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Real-time detection and decision and control of thermoacoustic
instabilities in confined combustors are challenging tasks due to
the fast dynamics of the underlying physical process. The objec-
tive here is to develop a dynamic data-driven algorithm for detect-
ing the onset of instabilities with short-length time-series data,
acquired by available sensors (e.g., pressure and chemilumines-
cence), which will provide sufficient lead time for active decision
and control. To this end, this paper proposes a Bayesian nonpara-
metric method of Markov modeling for real-time detection of ther-
moacoustic instabilities in gas turbine engines; the underlying
algorithms are formulated in the symbolic domain and the result-
ing patterns are constructed from symbolized pressure measure-
ments as probabilistic finite state automata (PFSA). These PFSA
models are built upon the framework of a (low-order) finite-
memory Markov model, called the D-Markov machine, where a
Bayesian nonparametric structure is adopted for: (i) automated
selection of parameters in D-Markov machines and (ii) online
sequential testing to provide dynamic data-driven and coherent
statistical analyses of combustion instability phenomena without
solely relying on computationally intensive (physics-based)
models of combustion dynamics. The proposed method has been
validated on an ensemble of pressure time series from a
laboratory-scale combustion apparatus. The results of instability
prediction have been compared with those of other existing
techniques. [DOI: 10.1115/1.4037288]

1 Introduction

Thermoacoustic instabilities accrue from nonlinear interactions
between the unsteady heat release and acoustics in the confined
chamber of a combustor [1–3]. Consequently, if the self-sustained
pressure oscillations have high amplitudes, the performance and
operational life of machineries (e.g., gas turbine engines), which
use such combustors, could be adversely affected. Therefore, it is

imperative to appropriately design and operate combustors to
ensure timely detection and mitigation of thermoacoustic instabil-
ities, which may require model-based and/or dynamic data-driven
analysis involving analyses of time series of pressure oscillations
and flame images.

The difficulties in handling the complex nonlinear dynamics, as
encountered in the analysis of combustion instabilities, often limit
the applications of physics-based modeling tools for anomaly
detection and decision and control of combustion dynamics at dif-
ferent operating conditions. To this end, there has been much inter-
est in early detection of thermoacoustic instabilities from
the perspectives of dynamic data-driven application systems [4,5].
For example, Nair and Sujith [6] have used the local flow test and
0–1 chaos test to study the chaotic structure of pressure time series
and concluded that the pressure measurements during stable opera-
tion in combustors undergo deterministic chaos and gradually relax
their chaotic behavior when the system approaches an unstable
condition. It is also claimed that low-amplitude irregular pressure
fluctuations therein possess multifractal structures, which may con-
tain valuable prognostic information for early detection of ther-
moacoustic instabilities. Similarly, Gianni et al. [7] have used a
topologically invariant index to recognize the transition mecha-
nism leading to thermoacoustic instabilities, which is shown to be
an early precursor. Other researchers believe that time series
acquired in combustors can be modeled as a random process, such
as a Markov chain, whose model structure may reflect the physical
nature of the combustion process. Much research efforts have been
expended on Markov chain modeling, and several popular strat-
egies are listed in Refs. [8–11]. Hauser et al. [12] have recently
used flame images to detect the onset of combustion instabilities in
the framework of symbolic time-series analysis. Neural networks
have also been used for such imaging-based analysis [13].

Implementations of dynamic data-driven application systems
[4] include predictions of flame lean-blowout [14] and instabilities
[5] in laboratory-scale combustors using symbolic time-series
analysis. Especially, Sarkar et al. [15] reported an information-
theoretic state-splitting and state-merging algorithm to model
flame lean-blowout phenomena in the framework of a special
class of probabilistic finite state automata (PFSA), called D-
Markov machines [16,17], whose entropy rate may also be used to
detect the thermoacoustic instabilities. However, this tree-based
algorithm lacks a coherent probabilistic interpretation and may
not able to accommodate more general interactions between cur-
rent measurement and measurement history. Moreover, the task of
parameter estimation becomes difficult even for moderately high
depth (e.g., D> 1) in D-Markov machines due to the paucity of
time-series data. As for the detection procedure, this method is
based on an empirical threshold rather than the statistical detec-
tion theory. This method may not be sequentially implementable,
thus possibly limiting its use in real-time detection of thermo-
acoustic instabilities.

