 ¼ 120mm) for the constant FFR protocol,
while the AFR is increased from Re¼ 5300, which
corresponds to a starting global equivalence ratio of
1.59 and is varied in steps of 50 LPM till the onset of
instability and subsequently 100 LPM after the onset
till the flame blows out/off. A set of four wall-
mounted (PCB make) piezo-electric pressure
transducers are used, where the two most upstream
transducers have sensitivity of 72mV/kPa and the
remaining two have sensitivity of 225mV/kPa. The
locations as well as normalized downstream dis-
tances from the inlet of these transducers are listed
in Table 1. Spatially localized CH* chemilumines-
cence is measured by a wall-mounted photo-diode,
equipped with a filter having 50 nm bandwidth and
peak transmission at 430 nm, which is co-linear with
the second transducer installed at the inlet.

. Protocol 2—Constant inlet Reynolds number (Re)
while decreasing the FFR in the second protocol,
three Re’s are chosen as 8857, 10,630, and 12,400,
while decreasing the FFR in very fine steps starting
with an equivalence ratio of 0.955, till the flame
blows out/off. Results are shown for Re¼ 8857.
For this protocol, three piezo-electric pressure trans-
ducers (see Table 2) are used along the flow, which
have a sensitivity of 225mV/kPa.

Each of the data sets has been recorded for a time
period of 3 s with all sensors synchronized at a sampling
rate of 10 kHz via LabView signal express as the data
acquisition system. High speed CH* chemilumines-
cence has been conducted to investigate the flame
behavior at high and low amplitude conditions for
operations under the protocols described above. The
flame images have been acquired at 3 kHz using

Table 2. Locations of pressure transducers for the second

protocol.

Transducer number 1 2 3

Distance from inlet end (mm) 345 1040 1290

Normalized distance 0.257 0.776 0.962

Table 1. Locations of pressure transducers for the first

protocol.

Transducer number 1 2 3 4

Distance from inlet end (mm) 200 345 1040 1290

Normalized distance 0.149 0.257 0.776 0.962
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Photron high speed star camera for a duration of 3 s
and these images have been synchronized with data
acquisition of unsteady pressure. A blue Kodak filter
of bandwidth 50 nm and centered around 430 nm is
mounted in front of the camera. The results shown sub-
sequently pertain to X2 ¼ 120 mm and FFR of 0.495 g/
s and Re of 15,942 for brevity. The results generated for
other cases are reported in this paper for space
limitations.

STSA for instability prediction

The chaotic behavior of the time series of pressure and
chemiluminescence experiments at stable states of the
combustion process includes transitions to high-
amplitude ordered oscillations9,10 at unstable states
via routes of intermittency filled with random bursts
of high-amplitude of oscillations.16 It is conjectured
that these phenomena are manifested by sharp changes
in the time-series complexity. Furthermore, the tem-
poral signals from multiple sensors, situated along the
flow path, become aligned in phase at the instants of
acoustic ‘‘lock-on’’,11 which is a generic feature of
thermo-acoustic instability. This section presents a
computationally efficient tool, built upon the concepts
of STSA and information theory (e.g. entropy and
mutual information29), which is capable of capturing
small changes in both complexity and inter-sensor co-
dependence for early detection of the onset of instabil-
ity phenomena.

Tools of STSA are built upon the concept of sym-
bolic dynamics,30 which deals with discretization of
dynamical systems in both space and time. The
notion of STSA has led to the development of a (non-
linear) data-driven feature extraction tool for dynam-
ical systems. Figure 2 schematically presents a flow
chart that explains how the STSA tool symbolizes
multi-sensor signals via partitioning to construct
D-Markov machines and �D-Markov machines
for modeling single sensor time series. The concept of
D-Markov machines leads to the construction of
�D-Markov machines based on the cross relationship
between heterogeneous (e.g. pressure and chemilumin-
escence) signals. This is followed by computation of
entropy-based measures to detect combustion instabil-
ities at an early stage. The individual modules of STSA,
as seen in Figure 2, and the formulation of entropy-
based instability measure are described as follows.

In STSA, a time series of sensor signals is represented
as a symbol sequence that, in turn, leads to the construc-
tion of probabilistic finite state automata (PFSA).31,32

Since PFSA models are capable of efficiently compress-
ing the information embedded in the sensor time
series,22,21 these models could enhance the performance
and execution speed of information fusion and informa-
tion source localization that are often computation-
intensive. Rao et al.33 and Bahrampour et al.34 have
shown that the performance of this PFSA-based tool
as a feature extractor for statistical pattern recognition
is comparable (and often superior) to that of other

Figure 2. The schematics of symbolic time series analysis (STSA) for early detection of combustion instability via entropy based

measure.
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existing techniques (e.g. Bayesian filters, artificial neural
networks, and principal component analysis35).

The signal space of time series is partitioned into
finitely many mutually exclusive and exhaustive cells
for symbolization, where each cell corresponds to a
single symbol belonging to a (finite) alphabet �. As a
trajectory of the dynamical system passes through or
touches various cells of the partition, the symbol
assigned to the cell is inserted in the symbol string. In
this way, a time series corresponding to a trajectory is
converted into a symbol string. Figure 2 illustrates the
concept of constructing finite state automata (FSA)
from time series, which provides the algebraic structure
of PFSA. There are different types of partitioning tools,
such as maximum entropy partitioning (MEP) and uni-
form partitioning (UP).23 This paper has adopted MEP
for symbolization of time series, which maximizes the
entropy of the generated symbols by putting (approxi-
mately) equal number of data points in each partition
cell; consequently, the information-rich regions of a
time-series are partitioned finer and those with sparse
information are partitioned coarser.

