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Dynamic Data-Driven Design of
Lean Premixed Combustors for
Thermoacoustically Stable
Operations
Prediction of thermoacoustic instabilities is a critical issue for both design and operation
of combustion systems. Sustained high-amplitude pressure and temperature oscillations
may cause stresses in structural components of the combustor, leading to thermomechan-
ical damage. Therefore, the design of combustion systems must take into account the
dynamic characteristics of thermoacoustic instabilities in the combustor. From this per-
spective, there needs to be a procedure, in the design process, to recognize the operating
conditions (or parameters) that could lead to such thermoacoustic instabilities. However,
often the available experimental data are limited and may not provide a complete map of
the stability region(s) over the entire range of operations. To address this issue, a Bayes-
ian nonparametric method has been adopted in this paper. By making use of limited
experimental data, the proposed design method determines a mapping from a set of oper-
ating conditions to that of stability regions in the combustion system. This map is
designed to be capable of (i) predicting the system response of the combustor at operat-
ing conditions at which experimental data are unavailable and (ii) statistically quantify-
ing the uncertainties in the estimated parameters. With the ensemble of information thus
gained about the system response at different operating points, the key design parameters
of the combustor system can be identified; such a design would be statistically significant
for satisfying the system specifications. The proposed method has been validated with
experimental data of pressure time-series from a laboratory-scale lean-premixed swirl-
stabilized combustor apparatus. [DOI: 10.1115/1.4037307]

Keywords: dynamic data-driven application, symbolic dynamics, combustion instability,
uncertainty quantification

1 Introduction

Thermoacoustic instabilities result from the coupling between
unsteady heat release rate and acoustic pressure fluctuations inside
the combustion chamber [1,2]. Design optimization of combustors
is a challenging problem due to the difficulties in modeling the
nonlinear dynamics involved in thermoacoustic instabilities.
These difficulties limit the application of model-based design opti-
mization to combustion systems that involve several input param-
eters (e.g., inlet velocity of air, air-fuel ratio, premixing level, and
combustor geometry) [3–5]; these parameters potentially affect
the combustion dynamics. Examples are existence of bifurcations
in the dynamic behavior of combustors and extremely high sensi-
tivity of the combustor behavior to even small changes in some of
the design parameters. On the other hand, it is economically infea-
sible and unrealistic to have sensors for online measurements of
all dynamic variables involved in combustion and to conduct
experiments at a sufficiently dense set of operating points. Tradi-
tional design of combustion systems has focused on issues like
efficiency, power generation, and emission [3,4]. However, with
the implementation of low emission technologies like lean pre-
mixed combustion, combustors have to operate in regimes where
they are prone to thermoacoustic instabilities. The instability
problems have been aggravated by use of newer grades of fuels
like biofuels and hydrogen-based fuels like synthetic gas, because

these fuels have energy content and heat release pattern, which
are widely different from those of conventional hydrocarbon fuels.
Consequently, the behavior of the system becomes significantly
altered in terms of phenomena like occurrence of instabilities,
blowout, and flashback. Thermoacoustic instability is also
encountered in rocket engines.

The current state-of-the-art of mitigating combustion instabil-
ities at the design stage itself mostly involves introduction of pas-
sive devices, such as quarter wave tube arrangement [6] and
perforated liners [7]. These devices improve the stability of the
system by damping the oscillations in the combustion chamber.
However, the use of passive devices can be only partially success-
ful in mitigating different types of anomalous behavior as these
passive devices are not designed on the basis of actual perform-
ance of the combustor. An alternative approach that has been gain-
ing popularity is the implementation of active control devices/
mechanisms, where appropriate actions are initiated like injection
of secondary fuel [8–10]. These strategies are primarily designed
to alter the phase difference between the pressure and heat-
release-rate oscillations. Due to the complexity of the physics
involved, control algorithms often use data-driven methods. How-
ever, implementation of these strategies in real time is challenging
as the underlying dynamics is extremely fast (e.g., in the order of
kilohertz for some of the circumferential modes of instability in
gas turbine afterburners). Another method of avoiding combustion
instabilities is identification of the stable operating zone at the
design stage itself and limiting the parameter space of the design
variables to the stable operating zone only. The most commonly
followed approach for such predictive modeling is the network
model [11], where the combustor is resolved into a network of
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interconnected simpler elements and the response of each compo-
nent to specific units is studied. To account for the complex flame
dynamics, which is highly nonlinear, the linear transfer function
approach is generalized to development of “flame describing
function” [12]. The flame describing function, which describes an
input–output relation for the flame element, is usually derived
from experiments or computational fluid dynamics analysis. How-
ever, the network model and the flame describing function, in par-
ticular, have limitations in predicting different dynamic regimes
of a combustor. With the availability of increasing computing
power, high fidelity computer simulations have also been used for
predicting the dynamic behavior [13]. Nevertheless, these simula-
tions can be too time-consuming and computationally expensive
to use as a design tool.

An alternative approach for combustor design has been pro-
posed in this paper. Data generated from limited number of runs
under diverse operating conditions have been used to generate the
knowledge base about the system dynamics, which has then been
used for designing the combustor system. Although such a data-
driven approach has been used quite extensively for characterizing
and controlling the combustor dynamics [14,15], dynamic data-
driven approach for designing combustors from the viewpoint of
thermoacoustic stability is rather uncommon.