The current paper, which is a major extension of the work [18]
reported recently by the authors in a conference, proposes a
Bayesian nonparametric approach [19] to address the previously
mentioned difficulties. This approach automatically selects maxi-
mal order and lags (i.e., measurement history) of a D-Markov
machine from limited (time series) data to formulate a parsimoni-
ous representation. Then, to detect the thermoacoustic instabilities
in real time, a sequential online testing algorithm is developed
upon the constructed D-Markov machine. The proposed algorithm
has been validated on pressure measurements from a laboratory-
scale swirl-stabilized combustor and the results are compared with
those of existing techniques. From the perspectives of active con-
trol of combustion instabilities (e.g., see Ref. [20]), the proposed
method may serve as a statistical filter to predict the system state
with a high level of confidence and thus potentially improve the
performance of active controllers by reducing the (potentially
destabilizing) delay in the feedback loop.

This paper is organized into four sections including the present
section. Section 2 describes the technical approach for data-driven
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modeling of pressure time series and for detection of thermoa-
coustic instabilities. Section 3 validates the theoretical results on
the data collected from a laboratory-scale combustion apparatus.
Section 4 summarizes this paper along with conclusions and sug-
gested topics of future research.

2 Technical Approach

This section describes the details of the technical approach that
is adopted for data-driven modeling of pressure time series
and for detection of thermoacoustic instabilities. The proposed
Bayesian nonparametric methodology constructs a D-Markov
machine [16,17] from real-valued time series, which are then used
for online sequential testing.

2.1 Symbolization. To construct a D-Markov machine, the
(finite-length) data of pressure time series are converted into sym-
bol strings through symbolization, also known as quantization,
that requires partitioning of the signal space into a finite number
of mutually exclusive and exhaustive regions, each corresponding
to a unique symbol. The (finite) set of symbols is called the alpha-
bet R and its cardinality is called the alphabet size, denoted as jRj.

Now the notion of maximum entropy partitioning (MEP) [21]
is introduced as a partitioning tool for the ensemble of time-series
data. The entropy of a generated symbol string is maximized by
MEP, which implies that the information-rich cells of a data set
are partitioned finer and those with sparse information are parti-
tioned coarser; in other words, each cell contains (approximately)
equal number of data points under MEP. Considerations for the
choice of an alphabet size jRj include the maximum discrimina-
tion capability of a symbol sequence and the associated computa-
tional complexity [17].

DEFINITION 2.1. (D-Markov machine) A symbol sequence is
called a D-Markov machine (i.e., a Markov chain of depth D) if,
conditioned on the most recently generated D symbols, the distri-
bution of the current symbol is independent of its more distant
past. That is,

pðytjyt�1;…; yt�D;…Þ ¼ pðytjyt�1;…; yt�DÞ (1)

where yt denotes the symbol at the time instant t. It is noted that
the actual lags (i.e., delayed measurements) to identify the distri-
bution of yt could be a subset of (yt–1, …, yt–D) and that the maxi-
mal order, which is less than or equal to D, is the least positive
integer beyond which the lags are not significant.

The assumption of finite-length memory in the definition of a
D-Markov machine is reasonable for many (statistically station-
ary) engineering systems with fading memory, especially combus-
tion systems [12], which tend to forget their initial conditions
and distant past rather quickly. Apparently, the mechanism of
thermoacoustic instabilities can be better understood through the
distinct structure of the D-Markov machine constructed from sta-
ble and unstable pressure measurements. However, a significant
challenge is how to determine the maximal order and respective
lags, which are critical for identification of the probability distri-
bution of the current symbol. As possible combinations of lags
and the number of parameters to be estimated increase rapidly
with depth D and alphabet size jRj, it is desirable to have a flexi-
ble and interpretable procedure to infer the D-Markov machine
from limited data. This issue is addressed in Secs. 2.2–2.4.