The next step is to construct PFSA from the symbol
strings to encode the embedded statistical information
so that the dynamical system’s behavior is captured by
the patterns generated from the PFSA in a compact
form. The algebraic structure of PFSA (i.e. the under-
lying FSA) consists of a finite set of states that are inter-
connected by transitions,36 where each transition
corresponds to a symbol in the (finite) alphabet. At
each step, the automaton moves from one state to
another (including self loops) via these transitions, and
thus generates a corresponding block of symbols, so that
the probability distributions over the set of all possible
strings defined over the alphabet are represented in the
space of PFSA as stated below.

Definition 3.1. (PFSA) A PFSA is constructed on the
algebraic structure of deterministic finite state auto-
mata (DFSA) G ¼ ð�,Q, �Þ as a pair K ¼ ðG,�Þ, i.e.
the PFSA K is a 4-tuple K ¼ ð�,Q, �,�Þ, where:

1. � is a non-empty finite set, called the symbol alpha-
bet, with cardinality j�j41;

2. Q is a non-empty finite set, called the set of states,
with cardinality jQj41;

3. � : Q��! Q is the state transition map;
4. � : Q��! ½0, 1� is the symbol generation function

(also called probability morph function) that satisfies
the condition

P
�2� �ðq, �Þ ¼ 1 8q 2 Q, and �ij is

the probability of emission of a symbol �j 2 �
when the state qi 2 Q is observed.

The advantage of such a representation is that the
PFSA structure is simple enough to be encoded as it is

characterized by the set of states, the transitions (i.e.
exactly one transition for each symbol generated at a
state), and the transition’s probability of occurrence.

The D-Markov machine

This subsection presents the underlying concept of
D-Markov machines22,21 as models of probabilistic lan-
guages based on the algebraic structure of PFSA. In
D-Markov machines, the future symbol is causally
dependent on the (most recently generated) finite set
of (at most) D symbols, where D is a positive integer.
The underlying FSA in the PFSA of D-Markov
machines are deterministic, i.e. the future state is a
deterministic function of the current state and the
observed symbol. Therefore, D-Markov machines
essentially encode two entities: (1) probability of gen-
erating a symbol at a given state, and (2) deterministic
evolution of future states from the current state and the
symbol. A D-Markov machine is formally defined as:

Definition 3.2. (D-Markov) A D-Markov machine is a
statistically stationary stochastic process S ¼
� � �s�1s0s1� � � (modeled by a PFSA in which each state
is represented by a finite history of at most D symbols),
where the probability of occurrence of a new symbol
depends only on the last D symbols, i.e.

P½snj� � �sn�D� � �sn�1� ¼ P½snjsn�D� � �sn�1� ð1Þ

. D is called the depth of the Markov machine;

. Q is the finite set of states with cardinality
jQj � j�jD, i.e. the states are represented by equiva-
lence classes of symbol strings of maximum length
D, where each symbol belongs to the alphabet �;

. � : Q��! Q is the state transition function that
satisfies the following condition: if jQj ¼ j�jD, then
there exist �,� 2 � and x 2 �? such that
�ð�x,�Þ ¼ x� and �x, x� 2 Q.

The complexity of a D-Markov machine is reflected
by the entropy rate which also represents its overall
capability of prediction. The entropy rate of a
D-Markov machine is defined as:

Definition 3.3. (D-Markov entropy rate) The
D-Markov entropy rate of a PFSA �,Q, �,�ð Þ is
defined in terms of the conditional entropy as:

Hð�jQÞ ¼
�
X

q2Q

PðqÞHð�jqÞ

¼ �
X

q2Q

X

�2�

PðqÞPð�jqÞ logPð�jqÞ
ð2Þ
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where P(q) is the probability of a PFSA state q 2 Q and
Pð�jqÞ is the conditional probability of a symbol � 2 �
given that a PFSA state q 2 Q is observed.

Construction of a D-Markov machine

The underlying procedure for construction of a
D-Markov machine21 from a symbol sequence consists
of two major steps: state splitting and state mer-
ging.21,26 In general, state splitting increases the
number of states to achieve more precision in represent-
ing the information content in the time series. State
splitting effectively reduces the entropy rate Hð�jQÞ,
thereby focusing on the critical states (i.e. those states
that carry more information).

The subsequent process of state merging reduces the
number of states in the D-Markov machine by merging
those states that have similar statistical behavior. Thus,
a combination of state splitting and state merging leads
to the final form of the D-Markov machine as described
below.

State splitting. The number of states of a D-Markov
machine of depth D is bounded above by j�jD, where
j�j is the cardinality of the alphabet �. As this relation
is exponential in nature, the number of states rapidly
increases as D is increased. However, from the perspec-
tive of modeling a symbol sequence, some states may be
more important than others in terms of their embedded
information contents. Therefore, it is advantageous to
have a set of states that correspond to symbol blocks of
different lengths. This is accomplished by starting off
with the simplest set of states (i.e. Q ¼ � for D¼ 1) and
subsequently splitting the current state that results in
the largest decrease of the D-Markov entropy rate.