Recently, the concept of dynamic data-driven application sys-
tems (DDDAS) [16] has found its way into design methodologies
due to the advent of fast sensing and computational technologies
as well as due to the inherent flexibility of DDDAS. Both quanti-
tative and qualitative data have been used in various fields of
design, where a given software or program analyzes the collected
data to produce a decision that would aid in the design of the sys-
tem under consideration. Especially the dynamic characterization
of the system evolution allows for continual optimization of the
design space as new data become available, thus enhancing the
overall design quality. In particular, the notion of DDDAS has
been used in the field of combustion monitoring and control. In a
recent work, DDDAS has been used for the prediction of instabil-
ity and flame lean-blow-out in combustors [14,15] using symbolic
time series analysis (STSA) [17]. More recently, such an imaging-
based analysis has also been reported using neural networks,
where flame images have been used to detect the onset of combus-
tion instability [18] also using STSA.

From the previously mentioned perspectives, this paper pro-
poses a novel method of combustor design that is built upon the
concept of DDDAS [16], instead of completely relying on model-
based design tools. The proposed design method only needs lim-
ited amounts of process data in the form of time series and does
not require any detailed knowledge of the underlying combustion
dynamics. Given the information in the form of time series data at
certain operating conditions, a Bayesian nonparametric statistical
method has been adopted to predict the system behavior for oper-
ating conditions at which data may not be available. In addition,
the algorithm also quantifies the confidence in the estimate of the
system response. The design algorithm produces a mapping from
a set of operating conditions to that of stability regions in the com-
bustion system. Once this map is generated, combustor designers
can use it for predicting the system response by statistically quan-
tifying the uncertainties at operating conditions for which experi-
mental data may not be available. This information facilitates the
identification of the combustion system parameters, which will
allow the design to be statistically significant in terms of satisfy-
ing the system specifications.

In the present work, experimental data from a laboratory-scale
swirl-premixed combustor apparatus have been used to generate a
stability map in the parameter space. To do this, time series data
of pressure oscillations at different combinations of combustor
length, equivalence ratio (/), and inlet flow velocities have been
considered. Using the limited data at hand, the devised algorithm
creates a stability map, which can then predict the system
response for an unknown set of parameters of combustor length,
equivalence ratio, and inlet flow velocities. This provides the

designer with an estimate of the probability of the system at new
parameters to become unstable, without the need for actual
experimentation.

The objective here is prediction of combustion instabilities in
order to prevent serious structural damage in the combustor.
Hence, the user must design a combustor with a smaller probabil-
ity of becoming unstable, which translates to the following two
requirements:

(1) Extraction of a feature that is highly sensitive to deviations
in the underlying state of the system from the nominal state.
Then, even a small deviation in the system behavior from
the nominal state would be manifested as a large feature
divergence.

(2) Quantification of the uncertainty in the estimate of the sys-
tem stability for unknown parameters (e.g., combustor
length). This would help the user to make the parameter
choice, which would have a significantly reduced probabil-
ity of resulting in an unstable system.

From the previously mentioned perspectives, major contribu-
tions and innovations of the paper are summarized below:

(1) Development of a dynamic data-driven method for combus-
tor design, based on STSA [17,19], which satisfies the
above two requirements.

(2) Validation of the above method on experimental data from
a swirl-stabilized combustor apparatus [20].

The paper is organized in six sections including the abstract and
introduction. Section 2 describes the combustor apparatus that has
been used to generate time series data. Section 3 develops the
proposed dynamic data-driven algorithm for combustor design.
Section 4 describes the procedure and results of validation of the
proposed algorithm on the experimental data. Section 5
summarizes the work and delineates possible directions for future
research.

2 Description of the Experimental Apparatus

A swirl-stabilized, lean-premixed, laboratory-scale combustor
has been used for validation of the proposed algorithm with exper-
imental data. Figure 1 depicts a schematic diagram of the
variable-length combustor apparatus [20], consisting of an inlet
section, an injector, a combustion chamber, and an exhaust sec-
tion. There is an optically accessible quartz section followed by a
variable-length steel section.

High-pressure air is delivered to the apparatus from a compres-
sor system after passing through filters to remove any liquid or
particles that might be present. The air supply pressure is set to
180 psig (1.338 MPa) using a dome pressure regulator. The air is
preheated to a maximum temperature of 250 �C by an 88 kW elec-
tric heater. The fuel for this study is natural gas (approximately
95% methane), which is supplied to the system at a pressure of
200 psig (1.475 MPa). The flow rates of the air and natural gas are
measured by thermal mass flow meters. The desired equivalence
ratio and mean inlet velocity are set by adjusting the flow rates.

Synchronized pressure time series have been collected under
different operating conditions, by varying the inlet velocity,
equivalence ratio, and combustor length. Figure 2 displays typical
profiles of pressure oscillations over a time window of 30 ms to
unambiguously present the distinctive characteristics of stable and
unstable signals around their respective mean values. Further
details on the analysis of experimental data are provided in Sec. 4.

3 Description of the Proposed Design Algorithm

The first step in the proposed dynamic data-driven algorithm
for combustor design involves feature extraction from the pressure
time series collected under different operating conditions. The
features encode the temporal dynamics of the combustion system.
The second step of the algorithm involves inferring the relation
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between the operating conditions and the corresponding system
response, represented in the form of a function of features
extracted from the corresponding pressure time series. Then, using
the inferred relation, the distribution of the system response is pre-
dicted for each operating condition for which experiments have
not been conducted. Therefore, the user now has at his/her dis-
posal the ensemble of information, representing the system
response at every point in the space of operating conditions. With
this information, the user can then determine the parameters of the
combustor to be constructed, which would exhibit the desired
response. Section 3.1 describes the feature extraction procedure in
detail using the concept of probabilistic finite state automata

(PFSA). Section 3.2 describes Bayesian nonparametric regression
(i.e., Gaussian process (GP) regression) used for determining the
relation between operating conditions and system response in
detail. Section 3.3 develops the combustor design methodology.