2.2 Conditional Tensor Factorization. The conditional prob-
ability density pðytjyt�1;…; yt�DÞ is now treated as a (Dþ 1)-order
tensor in the jRj-dimensional space, which is hereafter called the
conditional probability tensor. It was first reported by Yang and
Dunson [22] that every conditional probability tensor has the fol-
lowing higher order singular value decomposition:

pðytjyt�1;…; yt�DÞ ¼
Xk1

s1¼1

� � �
XkD

sD¼1

ks1;…;sD
ðytÞ

YD
j¼1

xðjÞsj
ðyt�jÞ (2)

where 1 � kj � jRj for j¼ 1,…, D and the parameters ks1…sD
ðytÞ

and xðjÞsj ðyt�jÞ are all non-negative real and satisfy the following

constraints:

XjRj
yt¼1

ks1;…;sD
ðytÞ ¼ 1 for each ðs1;…; sDÞ (3)

Xkj

sj¼1

xðjÞsj
ðyt�jÞ ¼ 1 for each ðj; yt�jÞ (4)

Because such a factorization exists for every conditional probabil-
ity tensor, the previously mentioned constraints are not restrictive

but they ensure that
PjRj

yt¼1 pðytjyt�1 � � � yt�DÞ ¼ 1.

2.3 Bayesian Nonparametric Modeling. For development
of a statistically interpretable and parsimonious model, the tensor
factorization in Sec. 2.2 is converted into a Bayes network by
introducing latent allocation variables and assigning sparsity-
inducing priors. More formally, let {y1, y2, …, yT} be a time-
indexed symbol string (of length T) with finite memory of D; the
elements yk of the symbol string are symbols from the alphabet R.

Let sj be the realization of a latent allocation variable xj,t, whose
support is {1, 2, …, kj} all time t. Then, the transition probability
pðytjyt�1;…; yt�DÞ, factorized as in Eq. (2), can be rewritten in the
following form:

pðytjyt�1 � � � yt�DÞ ¼
ð

x1;t

� � �
ð

xD;t

pðytjx1;t;…; xD;tÞ
YD
j¼1

pðxj;tjyt�jÞ

(5)

where xj,t, for j¼ 1, …, D and t¼Dþ 1, …, T, are latent allocation
variables and follow the distribution:

ðxj;tjyt�jÞ �Mult
�
x
ðjÞ
kj
ðyt�jÞ

�
(6)

ðytjx1;t;…; xD;tÞ �Multðks1 ;…;sD
Þ (7)

where Mult stands for multinomial distribution [23], x
ðjÞ
kj
ðyt�jÞ

¼
n
ðxðjÞi ðyt�jÞ

okj

i¼1
, and ks1;…;sD

¼ fks1 ;…;sD
ðiÞgjRji¼1.

The previously mentioned hierarchical reformulation of higher
order singular value decomposition illustrates the features of the
model in two ways: first, Eq. (6) shows that soft clustering is
implemented for each lag yt–j across the alphabet R to borrow sta-
tistical strength among different symbols. Then, by Eq. (7), the
clustering assignments xj,t are used to capture the interactions
among the lags in an implicit and parsimonious manner by allow-
ing the latent populations indexed by (s1, …, sD) to be shared
among the various state combinations of the lags.

It is noted that the number of latent classes for jth lag (always
less than or equal to kj) determines the inclusion of lag yt–j in the
model, because pðytjyt�1 � � � yt�DÞ does not vary with yt–j when
there is only one latent class. Therefore, only one latent class is
retained by eliminating the unnecessary lags, and the maximal
order is determined by identifying the most distant lag with multi-
ple latent classes. However, in real-life applications, the tensor
ks1…sD

ðytÞ still may have more components than required, becauseQD
j¼1 kj could be large for moderate values of D and jRj. To allevi-

ate this difficulty, ks1 ;…;sD
ðytÞ is clustered among different combi-

nations of (s1, …, sD) in a nonparametric way by imposing the
Dirichlet process prior [24] on it. Thus, employing the stick-
breaking representation of Dirichlet Process [25], it follows that:
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pjc � GEMðcÞ (8)

hs1 ;…;sD
jp �MultðpÞ (9)

kl ¼ fklð1Þ;…; klðjRjÞgja � DirðaÞ (10)

yjh; k; ðxj;t; j ¼ 1;…;DÞ �Multðkhx1;t ;…;xD;t
Þ (11)

where GEM stands for Griffiths, Engen, and McCloskey process
[23], Dir represents Dirichlet distribution, h ¼ fhs1;…;sD

gs1;…;sD
,

and k ¼ fklg1l¼1. Finally, the priors on mixture probability vectors
x

j
kj
ðyt�jÞ and kj are set as follows:

x
j
kj
ðzj;tÞjkj; zj;t;bj � DirðbjÞ (12)

pðkj ¼ kÞjl / expð�ljkÞ (13)

where l> 0 and zj,t¼ yt–j. The prior assigns increasing probabil-
ities to smaller values of kj as the lag j becomes more distant,
reflecting the natural belief that increasing lags have diminishing
impact on the distribution.