The process of splitting a state q 2 Q is executed by
replacing the symbol block q by its branches as
described by the set f�q : � 2 �g of words. Figure 3
illustrates the process of state splitting in a PFSA
with alphabet � ¼ f0, 1g, where each terminal state is
circumscribed by an ellipse. Let q 2 Q be a state of a

D-Markov machine (see Definition 3.2), which is split
to yield new states �q, where � 2 � and �q represents
the equivalence class of all (finite-length) symbol strings
with the word �q as the suffix. For example in Figure 3,
the states in the third layer from the top are:
00q, 10q, 01q, and 11q, of which all but 10q are terminal
states. Consequently, the state 10q is further split as:
010q and 110q that are also terminal states, i.e.
Q ¼ f00q, 01q, 11q, 010q, 110qg. The operation of state
splitting along with the algorithm is described in more
detail in Mukherjee and Ray.21

Maximum reduction of the entropy rate is the gov-
erning criterion for selecting the state to be split. In
addition, the generated set of states must satisfy the
self-consistency criterion, which only permits a unique
transition to emanate from a state for a given symbol.
If �ðq, �Þ is not unique for each � 2 �, then the state q is
split further. In the state splitting algorithm, a stopping
rule is constructed by specifying the threshold param-
eter �spl on the rate of decrease of conditional entropy.
An alternative stopping rule for the algorithm is to pro-
vide a maximal number of states Nmax instead of the
threshold parameter �spl.

For construction of PFSA, each element �ð�, qÞ of
the morph matrix � is estimated by frequency counting
as the ratio of the number of times, Nðq�Þ, the state q is
followed (i.e. suffixed) by the symbol � and the number
of times, N(q), the state q occurs; the details are avail-
able in Mukherjee and Ray.21 The estimated morph
matrix �̂ is obtained as:

�̂ðq, �Þ ¼
� 1þNðq�Þ

j�j þNðqÞ
8� 2 � 8q 2 Q ð3Þ

where
P

�2� �̂ð�, qÞ ¼ 1 8q 2 Q. Similarly, the station-
ary state probability vector is estimated by frequency
counting as:

P̂ðqÞ ¼
� 1þNðqÞ

jQj þ
P
q02Q

Nðq0Þ
8q 2 Q ð4Þ

where P̂ðqÞ is an element of the estimated stationary
state probability vector, i.e. probability of the PFSA
being in the state q 2 Q. Then, the D-Markov entropy
rate (see Definition 3.3) is computed as:

Hð�jQÞ ¼ �
X

q2Q

X

�2�

PðqÞPð�jqÞ logPð�jqÞ

� �
X

q2Q

X

�2�

P̂ðqÞ�̂ðq, �Þ log �̂ðq, �Þ
ð5Þ

State merging. The motivation for state merging is to
reduce the number of states, while preserving the

Figure 3. Tree-representation of state splitting in D-Markov

machines.
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sufficient D-Markov structure of a PFSA. Nevertheless,
such a process may cause the PFSA to have degraded
precision due to loss of information. The state merging
algorithm aims to mitigate this risk via a stopping rule
that is constructed by specifying an acceptable thresh-
old �mrg on the distance �ð�, �Þ between the merged
PFSA and the PFSA generated from the original time
series. The distance metric �ð�, �Þ is defined as:

Definition 3.4. (Distance Metric between two PFSAs).
Let K1 ¼ ð�,Q1, �1,�1Þ and K2 ¼ ð�,Q2, �2,�2Þ be two
PFSA with a common alphabet �. Let P1ð�

j Þ and
P2ð�

j Þ be the steady state probability vectors of gener-
ating words of length j from the PFSA K1 and K2,
respectively, i.e. P1ð�

j Þ ¼
�
½PðwÞ�w2�j for K1 and

P2ð�
j Þ ¼

�
½PðwÞ�w2�j for K2. Then, the metric for the

distance between the PFSA K1 and K2 is defined as

�ðK1,K2Þ ¼
�

lim
n!1

Xn

j¼1

P1ð�
j Þ � P2ð�

j Þ
�� ��

‘1

2jþ1
ð6Þ

where the norm ?k k‘1 indicates the sum of absolute
values of the elements in the vector ?.

States that behave similarly (i.e. have similar morph
probabilities) have a higher priority for merging. The
similarity of two states, q, q0 2 Q, is measured in terms
of the respective morph functions of future symbol gen-
eration as the distance between the two rows of the
estimated morph matrix �̂ corresponding to the states
q and q0. The ‘1-norm (i.e. the sum of absolute values of
the vector components) has been adopted to be the dis-
tance function as seen below.

Mðq, q0Þ ¼
�

�̂ðq, �Þ � �̂ðq0, �Þ
�� ��

‘1

¼
X

�2�

j�̂ðq, �Þ � �̂ðq0, �Þj
ð7Þ

A small value of Mðq, q0Þ indicates that the two
states have close probabilities of generating each
symbol. Hence, the two closest states (i.e. the pair of
states q, q0 2 Q having the smallest value of Mðq, q0Þ)
are merged using the merging algorithm explained in
Mukherjee and Ray.21 The merging algorithm updates
the morph matrix and transition function in such a way
that does not permit any ambiguity of nondetermin-
ism.22 Subsequently, distance �ð�, �Þ of the merged
PFSA from the initial symbol string is evaluated. If
�4 �mrg where �mrg is a specified threshold, then the
machine structure is retained and the states next on the
priority list are merged. On the other hand, if � 	 �mrg,
then the process of merging the given pair of states is
aborted and another pair of states with the next smal-
lest value of Mðq, q0Þ is selected for merging.