3.1 Feature Extraction From Time Series. This subsection
describes the procedure of feature extraction from time series data
by using the concepts of symbolization and finite state automata
[21]. First, each time series in an ensemble is discretized into a
symbol string [22]. Then, a D-Markov machine [23,24], which
belongs to a special class of finite-state automata (PFSA), is con-
structed from each of these symbol strings to extract the feature
that encodes the dynamics of the time series under consideration.

3.1.1 Symbolization of Time Series. Symbolization requires
partitioning (also known as quantization) of the time series
[17,19,25], where the signal space is partitioned into a finite num-
ber of cells that are labeled as symbols, i.e., the number of cells is
identically equal to the cardinality jRj of the (symbol) alphabet R.
If the value of time series at a given instant is located within a par-
ticular cell, then it is coded with the symbol associated with that
cell. In this way, a symbol string is generated from the (finite-
length) time series. Details are reported in Refs. [23] and [24].
The ensemble of time series data is partitioned by using a parti-
tioning tool, called maximum entropy partitioning [26], that maxi-
mizes the entropy of the generated symbols; therefore, the
information-rich cells of a data set are partitioned finer and those
with sparse information are partitioned coarser (i.e., each cell con-
tains approximately equal number of data points). The choice of
alphabet size jRj largely depends on the specific data set and the
allowable loss of information [24].

3.1.2 Symbolic Time Series Analysis (STSA). This subsection
briefly describes the underlying concept of STSA upon which the
proposed dynamic-data-driven tool is constructed for identifica-
tion of combustor parameters; STSA encodes the behavior of
(possibly nonlinear) dynamical systems from the observed time
series by symbolization and construction of state machines (i.e.,
PFSA) [23]. This is followed by computation of the state emission
matrices that are representatives of the evolving statistical charac-
teristics of the dynamical system.

The core assumption in the STSA analysis for construction of
PFSA from symbol strings is that the symbolic process under both
nominal and off-nominal conditions can be approximated as a
Markov chain of order D, called the D-Markov machine, where D
is a positive integer. While the details of the D-Markov machine
construction are reported in Refs. [23] and [24], the pertinent defi-
nitions and their implications are succinctly presented later.

DEFINITION 4.1. (Symbol Block) A symbol block, also called a
word, is a finite-length string of symbols si belonging to the alpha-
bet R, where the length of a word w¢s1s2 � � � s‘ with si � R is
jwj ¼ ‘, and the length of the empty word � is j�j ¼ 0. The param-
eters of deterministic finite-state automata (DFA) are extended
as:

Fig. 1 Schematic diagram of the combustion apparatus

Fig. 2 Examples of pressure signals in the combustor: (a) sta-
ble signal oscillations and (b) unstable signal oscillations
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(1) The set of all words constructed from symbols in R, includ-
ing the empty word �, is denoted as R?,

(2) The set of all words, whose suffix (respectively, prefix) is
the word w, is denoted as R?w (respectively, wR?).

(3) The set of all words of (finite) length ‘, where ‘> 0, is
denoted as R‘.

DEFINITION 4.2. A deterministic finite-state automaton (DFSA) G
is a triple R;Q; dð Þ [27], where:

(1) R is a (nonempty) finite alphabet with cardinality jRj;
(2) Q is a (nonempty) finite set of states with cardinality jQj;
(3) d : Q� R! Q is the state transition map.

DEFINITION 4.3. A probabilistic finite-state automaton (PFSA) is
constructed on the algebraic structure of deterministic finite state
automata (DFA) G ¼ R;Q; dð Þ as a pair K¼ (G, P), i.e., the
PFSA K is a four-tuple K ¼ R;Q; d;Pð Þ [23,24], where:

(1) R is a nonempty finite set, called the symbol alphabet, with
cardinality jRj <1;

(2) Q ¼ fq1; q2;…; qjQjg is the state set with cardinality

jQj � jRjD, i.e., the states are represented by equivalence
classes of symbol blocks of maximum length D correspond-
ing to a symbol sequence S.

(3) d : Q� R! Q is the state transition mapping, which
generates the symbol sequences;

(4) P : Q� R! 0; 1½ � is the morph matrix of size jQj � jRj;
the ijth element P(i, j) of the matrix P denotes the proba-
bility of finding the symbol rj at next time step while mak-
ing a transition from the state qi.

3.1.3 D-Markov Modeling. This subsection introduces a spe-
cial class of PFSA, called D-Markov machine, which has a simple
algebraic structure and is computationally efficient for construc-
tion and implementation [23,24].

DEFINITION 4.4. (D-Markov) A D-Markov machine [23] is a
PFSA in which each state is represented by a (nonempty) finite
string of D symbols where

(1) D, a positive integer, is the depth of the Markov machine;
(2) Q is the finite set of states with cardinality jQj � jRjD. The

states are represented by equivalence classes of symbol
strings of maximum length D, and each symbol in the sting
belongs to the alphabet R;

(3) d: Q�R! Q is the state transition map that satisfies the
following condition if jQj ¼ jRjD: There exist a, b � R and
s � R? such that d(as, b)¼ sb and as, sb � Q.