A Bayes network representation of the model is obtained by
combining Eqs. (6)–(13) and its dependency structure is summar-
ized in Fig. 1. Although the (nonparametric) posterior distribution
has no analytic form, the inference of this Bayes network can be
accomplished by Markov chain Monte Carlo (MCMC) simulation,
as described in Algorithm 1.

To execute Algorithm 1, several hyperparameters, i.e., l, a,
and bj (see Fig. 1), need to be chosen. The implication and deter-
mination of l have been addressed earlier and those of other
hyperparameters are discussed here. It is noted that a and bj are
hyperparameters of Dirichlet distribution and serve as pseudo-
counts. Their determination is dependent on the users’ prior belief
and often they are chosen to be small values when no additional
information is available. In this paper, these hyperparameters are
chosen to be: a¼ 1 and bj¼ 1/3.

Algorithm 1 MCMC algorithm for inference

Require: Depth D, Alphabet size jRj, truncating components L,

number of samples N, symbol sequence fytgT
t¼1 and initial

h;p; k;x ¼ fxðjÞkj
ðzÞgj¼1;…;D

z¼1;…;jRj; x ¼ fxj;tgj¼1;…;D
t¼Dþ1;…;T; k ¼ fkjgj¼1;…;D

Ensure: Posterior samples fðnÞh; ðnÞp; ðnÞk; ðnÞx; ðnÞx; ðnÞkg
N
n¼1

1: for n¼ 1 to N do
2: For each (s1,…, sD), sample hs1 ;…;sD

from its multinomial

full conditionals: pðhs1;…;sD
¼ ljnÞ/pl

QjRj
c¼1fklðcÞgns1 ;…;sD

ðcÞ

where ns1 ;…;sD
ðcÞ¼

PT
Dþ1 1fxj;t¼ s1;…;xD;t¼ sD; yt¼ cg.

3: For l¼ 1, …, L, update pl as follows: pðVljnÞ ¼ Betað1
þ nl; cþ

P
k>l nkÞ; pl ¼ Vl

Ql�1
m¼1ð1� VmÞ, where nl ¼P

ðs1 ;…;sDÞ 1fhs1 ;…;sD
¼ lg.

4: For l¼ 1,…, L, sample kl from their Dirichlet full condi-
tionals kljn�Dirfaþnlð1Þ;…;aþnlðjRjÞg, where nlðcÞ¼P
ðs1;…;sDÞ 1fhs1 ;…;sD

¼lgns1 ;…;sD
ðcÞ.

5: For j¼ 1,…, D and c ¼ 1;…; jRj, sample fxðj1 ðcÞ;…;

xðjÞkj
ðcÞgjn � Dirfbj þ nj;cð1Þ;…;bj þ nj;cðkjÞg, where

nj;cðsjÞ ¼
PT

t¼Dþ1 1fxj;t ¼ sj; zj;t ¼ cg.
6: For j¼ 1,…, q and for t¼Dþ 1,…, T, sample the xj,t from

their multinomial full conditionals: pðxj;t ¼ sjn; xl;t ¼ sl;

l 6¼ jÞ / xðjÞs ðzj;tÞkhs1 ;…;s;…;sD
ðytÞ: where n is the collection of

variables that are not explicitly mentioned.
7: For j¼ 1,…, D, sample kj using their multinomial full con-

ditionals: pðkj ¼ kjnÞ / expð�ljkÞ
QjRj

c¼1 n
�kbj

j;c ; kj ¼
maxtfxj;tg;…; jRj, where nj;c ¼

PT
t¼Dþ1 1fzj;t ¼ cg.

8: end for

Remark 2.1. By assigning sparsity-inducing priors on the
decomposed algebraic structure, the proposed method yields a
parsimonious model that inherits its statistical strength from dif-
ferent categories and predictors to improve the estimation accu-
racy especially if the data are limited. This allows the proposed
method to infer a high-order Markov model from limited data
compared to frequency counting methods. Experimental valida-
tion is presented in Sec. 3.