This procedure is terminated if no such pair of states
exist, for which �4 �mrg.

The �D-Markov machine

In the setting of a PFSA (e.g. D-Markov machine),
a�D-Markov machine37 captures the statistical co-
dependence between two (synchronized) time-series
after symbolization. A symbol block of (finite) length
D in a symbol sequence fs1g may affect the subsequent
symbols observed in another symbol sequence fs2g and
vice versa. In this setting, the �D-Markov machine is
formally defined as:

Definition 3.5. (�D-Markov) Let the symbol sequences
fs1g and fs2g generate PFSAs (e.g. D-Markov machines)
K1 and K2, respectively (see Definition 3.1 and
Definition 3.2). Then, a �D-Markov machine from
fs1g to fs2g is defined as a 5-tuple K1!2 ¼

�

ðQ1,�1,�2, �1,�12Þ such that:

. Q1 ¼ fq1, . . . , qj4rm4Q1jg is the state set correspond-
ing to symbol sequence fs1g.

. �1 ¼ f�0, . . . , �j�1j�1g is the alphabet set of symbol
sequence fs1g.

. �2 ¼ f�0, . . . , �j�2j�1g is the alphabet set of symbol
sequence fs2g.

. �1 : Q1 ��1 !Q1 is the state transition mapping
for K1.

. �12 is the ð Q1j j � �2j jÞ cross-morph matrix and its
ijth element (�12ðq1i, �2jÞ) denotes the probability of
finding the symbol �2j in the symbol sequence fs2g at
the next time step while making a transition from the
state q1i of the PFSA constructed from the symbol
sequence fs1g.

Similarly, a 5-tuple �D-Markov machine K2!1 ¼
�

ðQ2,�2,�1, �2,�21Þ is constructed from symbol
sequences fs2g to fs1g.

Similar to D-Markov entropy rate (see Definition
3.3), �D-Markov entropy rate is formally defined as:

Definition 3.6. (�D-Markov entropy rate37)
�D-Markov entropy rate from a PFSA �1,Q1, �1,�1ð Þ

to a symbol sequence fs2g in alphabet �2 is defined as:

Hð�2jQ1Þ ¼
�
X

q12Q1

Pðq1ÞHð�2jq1Þ

¼ �
X

q12Q1

X

�22�2

Pðq1ÞPð�2jq1Þ logPð�2jq1Þ

ð8Þ

where Pðq1Þ is the probability of a PFSA state q1 2 Q1

and Pð�2jq1Þ is the probability of a symbol �2 2 �2

given that a PFSA state q1 2 Q1 is observed.
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Remark 3.1. The �D-Markov entropy rate represents
the overall predictability of a symbol sequence when a
PFSA from another symbol sequence is observed. It is a
measure of the dynamical complexity of the temporal
codependence from one symbol sequence to another.
As an example related to combustion physics, a slight
shift from stable combustion toward thermo-acoustic
instability can be captured by an abrupt increase in
the computed value of �D-Markov entropy rate.

Construction of a �D-Markov machine

Similar to the construction of a D-Markov machine,37 a
major challenge in the construction of a �D-Markov
machine is the trade-off between modeling accuracy
and model order that is major source of computational
complexity (i.e. execution time and memory require-
ments). Optimal models for �D-Markov machines are
generated by an information-theoretic approach that
relies on the D-Markov and �D-Markov entropy
rates (see Definitions 3.3 and 3.6). These entropy rates
are computed from the time series of individual sensor
data (e.g. pressure and chemiluminescence).

Figure 4 illustrates the underlying procedure of state
splitting in the construction of a �D-Markov machine.
The process of splitting a state q1 2 Q1 is executed by
replacing the symbol block q1 by its branches as
described by the set f�1q1 : �1 2 �1g of words in the
symbol sequence fs1g. Maximum reduction of the
�D-Markov entropy rate is the governing criterion
for selecting the state to be split. In addition, the gen-
erated set of states must satisfy the self-consistency cri-
terion21 for the PFSA K1, which implies a unique
transition to emanate from a state for a given symbol.
Similar to state splitting in D-Markov machines, a stop-
ping rule for state splitting is constructed either by spe-
cifying a threshold parameter �spl on the rate of
decrease of �D-Markov entropy rate or by providing
a maximal number of states Nmax of PFSA K1.

At each step of state splitting, each element
�12ð�2, q1Þ of the cross morph matrix �12 is estimated
by frequency counting as the ratio of the number of
times, Nðq1�2Þ, the state q1 from fs1g is followed by

the symbol �2 from fs2g and the number of times,
Nðq1Þ, the state q1 occurs. Each element �̂12ðq1, �2Þ of
the estimated morph matrix �̂12 is obtained as:

�̂12ðq1, �2Þ ¼
� 1þNðq1�2Þ

j�2j þNðq1Þ
8�2 2 �2 8q1 2 Q1 ð9Þ

where
P

�22�2
�̂12ð�2, q1Þ ¼ 1 8q1 2 Q1. Similar to equa-

tion (9), each element Pðq1Þ of the stationary state prob-
ability vector for the PFSA from fs1g at a splitting stage
is estimated by frequency counting as:

P̂ðq1Þ ¼
� 1þNðq1Þ

jQ1j þ
P

q0
1
2Q1

Nðq01Þ
8q1 2 Q1 ð10Þ

where P̂ðq1Þ is the estimated stationary probability of
the PFSA being in the state q1 2 Q1. The �D-Markov
entropy rate (see equation (8)) is computed in terms of
the state probability vector for the PFSA, generated
from the symbol sequence fs1g, and estimated cross
morph matrix as:

Hð�2jQ1Þ ¼ �
X

q12Q1

X

�22�2

Pðq1ÞPð�2jq1Þ logPð�2jq1Þ

� �
X

q12Q1

X

�22�2

P̂ðq1Þ�̂12ðq1, �2Þ log �̂12ðq1, �2Þ

ð11Þ

Based on the specific threshold, the process of state
splitting is continued till the optimal �D-Markov
machine is constructed. The estimated morph matrix
�̂12, in its final form, is used as a representative feature
of the causality from the first to the second time-series.