Remark 4.1. It follows from Definition 4.4 that a D-Markov
chain is treated as a statistically stationary stochastic process
S ¼ � � � s�1s0s1 � � �, where the probability of occurrence of a new
symbol depends only on the last D symbols, i.e., P snj � � � sn�D½
� � � sn�1� ¼ P snjsn�D � � � sn�1½ �.

The construction of a D-Markov machine is based on (i) state
splitting that generates symbol blocks of different lengths accord-
ing to their relative importance and (ii) state merging that assimi-
lates histories from symbol blocks leading to the same symbolic
behavior. Words of length D on a symbol string are treated as the
states of the D-Markov machine before any state-merging is exe-
cuted. Thus, on an alphabet R, the total number of possible states
becomes less than or equal to jRjD; and operations of state merg-
ing may significantly reduce the number of states [24]. However,
no state splitting or state merging is required for D¼ 1, which is
the simplest configuration of a D-Markov machine.

The PFSA states represent different combinations of blocks of
symbols on the symbol string. In the graph of a PFSA, the direc-
tional edge (i.e., the emitted event) that interconnects a state (i.e.,
a node) to another state represents the transition probability
between these states. Therefore, the “states” denote all possible
symbol blocks (i.e., words) within a window of certain length, and
the set of all states is denoted as Q ¼ fq1; q2;…; qjQjg and jQj is

the number of (finitely many) states. The procedure for estimation
of the emission probabilities is presented next.

Given a (finite length) symbol string S over a (finite) alphabet R,
there exist several PFSA construction algorithms to discover the
underlying irreducible PFSA model K of S. These algorithms start
with identifying the structure of the PFSA K¢ Q;R; d;pð Þ. To esti-
mate the state emission matrix, a jQj � jRj count matrix C is con-
structed and each element ckj of C is computed as: ckj¢1þ Nkj,
where Nkj denotes the number of times that a symbol rj is gener-
ated from the state qk upon observing the symbol string S. The
maximum a posteriori probability estimates of emission probabil-
ities for PFSA K are computed by frequency counting as

p rjjqk

� �
¢

ckjP
‘ ck‘
¼ 1þ Nkj

jRj þ
P

‘ Nkj
(1)

The rationale for initializing each element of the count matrix C
to 1 is that if no event is generated at a state q � Q, then there
should be no preference to any particular symbol and it is logical
to have p rjqð Þ ¼ 1=jRjð Þ 8r 2 R, i.e., the uniform distribution of
event generation at the state q. The above procedure guarantees
that the PFSA, constructed from a (finite-length) symbol string,
must have an (elementwise) strictly positive emissivity map P.

Having computed the emission probabilities p rjjqk

� �
for j 2

f1; 2;…; jRjg and k 2 f1; 2;…; jQjg, the estimated jQj � jRjð Þ
emission probability matrix of the PFSA is obtained as

P¢

p r1jq1ð Þ … p rjRjjq1

� �
� . .

.
�

p r1jqjQj
� �

� � � p rjRjjqjQj
� �

2
664

3
775 (2)

Bahrampour et al. [25] presented a comparative evaluation of
Cepstrum, principal component analysis (PCA) and STSA as fea-
ture extractors for target detection and classification. The underly-
ing algorithms of feature extraction were executed in conjunction
with three different pattern classification algorithms, namely, sup-
port vector machines (SVM), k-nearest neighbor, and sparse rep-
resentation classifier. The results of comparison show consistently
superior performance of STSA-based feature extraction over both
Cepstrum-based and PCA-based feature extraction in terms of
successful detection, false alarm, and wrong detection and classifi-
cation decisions. Similar results on superior performance of STSA
over PCA have been reported by Mallapragada et al. [28] for
robotic applications. Rao et al. [29] reported a review of STSA
and its performance evaluation relative to other classes of pattern
recognition tools, such as Bayesian filters and artificial neural
networks.

Section 3.2 describes the methodology for determining the
mapping between operating conditions and system response as a
function of the estimated emission probability matrix P that is
taken to be the extracted feature.

3.2 Gaussian Process Regression. This section describes the
technique used for determining the relation between operating
conditions and the system responses as a function of the features
extracted in Sec. 3.1. This relation is then used for predicting the
responses for operating conditions for which experiments have
not been conducted.

Given a set of operating conditions and the corresponding
continuous-valued system responses, there exist several regression
algorithms in the machine learning literature (e.g., see Ref. [30]),
which infer the underlying relation between the conditions and
response, under different assumptions on the characteristics of the
relation. The inferred relation can then be used to predict the
response of an unseen system condition (i.e., whose response is
unknown). In contrast, Gaussian process (GP) regression [31] is a
nonparametric method that can model arbitrary relations between
the condition and response without making any specific
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assumptions on the relation. In addition, most regression algo-
rithms only provide point estimates of the response, but they do
not quantify the confidence in that estimate. Being a Bayesian
method, GP also quantifies the uncertainties in the predictions
resulting from possible measurement noise and errors in the
parameter estimation procedure. Hence, GP regression has been
adopted in this paper to infer the relation between the operating
conditions and the corresponding system response.

3.2.1 Theory of Gaussian Process Regression. This subsec-
tion succinctly presents the underlying theory of Gaussian process
(GP) regression. Further details are available in standard literature
(e.g., see Ref. [31]).