Results and discussion

This section presents the results of analysis of pressure
and chemiluminescence sensor data, generated from the
experimental apparatus (see ‘‘Description of the experi-
mental apparatus’’ section). This section also evaluates
the performance of the proposed method for prediction
of combustion instability by comparison with state-of-
the-art techniques.

Preliminary analysis of acquired data

The swirl combustor’s stability behavior is first ana-
lyzed by fast Fourier transform (FFT) to estimate the
spectral contents of the signals generated in the oper-
ational regime. The results are shown in Figure 5,
where the individual plots correspond to the transducer
recordings of highest amplitudes and spectral values at
different values of the Reynolds number (Re).Figure 4. Variable depth xD-Markov machine.
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It is seen in Figure 5 that the combustor system may
exhibit a sharp change (i.e. increase or decrease) in
acoustic pressure characteristics as Re is varied and
thus poses a challenge for instability prediction. It is
also evident that, independent of the upstream distance
of fuel injection (see ‘‘Description of the experimental
apparatus’’ section), the rise in the spectral amplitude is
slightly preceded by a break in the dominant frequency,
similar to the observations made by Chakravarthy
et al.11 The nature of the combustion instability
during these transitions also shows that the dominant
frequency closely scales with Re. It is seen for both
partially premixed ðX1 ¼ 90mmÞ and well premixed
ðX2 ¼ 120mmÞ cases that, during a transition to
instability (e.g. in the vicinity of Re¼ 9000 for partial
premixing), there exists an approximately linearly
increasing dominant frequency. This frequency
signifies an excited hydrodynamically coherent struc-
ture that drives the transition to combustion instability,
followed by an almost constant-frequency trend that
implies frequency-locking of all drivers of combustion
instability.

Figure 6 exhibits the combustor behavior at a con-
stant value of Re by varying the global equivalence
ratio �. For Re¼ 8857, the combustor behavior for
both partially premixed and well premixed cases is simi-
lar to that for constant FFR in the sense that the com-
bustor abruptly becomes unstable at a lower � along
with a discontinuity in the profile of dominant fre-
quency. For the cases investigated in this paper, a
break in the dominant frequency can be treated as a
defining feature to indicate the onset of combustion
instability. This phenomenon can be explained in

terms of the phase difference between the unsteady
heat release rate and the pressure wave approaching
each other and thus possibly rendering a frequency
mode unstable. The combustor is found to be stable
at the either ends of the operational regime, with the
flame extinction occurring at very low pressure ampli-
tudes. This is in contrast to the partially premixed flame
for a constant FFR, where the pressure amplitudes are
high and thus acoustics could play a major role in the
flame extinction. Investigation of this behavior is a
topic of future research as delineated in ‘‘Summary,
conclusions and future work’’ section.

Variation of state complexity

Figure 7 shows that, for different experiment protocols
(see ‘‘Description of the experimental apparatus’’ sec-
tion), the cardinality of the state space drops drastically
at the onset of instability and again rises when the
system becomes relatively stable or reaches lean blow-
out. Furthermore, the usage of MEP for symbol gener-
ation in the PFSA model construction (see ‘‘STSA for
instability prediction’’ section) can be justified because
of the observed equi-distribution of squared intensity
across all modes except the mean flame mode. The pres-
ence of a large number of states seen in stable combus-
tion can be ascribed to a large number of modes having
the same squared intensity values, which may make
omission of states difficult and unreasonable. This
may warrant usage of a large number of states, which
individually contribute very negligibly to the overall
flame mode. Since the second and third modes domin-
ate the signal characteristics for unstable combustion,
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Figure 5. Unsteady pressure characteristics (i.e. amplitude and frequency) at constant fuel flow rate (FFR) of 0.55 mg/s for (a), (c)

partially premixed and (b), (d) well premixed fuel.

244 International Journal of Spray and Combustion Dynamics 8(4)



the total number of significant states is just two, after
eliminating the mean flame mode; this is far less than
the number of states used to describe stable combus-
tion. The state complexity derived through STSA cor-
roborates the same.