A stochastic process is a collection of random variables,
fn tð Þ : t 2 Tg, where T is an index set. A Gaussian process is a sto-
chastic process such that any finite collection of random variables
has a multivariate jointly Gaussian distribution. In particular, a
collection of random variables fn tð Þ : t 2 Tg is said to be drawn
from a Gaussian process with mean function m(�) and covariance
function k(�, �) if, for any finite set of elements t1,…, tl � T, the
corresponding random variables n(t1),…, n(tl) have multivariate
jointly Gaussian distribution

n t1ð Þ
::

n tlð Þ

2
4

3
5 � N

m t1ð Þ
::
m tlð Þ

2
4

3
5; k t1; t1ð Þ…k t1; tlð Þ

::
k tl; t1ð Þ…k tl; tlð Þ

2
4

3
5

0
@

1
A

0
@ (3)

where m tð Þ¢E n tð Þ½ � is the mean function and k t; t0ð Þ
¢E n tð Þ � m tð Þð Þ n t0ð Þ � m t0ð Þ

� �� �
is the covariance function.

Equation (3) is denoted in vector notation as: n � GP m;K
� �

. The

GP regression algorithm is now described below.
Let X¼ {xi} and Y ¼ fyig; i ¼ 1;…; n, be the training data set,

where X denotes a set of operating conditions and Y denotes the
corresponding set of system responses. The objective here is to
determine the relation between X and Y so that, given an unknown
operating condition x, the corresponding system response y can be
predicted. In the GP regression algorithm, it is assumed that
y¼ n(x)þ e, where e is independent and identically distributed
(iid) (additive) noise, N(0, r2). That is, the response y is assumed
to be a stochastic process that is a function of the operating condi-
tion x with additive noise. Then, a zero-mean Gaussian process
prior GP 0;K

� �
is assumed for the function n. By the property of

GP in Eq. (3)), the marginal distribution over any set of operating
conditions belonging to X must be multivariate jointly Gaussian.
Thus, given a set {xk1, xk2,…xkm}, the corresponding {n(xk1),
n(xk2),…n(xkm)} has a multivariate jointly Gaussian distribution.
Hence, by concatenating the training and testing sets of operating
conditions as: [X, Xtest], the marginal distribution of their respec-
tive system responses [n(X), n(Xtest)] is also multivariate jointly
Gaussian. Thus, the training and testing responses are jointly dis-
tributed as

n Xð Þ
n Xtestð Þ

� �
� N 0;

K X;Xð Þ K X;Xtestð Þ
K Xtest;Xð Þ K Xtest;Xtestð Þ

� �� 	
(4)

where n Xð Þ¼ n x1ð Þ;…;n xnð Þ
� �0; n Xtestð Þ¼ n xtest

1

� �
;…;n xtest

m

� �h i0
;

K X;Xtestð Þ 2Rn�m such that K X;Xtestð Þð Þij¼ k xi;x
test
j


 �
; K X;Xð Þ 2

Rn�n such that K X;Xð Þð Þij¼ k xi;xjð Þ; K Xtest;Xtestð Þ 2Rm�m such

that K Xtest;Xtestð Þð Þij¼ k xtest
i ;xtest

j


 �
; K Xtest;Xð Þ 2Rm�n such that

K Xtest;Xð Þð Þij¼ k xtest
i ;xj

� �
.

Since the system responses Y and Ytest are contaminated with

additive iid Gaussian noise, i.e.,
e

etest

� �
� N 0;

r2I 0

0 r2I

� �� 	
where e ¼ e1;…; en

� �0
; and etest ¼ e1

test;…; em
test

� �0
, it follows that

Y

Ytest

" #
¼

n

ntest

" #
þ

e

etest

" #

�N 0;
K X;Xð Þ þ r2I K X;Xtestð Þ
K Xtest;Xð Þ K Xtest;Xtestð Þ þ r2I

" # !
(5)

where Ytest ¼ ytest
1 ;…; ytest

m

� �0
. The rules for conditioning on Gaus-

sians, YtestjY � N ltest;Rtest
� �

yield

ltest ¼ K Xtest;X
� �

K X;Xð Þ þ r2I
� ��1

Y (6)

Rtest ¼ K Xtest;Xtest
� �

þ r2I

�K Xtest;X
� �

K X;Xð Þ þ r2I
� ��1

K X;Xtest
� �

(7)

Thus, the algorithm predicts the mean and variance of the system
response for every test condition. Instead of a zero-mean prior
(i.e., E[n(x)]¼ 0), a mean function m(x) could also be incorpo-
rated into the prior. In such a case

ltest ¼ m Xtestð Þ þ K Xtest;X
� �

K X;Xð Þ þ r2I
� ��1

Y � m Xð Þð Þ (8)

instead of Eq. (6), and Rtest remains unchanged in Eq. (7).

3.3 Development of the Design Methodology. This subsec-
tion develops the combustor design methodology by combining
the algorithms, described in Secs. 3.1 and 3.2. Figure 3 presents a
flowchart of the proposed combustor design algorithm, while
Sec. 4 explains the details along with a discussion on experimental
results.

4 Experimental Validation of the Design Method

This section validates the algorithms, developed in Sec. 3, on
the data collected from an experimental apparatus that is
described in Sec. 2. Synchronized time series data of pressure
oscillations have been collected under different operating condi-
tions, by varying the following parameters:

(1) Inlet velocity from 25 to 50 m/s in steps of 5 m/s.
(2) Equivalence ratio (/) as 0.525, 0.550, 0.600, and 0.650.
(3) Combustor length from 25 to 59 in in steps of 1 in.

Time series data of pressure oscillations have been collected at
a sampling rate of 8192 Hz for each of the above 6� 4� 35¼ 840
distinct operating conditions. The time span of data collection has
been 8 s (i.e., 65,536 measurement data per channel) for each time
series, which is within the safe limit of operation of the combustor
apparatus and which is long enough to provide sufficient informa-
tion for statistical analysis. The root-mean-square (rms) value,
Prms, of pressure has been calculated for each time series. For
this data set, an observed ground truth is that all systems with
Prms	 0.07 psi are unstable, while all those with Prms< 0.07 psi
are stable. Although Prms appears to serve as a good indicator of
stability in this set of experiments, a natural question arises
whether Prms could be universally adopted as a feature. Since
Prms is the standard deviation of the signal in the statistical sense,
it is sensitive to noise. Therefore, Prms may not be an ideal choice
as a feature, because of its lack of robustness to measurement
noise.

In the design of a real-life combustor, sufficiently long dura-
tions of data acquisition might not be feasible due to various chal-
lenges inflicted on the system performance and operability (e.g.,
high-amplitude pressure and temperature oscillations, and local
air–fuel ratio variations leading to flame blowout) specifically dur-
ing combustion instabilities. Figure 4 shows representative plots
of Prms calculated for different durations of time series in incre-
ments of 0.1 s for (a) a stable signal and (b) an unstable signal. It
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is shown in Fig. 4(a) that the threshold Prms of 0.07 psi is
exceeded at time series window lengths ranging from about 2.5 s
to 4 s. Although Prms over the entire 8 s window is less than the
threshold of 0.07 psi, an online stability criterion based on solely a
Prms threshold may generate false alarms for those durations,
where the threshold is exceeded. Similar conclusions can be
drawn from Fig. 4(b) where, for an actually unstable signal, Prms
drops below 0.07 psi within several time windows between 1 s to
3 s and close to 4 s. In both cases, a hard Prms threshold is likely
to yield misclassifications.

Remark 5.1. In general, stability decisions made on Prms-based
hard thresholding would not be robust relative to measurement
noise. In contrast, symbolic dynamics-based decisions are
expected to be significantly more robust as established by Biem
Garben [19], which is the approach taken for feature extraction in
this design algorithm (see Sec. 3).

Next, it is demonstrated how the features extracted from time
series can be used with confidence at relatively shorter time win-
dows provided that they are sufficiently long to capture the system
dynamics.

Different durations of time series data (i.e., 2 s, 4 s, 6 s, and 8 s)
have been considered for feature extraction. Approximately 80%
of the feature vectors that are extracted from the corresponding
pressure time series (see Sec. 3.1) along with their true stability
labels have been used for training a binary classifier in the setting
of SVM [30,32]. The trained classifier is tested to predict the sta-
bility labels with the remaining 20% of the data. The D-Markov
machine which yields the best classification accuracy by using a
radial basis function kernel-based SVM classifier has been chosen
for each duration of data under consideration.

The classification error is defined in terms of the percent of mis-
classified samples among the test data. Table 1 lists the classifica-
tion accuracy using D-Markov machines, with D¼ 1, for time
series data of different window lengths at a fixed sampling rate. It
is shown in Table 1 that the classification accuracy is very high
and they are comparable for all different durations under
consideration.

4.1 Results and Discussion. The objective in this analysis is
to determine the degree of stability/instability of the combustion
system at different combustor lengths for a given inlet velocity u
and equivalence ratio /, which would then be used for designing
the combustor. Accordingly, the entire data set has been divided
into subsets of constant inlet velocity and equivalence ratio.
Hence, each subset consists of a set of combustor lengths and the
corresponding pressure time series. The data in each subset are
first randomly divided into training and the testing sets in the pro-
portion of 80% and 20%, respectively. In the training phase, suffi-
ciently long (e.g., 8 s duration) time-series data have been collected
for each operating condition. Therefore, the most stable condition is
determined based on Prms, which is calculated for each time series.
The combustor length (in the training set) with the corresponding
lowest Prms is taken to be the one representing the nominal state of
the combustion system under the given input of u and /.

Each time series in a subset is first partitioned by maximum
entropy partitioning [26]. The resulting symbol string is then com-
pressed as a PFSA by assigning the states as symbol strings of
finite length. The features chosen in this paper are the morph mat-
rices of the PFSA (see Definition 4.3). This feature encodes the
dynamics of the time series in the form of a morph matrix as
described in Sec. 3.1, where the feature extraction procedure is
represented by the “STSA” block in the flowchart of Fig. 3. The
morph matrix feature, corresponding to the nominal combustor
length, is taken to be the nominal feature for this subset. For every
case (i.e., each combustor length) in the training set, the diver-
gence of its corresponding feature from the nominal feature is cal-
culated and is denoted as Fdiv, the Frobenius matrix norm of the
difference between the two morph matrices, which is an indication
of how far away the system is from the most stable operating con-
dition; this is represented by the “computation of feature diver-
gence block” in the flowchart of Fig. 3. This metric is introduced
in order to have an estimate of the behavior of the predicted state
of the system at different lengths of the combustor. A higher value
of Fdiv indicates that the system is likely to be more unstable,
while a lower value of Fdiv indicates that the system response is

Fig. 3 Flowchart of the combustor design algorithm
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closer to the most stable operating condition. The inputs to the GP
regression algorithm (see Sec. 3.2.1) thus consist of (combustor
length, feature divergence) pairs (as represented in the inputs to
the block “training GP regression algorithm” in the flowchart of
Fig. 3). For the GP regression algorithm, a variety of mean and
covariance functions can be used. Here, the following mean and
covariance functions are considered.