Instability prediction by D-Markov and �D-Markov
entropy rates

At each condition for different protocols, sets of time
series data from pressure and chemiluminescence
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Figure 7. Variation of state space cardinality jQj of dominant pressure time series with increasing Re (D-Markov construction with

alphabet size �¼ 5 and splitting threshold for maximal number of states Nmax¼ 25) at constant fuel flow rate (FFR) of 0.55 mg/s for (a)

partially premixed (Xi ¼ 90 mm) and (b) well premixed fuel (Xi ¼ 120 mm) conditions; similar variation with decreasing equivalence

ratio � at constant Re of 8857 for (c) partially premixed (Xi ¼ 90 mm) and (d) well premixed fuel (Xi ¼ 120 mm) conditions.
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Figure 6. Amplitude and frequency of unsteady pressure at constant Reynolds number (Re)¼ 8857: left column (a), (c) partially

premixed; right column (b), (d) well premixed fuel.
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sensors have been collected over intervals of 3 s at
10 kHz sampling frequency. To reduce the occurrence
of self loops in the state transition matrix and to
increase the efficacy of texture identification via D-
Markov and �D-Markov machine construction, each
time series is downsampled by a factor of 10 (i.e. effect-
ive sampling interval of 1ms) based on the first occur-
rence of minimal mutual information of individual time
series,38 which is similar to finding the embedding delay
in nonlinear time-series analysis.39

Although modeling of PFSA (e.g. D-Markov
machines) from symbol sequences has been widely
reported, similar efforts have not been expended to
investigate how to find an appropriate alphabet size
for partitioning the underlying time series so that the
symbol sequences can be optimally generated. Sarkar
et al.40 have addressed this critical issue in the context
of pattern classification and proposed an information-
theoretic procedure of data partitioning to extract low-
dimensional features from time series. The key idea lies
in optimal partitioning of the time series via maximiza-
tion of the mutual information between the state prob-
ability vector of PFSA and the members of the pattern
classes. However, in practice, the optimal alphabet size
is often reduced to enhance computational efficiency,
especially for fast processes like combustion dynamics.
In this paper, an alphabet size of j�j ¼ 3 is selected for
symbolization of time series for all sensors at each con-
dition, which is smaller than the derived optimal j�j that
were found to be approximately in the range of 4–6 for
different time series data. It has been observed from the
analyses of various time series of experimental data that
the performance (i.e. decisions of instability prediction)
is not significantly affected due to this carefully deter-
mined reduction of the alphabet size in individual cases,
while there is a huge gain in computation time and
memory. The rationale is that a larger alphabet size
causes a larger set of PFSA states that give rise to
larger matrices to be handled by the real-time algorithm.

Upon selection of the alphabet size, each time series
is symbolized by MEP to construct D-Markov
machines and �D-Markov machines. For example,
D-Markov machines are constructed from the respect-
ive dominant pressure time series and �D-Markov
machines are constructed to capture the variations of
co-dependence between pairs of sensor time series data
as described in ‘‘STSA for instability prediction’’ sec-
tion. For state splitting,21 the parameter �spl ¼ 0:01 is
chosen as the stopping criterion and the state space is
constructed from 25% of the ensemble of time series.
Both D-Markov and �D-Markov entropies are com-
puted by making use of the remaining 75%.

The first row of Figure 8((a) partially premixed and
(b) well premixed fuel conditions) shows variations in
the rms value, Prms, of pressure of the most dominant

pressure sensor (P3) with increasing Re at constant
FFR ¼ 0:55mg=s. The second row of Figure 8 shows
the profiles of D-Markov and �D-Markov entropy
rates with increasing Re in the similar order as the
first row. It is observed that the �D-Markov entropy
rate directed from the chemiluminescence sensor (CH*)
to P3 drops with a slope that is significantly larger than
the increasing slope of Prms of pressure. This particular
characteristic of �D-Markov entropy rate captures
both phase synchronization among sensors (along the
abscissa Re) due to acoustic ‘‘lock-on’’ and loss of
chaos (e.g. limit cycle stabilization) in the combustion
process at the onset of instability. The �D-Markov
entropy rate from P2 to P3 and D-Markov entropy
rate of P3 behave similarly as they are situated close
to each other at the combustor. Entropy rates attain
small values in the instability regime as the dynamical
complexity of the data is low for large amplitude peri-
odic oscillations. Apparently, the entropy rates start to
increase again before the occurrence of flame blowout;
it is observed that the blowout occurs at lower entropy
rates in the partially premixed condition than that in
the well premixed condition. This is corroborated by
higher acoustic amplitudes at blowout for this case
than in the well premixed case, noted earlier. By using
a suitable threshold on entropy rates (e.g. �D-Markov
entropy rate directed from CH* to P3), instability can
be predicted earlier than Prms prediction with a smaller
probability of false alarms.

Figure 9 presents the characteristics of Prms and
D-Markov and �D-Markov entropy rates in a similar
way as in Figure 8, but with the exception that the
equivalence ratio � is reduced at a constant Re of
8857 and the AFR remains unchanged. It is observed
that both entropy rates decrease at a faster rate at the
onset of instability for well premixed condition than
that for partially premixed condition. Both entropy
rates perform well as a predictor of instability, espe-
cially, for well premixed condition, as the number of
precursor events (i.e. intermittence phenomenon) is
higher. For both premixing conditions, combustion
blowout occurs at a high entropy rate which implies
that the system has regained the original chaotic behav-
ior from the significantly more ordered oscillations
during instability.

Robustness of the �D-Markov entropy rates as an
instability measure has been examined with respect to
the data length of time series. Figure 10 shows that the
�D-Markov entropy rate from the chemiluminescence
sensor to P3 varies as a function of Re within a tight
bound for data over time periods ranging from 0.5 s to
3 s. A possible reason for relatively larger variations in
�D-Markov entropy rates (for different data lengths at
Re¼ 8857) is the presence of intermittent bursts of high
amplitude oscillation causing the onset of instability.
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Figure 9. For a constant Reynolds number Re of 8857 (and unchanged AFR) and with decreasing equivalence ratio �, changes in the

rms value (Pa) of pressure of the dominant pressure sensor (P1) at (a) partially premixed and (b) well premixed fuel conditions.