(1) Mean function: (i) constant m(x)¼ c, (ii) linear

m xð Þ ¼
PJ

i¼1 aixi, and (iii) sum of the constant and linear

terms yields: m xð Þ ¼ cþ
PJ

i¼1 aixi, where J is the dimen-
sion of the input space.

(2) Covariance function: (i) linear k xp; xqð Þ ¼ xp 
 xqð Þ0, where
* is matrix multiplication operation, and (ii) squared expo-

nential automatic relevance determination k xp; xqð Þ ¼ sf 2


 exp


� xp � xqð Þ0 
P�1 
 xp � xqð Þ=2

�
, where the P

matrix is diagonal with automatic relevance determination

parameters ‘2
1;…; ‘2

J , and sf2 is the signal variance [31].

The log likelihood of the training data for all combinations of
mean and covariance functions has been compared. It is observed
that the combination of constant mean function and squared expo-
nential automatic relevance determination covariance function
resulted in highest likelihood; hence, these mean and covariance
functions have been used for all subsequent analysis in the paper.

In addition, GP regression being a Bayesian algorithm, it is not
necessary to know the optimal values of the hyperparameters (i.e.,
c, f‘2

i g and sf) in the mean and covariance function a priori. The
algorithm identifies the optimal values of these hyperparameters
by maximizing the log likelihood of training data.

For each subset of constant inlet velocity and equivalence ratio,
GP regression algorithm is used to determine the mapping from
combustor length to the system response (i.e., divergence Fdiv

from the nominal condition), represented by the block trained GP
regression algorithm in the flowchart of Fig. 3. Using this map-
ping, the algorithm then predicts the distribution of Fdiv for the
combustor lengths in the testing set. For each test case (i.e., com-
bustor length), the GP algorithm predicts the mean l and variance
r2 of the distribution of the system response at that point using
Eqs. (7) and (8) under the Gaussian assumption. In other words,
for a given combustor length, the GP regression algorithm pre-
dicts how different the system response is expected to be from the
nominal state. One of the reasons for using GP for system
response prediction is its ability to quantify the uncertainty in the
estimate of the response. The proposed algorithm thus estimates
the most likely response (i.e., mean) together with the variations
about the mean, which may accrue from possible sources of
uncertainties in the estimation (e.g., measurement noise and insuf-
ficient training data).

The difference between the predicted mean and true response
value for each test case is noted. In addition, the number of test
cases for which the true test value does not fall in the predicted
95% confidence intervals (i.e., [l� 2r, lþ 2r]) is recorded,
which is represented by the block “error metric” in the flowchart
of Fig. 3. The entire procedure has been repeated for 20 random
combinations of training and testing sets, and their average per-
formance is computed. For every combination of training and test-
ing sets of combustor lengths under a given inlet velocity and
equivalence ratio, four different sampling durations of the corre-
sponding time series have been considered: 2 s, 4 s, 6 s, and 8 s.

Figure 5 shows the mean (l) and the 95% confidence intervals
(i.e., [l� 2r, lþ 2r) of Fdiv, predicted by the GP algorithm for
all test cases, and the corresponding true values of Fdiv superim-
posed on it, for a single run (i.e., a specific combination of training
and testing data sets) for four different window lengths of time
series: 2 s, 4 s, 6 s, and 8 s. The inlet velocity and equivalence ratio
for this subset are 40 m/s and 0.55, respectively. For this run, it is
observed that, for all test cases, the true value of Fdiv lies in the
predicted 95% confidence interval, for all four window lengths of
time series. In addition, for each widow length of time series, the
difference between predicted mean and true response value has
been noted for each test case, and the average is taken over all test
cases in the testing set. The average errors over the testing set in
this run for the four different window lengths of time series data
are listed in Table 2.

Figure 6 shows the mean (l) and the 95% confidence intervals
(i.e., [l� 2r, lþ 2r]) of Fdiv, predicted by the GP algorithm for
all test cases, and the corresponding true values of Fdiv superim-
posed on it, for a single run (i.e., a specific combination of training
and testing data sets) for four different window lengths of time
series data (2 s, 4 s, 6 s, and 8 s), for another data set. The inlet
velocity and equivalence ratio for this subset are 25 m/s and
0.525, respectively. Similar to the results reported on the previous
subset, it is observed in this run that the true value of Fdiv lies in

Fig. 4 Effects of time series length on Prms profiles: (a) profile
of Prms for a typical stable pressure signal and (b) profile of
Prms for a typical unstable pressure signal

Table 1 Classification accuracy for D-Markov machines (D 5 1)
using SVM classifiers for different data lengths

Time series window length (s) 2 4 6 8

D-Markov parameters jRj ¼ 9 jRj ¼ 9 jRj ¼ 8 jRj ¼ 8
Accuracy for linear kernel (%) 94 95 96 94
Accuracy for radial basis function
Kernel (r¼ 1) (%)

97 97 98 98
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the predicted 95% confidence interval for all window lengths of
time series. The implication of the above results for a design exer-
cise is that these figures provide the information on how close the
system is to the stability boundary. Considering the uncertainties
involved, the designer would try to select a set of parameters,
within the constraint of permissible range at which Fdiv is lowest,
as represented by the block “user defined criteria for stability” in
the flowchart of Fig. 3. The average errors over the testing set in
this run for four different window lengths of time series data are
listed in Table 3. It is also shown in Tables 2 and 3 that the win-
dow length of time series data does not significantly affect the
accuracy of the estimated mapping between combustor length and
system response, provided that the data are sufficiently long to
capture the system dynamics.