Variations of D-Markov entropy rates of time series from P1,�D-Markov entropy rates from the�D-Markov machine directed from P1

to P2 (downstream of P1) and from P1 to P3 at (c) partially premixed and (d) well premixed fuel conditions.
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Comparison with other state-of-the-art techniques

Multiple competing methods have been recently pro-
posed in the domain of data-driven instability predic-
tion. For example, Gotoda et al.14 have observed
variations of minimum permutation entropy41 as a
function of equivalence ratio � to detect the degree
of complexity of pressure time series at the onset of
combustion instability. They have also observed that
the dynamic behavior in combustion instability near
lean blowout exhibits a self-affine structure, which is
ascribed to fractional Brownian motion and undergoes
chaos by the onset of combustion oscillations with slow
amplitude modulation. Nair and Sujith9 have proposed
decay of generalized Hurst exponent to show the loss of
multifractal nature of combustion pressure time series
at the onset of instability, where a threshold of 0.1 has

been used for early prediction of instability. Nair
et al.16 have proposed another instability prediction
technique based on RQA that identifies the route of
intermittency punctuated with random bursts of high
amplitude oscillations. All these methods have been
validated on limited scenarios of premixing conditions
and protocols. Unni and Sujith42 have presented a mul-
tifractal description for lean blowout in combustors
with turbulent flow based on a unified framework
within which both thermo-acoustic instability and
blowout can be described.

Computational complexity. The processing time of the
aforementioned techniques is compared with that of
the proposed �D-Markov entropy rate as a function
of the time-series length. The comparison is carried out
in the MATLAB-2014 environment on a computation
platform of Dell Precision T3400 PC with Intel(R)
Core(TM) 2 Quad CPU Q9550 @ 2.83GHz
2.83GHz. The recurrence rate (RR)16 is computed to
serve as an instability measure from the pressure time
series; this information is embedded nonlinearly within
a 10-dimensional space. Before constructing the recur-
rence plot, the signal is downsampled corresponding to
a sampling frequency of 2:5 kHz that is identified via
Taken’s theorem38,39 with a time delay of 1 ms. The
threshold for calculating the RR is chosen to be slightly
higher than the size of the attractor obtained at the
lowest operational Reynolds number (Re)16 in each of
the experimentation protocols (see ‘‘Description of the
experimental apparatus’’ section). It is observed that
the time complexity of this method increases approxi-
mately quadratically with data length (i.e. Oðn2Þ with
the data length of n).

Figure 11(a) presents the processing time for calcu-
lating minimum permutation entropy14 from pressure
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Figure 11. Time complexity of different methods for early prediction of combustion instability: (a) data collected over time periods

varying from 0.3 s to 3 s; and (b) zoomed-in version where the data is from 0.3 s to 1 s.
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time series, which varies linearly with data length. The
minimum permutation entropy is obtained by (multiple
times with varying order) usage of a fast window-based
algorithm43 on pressure data that are downsampled to
5 kHz with an embedding delay of 1ms similar to
Gotoda et al.14 The time complexity for computation
of both Hurst exponent9 and �D-Markov entropy rate
(see Instability prediction by D-Markov and �D-
Markov entropy rates subsection) vary linearly with
data length and have very small slopes. The mean of
the Hurst exponent of order 2 is estimated here with a
range of time scales ranging from 15 ms to 30 ms (i.e.
2–4 full cycles). It takes around � 100 ms to calculate
�D-Markov entropy rate from a 3-s (i.e. 30,000 long)
time series, which is slightly larger than that of Hurst
exponent; such a small computational time makes the
method potentially suitable for real-time combustion
control. Figure 11(b) shows a zoomed-in portion of
Figure 11(a) to highlight the fact that, for short data
over � 0:3 s, the processing time of different methods
appears to be comparable; however, they tend to
diverge as the data length is increased by a small

amount. The processing time for �D-Markov entropy
rate can be reduced substantially from the presented
value if these models can be generated offline at differ-
ent operating conditions.

Performance evaluation. As seen in Figure 11, the time
complexities of Hurst exponent and �D-Markov
entropy rate are comparable. Figure 12 presents vari-
ations of Hurst exponent and �D-Markov entropy rate
as a function of Re at the partially premixed condition
(X1 ¼ 90mm) for constant FFR of 0:55mg=s. It is
observed that �D-Markov entropy rate demonstrates
a monotonic nature starting at unity as Re is varied
from stability to instability unlike the Hurst exponent
which is fluctuating before the onset of instability. If a
threshold of 0.9 is applied on �D-Markov entropy rate,
it detects the onset of instability as early as Hurst expo-
nent does with a threshold of 0.1.9 Figure 13 presents
the variation of Hurst exponent and �D-Markov
entropy rate as a function of � at partially premixed
condition (X1 ¼ 90mm) for constant Re of 8857. It is
apparent from the characteristics of the Hurst exponent
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Figure 12. For constant fuel flow rate (FFR) of 0:55 mg=s and with increasing Re, (a) variation of Hurst exponent for the dominant

pressure sensor P3 and (b) variation of �D-Markov entropy rates obtained from the chemiluminescence sensor (CH
, upstream to P3)

to P3 at partially premixed condition; the threshold is set at 0.9 for early detection of onset of instability.
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that the threshold parameter should be changed from
0.1 to some value around 0.05 to reduce the probability
of false alarms. For �D-Markov entropy rate from P1

to P3 (which is farthest downstream of P1), the thresh-
old of 0.9 at constant FFR can be applied for early
detection of onset of instability. With this same thresh-
old for different premixing levels, �D-Markov entropy
rate is capable of detecting an onset of instability with
similar slopes for changes in parameters (e.g. Re and �)
as RR obtained by the RQA method16 and with super-
ior performance than that from the minimum permu-
tation entropy method.14