The plots in Fig. 7 compare the profiles of normalized Fdiv and
normalized Prmsdiv for the test run corresponding to inlet veloc-
ity¼ 40 m/s and equivalence ratio¼ 0.55, for 2 s and 8 s window
lengths of time series data (whose prediction results are displayed
in Fig. 5). Normalized Fdiv follows a trend similar to that of nor-
malized Prmsdiv, thus showing that the PFSA feature is consistent
with Prmsdiv in terms of quantifying the system stability. Since
Fdiv is significantly larger in magnitude than Prmsdiv for the
majority of cases, the PFSA feature is apparently more sensitive
(and hence more discriminative) to changes in system dynamics.
In other words, for the same change in system dynamics, the
divergence of the PFSA feature from the original feature would be
much higher than that corresponding to the Prms feature. For
applications to combustor design, this increased sensitivity is pref-
erable because of the capability of correctly detecting smaller
anomalies with the same threshold. In other words, the user would
like to design a combustor with a smaller chance of becoming

unstable. In such a scenario, if a more sensitive feature is used,
even a small deviation in the system behavior from the nominal
state would be manifested as a large feature divergence; this
would dissuade the user from choosing the combustor parameters
that could potentially lead to instabilities. Under this train of logic,
the combustor parameters, chosen corresponding to least feature
divergence, would be more conservative and thus have a smaller
chance of combustion instability.

5 Conclusions and Future Work

A dynamic data-driven method, based on a Bayesian nonpara-
metric technique of Gaussian process (GP) regression, has been
proposed in this paper as a tool for combustor design. The under-
lying assumption of GP regression is that, for a finite set of operat-
ing conditions, the corresponding system responses are jointly
Gaussian; no assumptions are made on the nature of the relation
between operating conditions and the resulting system response.
However, the normal assumptions may not strictly hold, because
of the introduction of estimated parameters, which is reflected in
the uncertainties of the estimated response.

Fig. 5 Feature divergence Fdiv predicted by GP regression algorithm for inlet velocity 5 40 m/s
and / 5 0.55: (a) Fdiv using 2 s of data, (b) Fdiv using 4 s of data, (c) Fdiv using 6 s of data, and (d)
Fdiv using 8 s of data

Table 2 Mean error for a single run on four different window
lengths (sampled at 8192 Hz) of time series at inlet velocity 5 40
m/s and / 5 0.55

Window length (s) 2 4 6 8

Mean error 0.0003 �0.0004 0.0008 �0.0025
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The method has been validated on experimental data of pres-
sure time-series from a lean-premixed swirl-stabilized combustor.
Given an ensemble of training data for a set of constant equiva-
lence ratio and inlet velocity, the algorithms determine the

mapping between the combustor length and the system response.
The algorithms can then predict the distribution of the system
response for every other point in the space of combustor lengths,
for which experimental data may not be available. This informa-
tion can then be used for identifying the length of the combustor
that will yield the desired system response. While the proposed
design methodology is more discriminative with respect to small
deviations (e.g., those resulting from evolving anomalies) than
that based on Prms, it is apparently more robust (i.e., less fragile)
to measurement noise that is inherent in the time series data,
because of symbolization [19].

Although the work presented here is validated for design of a
laboratory-scale combustor as a proof of concept study, it is

Fig. 6 Feature divergence Fdiv predicted by GP regression algorithm for inlet velocity 5 25 m/s
and / 5 0.525: (a) Fdiv using 2 s of data, (b) Fdiv using 4 s of data, (c) Fdiv using 6 s of data, and
(d) Fdiv using 8 s of data

Table 3 Mean error for a single run on four different window
lengths (sampled at 8192 Hz) of time series at inlet velocity 5 25
m/s and / 5 0.525

Window length (s) 2 4 6 8

Mean error 0.0276 0.0326 0.0194 0.0081

Fig. 7 Sensitivity comparison of PFSA and Prms features: (a) PFSA and Prms feature diver-
gence for 2 s data and (b) PFSA and Prms feature divergence for 8 s data
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envisioned that this method can be extended to more complex
industrial-scale combustors, because the input to this dynamic
data-driven approach is the pressure time series, which can be eas-
ily generated in such combustors. In the initial stage of design, the
actual experiments used to generate data in the present work may
be replaced by a limited number of high-fidelity simulations,
involving unsteady Reynolds-averaged Navier–Stokes equation or
large eddy simulations and state-of-the-art models for turbulent
combustion appropriate to the combustion mode at hand (e.g., pre-
mixed, nonpremixed, or partially premixed). On the other hand,
for modifications of existing combustors, knowledge acquired
from experiments can be used in the design. From these perspec-
tives, topics of future research on the proposed design method are
delineated below.

(1) Theoretical and experimental research on how the proposed
dynamic data-driven method can be gainfully integrated
with the current state-of-the-art (including the model-
based) tools of combustor design.

(2) Performance comparison of the design algorithm with
state-of-the-art design methodologies not including usage
of Prms.

(3) Evaluation of the design algorithm for different parameters
(e.g., depth D> 1 instead of D¼ 1 (see Definition 4.4)).

(4) Testing of the design algorithm on combustors of different
geometries and input parameters.

(5) Extension of the proposed methodology for design of com-
bustors under active control.
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