Robustness to sensor noise. This subsection compares the
robustness of different statistical measures for instabil-
ity prediction to different level of sensor noise along
with the proposed measure based on �D-Markov
entropy rate. The signal-to-noise ratio (SNR) is varied
by adding white Gaussian noise with a (power-level)
SNR of certain dB compared to the signal power of
0 dB, which is a significantly weaker signal relative to
the pressure signal at a stable state of operation.

This procedure of noise incorporation realistically
simulates the presence of low-level sensor noise. It is
observed from Figure 14(a) and (b) that the RR and
entropy of the probability distribution of diagonal
length, obtained by the RQA method,16drop close to
zero well within the range of Re¼ 10, 000; this would
yield false alarm rates of instability for SNR of � 30
dB, when the system is actually far from instability.
This happens due to the sensitivity of the measure to
the threshold for RQA at different noise levels.
Figure 14(c) shows that the variance of minimum per-
mutation entropy14 at the onset (e.g. Re in the range of
8000–10,000) of instability is large, making it difficult to
put a uniform threshold on this particular measure for
early detection. Figure 14(d) presents the proposed
measure based on �D-Markov entropy rate and it
shows negligible variance across multiple SNRs. The
onset of instability can be predicted with a threshold
of 0.9 uniformly for all noise levels shown here. The
rationale for high robustness of the proposed measure
can be attributed to inherent stability of STSA to vary-
ing noise.44

0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0

0.2

0.4

0.6

0.8

1

Re

R
ec

ur
ra

nc
e 

R
at

e 
SNR = 30
SNR = 40
SNR = 50

0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0

1

2

3

4

5

6

7

Re

en
tro

py
 (s

) f
ro

m
 R

Q
A

SNR = 30
SNR = 40
SNR = 50

0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0.4

0.45

0.5

0.55

0.6

0.65

Re

P
er

m
ut

at
io

n 
E

nt
ro

py

SNR = 30
SNR = 40
SNR = 50

0.6 0.8 1 1.2 1.4 1.6 1.8
x 104

0.4

0.5

0.6

0.7

0.8

0.9

1

Re

N
or

m
al

iz
ed

 E
nt

ro
py

 R
at

e

SNR = 30
SNR = 40
SNR = 50

(a) (b)

(c) (d)

Figure 14. For constant fuel flow rate (FFR) of 0:55 mg=s and with increasing Re, variation of (a) the recurrence rate (RR) of
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Summary, conclusions, and future work

This paper proposes a fast nonlinear tool for early
detection of the onset of thermo-acoustic instability in
combustion systems. The underlying algorithm is built
upon the concepts of STSA17 with generalized
D-Markov machines.22,21 An information-theoretic
measure of combustion instability, which models the
spatio-temporal co-dependence among heterogeneous
(e.g. pressure and chemiluminescence) sensors, is con-
structed to capture the precursors before visible appear-
ance of instability. A series of experiments with
different protocols (e.g. varying Reynolds number
(Re) at constant FFR, varying equivalence ratio � at
constant AFR) have been conducted on a swirl-stabi-
lized combustor (see ‘‘Description of the experimental
apparatus’’ section) at different premixing conditions
for testing and experimental validation of the proposed
method of instability prediction. Real-time modeling of
D-Markov and �D-Markov machines has been per-
formed on a part of the acquired data to evaluate the
corresponding entropy rates of the complete time series.

It is observed that the state complexity of the
D-Markov machines starts dropping drastically as the
instability creeps in. It is also observed that the vari-
ations in the�D-Markov entropy rates between farthest
sensors are monotonic in nature before the onset of
instability for all protocols of the experiment. The pro-
posed measure of instability is found to be robust rela-
tive to shorter lengths of time-series data, which would
be useful for real-time combustion control. The pro-
posed method has been compared with other state-of-
the-art techniques (e.g. minimum permutation
entropy,41 RQA-based measures,45 and Hurst expo-
nent9) for time complexity and performance in terms
of early detection of instability precursors. The results
of comparison show that the �D-Markov entropy rate-
based method is among the fastest in the lot as it can
detect the onset of instability early enough with a generic
threshold across all protocols. The proposed measure
also exhibits robustness to varying level of sensor noise.

While there are many other areas yet to be addressed
in this context, a few topics of future research are deli-
neated below.

. Extension of the proposed method of instability pre-
diction to other types of combustors operating under
different kinds of protocols.

. More rigorous analysis of intermittence-based route
to instability via short-time STSA.46

. Design of experiments with varying Re or � for a
better understanding of the transient behavior at the
onset of instability.

. Investigation of the behavior of flame oscillations
under partially premixed fuel-air inputs to develop
stabilization algorithms;

. Development of a systematic approach for analysis
of data-driven instability precursors from high-speed
images and particle image velocimetry (PIV) data.

. Possible extension to decision and control of com-
bustion instability based on the proposed informa-
tion-theoretic metrics.
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