2.4 Online Sequential Testing. The proposed method for
detection of thermoacoustic instabilities is comprised of an offline
training phase and an online testing phase. All the training
and testing data of pressure time-series are required to be symbol-
ized with the same alphabet size using the MEP [21], and the
classification process is conducted based on the generated
symbol strings. In the training phase, posterior samplesnðiÞ
ðnÞ

h; ðiÞðnÞ k;
ðiÞ
ðnÞ x

oN

n¼1
are obtained from a training symbol string

ðiÞy for each class i, where zero represents the stable class and one
represents the unstable class. In the testing phase, the conditional

probability pðyjðiÞyÞ for an observed symbol string y with length L
is calculated using posterior samples as follows:

pðyjðiÞyÞ ¼
YL

t¼Dþ1

pðytjyt�1;…; yt�D;
ðiÞyÞ (14)

p ytjyt�1;…;yt�D;
ið Þy

� �

� 1

N

XN

n¼1

Xk1

s1¼1

� � �
XkD

sD¼1

ið Þ
nð ÞkðiÞðnÞ

hs1;…;sD ytð Þ
YD
j¼1

ið Þ
nð Þx

jð Þ
sj

yt�jð Þ

0
@

1
A (15)

Based on the conditional probability pðyjyiÞ, the likelihood ratio
test [26] is constructed as follows:

p yj1y
� �

p yj0y
� �01

0

s (16)

where s is the threshold; one criterion to choose the threshold s is
the receiver operating characteristic (ROC) [26]. The ROC curve,
which is obtained by varying s, provides a trade-off between the
probability of successful detection pD ¼ pðdecide 1j1 is trueÞ and
the probability of false alarms pF ¼ pðdecide 1j0 is trueÞ. A com-
bination of pD and the test data length for a given pF is selected
based on ROC curves, which would lead to a choice of the

Fig. 1 Graphical representation of the Bayes network:
xj 5 fxj ;tgT

t 5 D11; y 5 fytgT
t 5 D11; and zj 5 fzj ;tgT

t 5 D11. Rectangle
�deterministic hyperparameter; shaded ellipse�observed ran-
dom variable; and transparent ellipse�unobserved random
variable.
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threshold s. This detection algorithm is sequential, because the

conditional probability p
�
yjðiÞy

�
could be evaluated sequentially

as shown in Eq. (14). For fast implementation, the values of

pðytjyt�1;…; yt�D;
ðiÞyÞ in Eq. (15) can be precomputed and stored

for different combinations of ðyt; yt�1;…; yt�DÞ.

3 Experimental Data Collection

This section presents the experimental details for data collec-
tion from a laboratory-scale apparatus with the objective of ana-
lyzing the nonlinear dynamics that occur during the instability
phenomena.

3.1 Description of the Test Apparatus. The test apparatus is
built upon a swirl-stabilized, lean-premixed, laboratory-scale
combustor [27] that has been used to perform the experimental
investigation. Figure 2 shows a schematic diagram of the variable-
length combustor that consists of an inlet section, an injector, a
combustion chamber, and an exhaust section. The combustor
chamber consists of an optically accessible quartz section fol-
lowed by a variable-length steel section. High-pressure air is
delivered to the apparatus from a compressor system after passing
through filters to remove any liquid or solid particles that might
be present in the inlet air. The air supply pressure is set to approxi-
mately 1.34 MPa using a dome pressure regulator. The air is pre-
heated to a maximum temperature of 250 �C by an 88 kW electric
heater. The fuel for this study is natural gas (approximately 95%
methane). It is supplied to the system at a pressure of approxi-
mately 1.48 MPa. The flow rates of the air and natural gas are
measured by thermal mass flow meters. The desired equivalence
ratio and mean inlet velocity are set by adjusting these flow rates
with needle valves. Tests are conducted at a nominal combustor
pressure of 1 atm over a range of operating conditions, as listed in
Table 1. Under each operating condition, 8 s pressure time series
are collected at a sampling rate of 8192 Hz.

3.2 Algorithm Validation on Experimental Data. This
subsection analyzes the experimental data of pressure oscillations
collected from the test apparatus. The details of data analysis are
presented later.

3.2.1 Construction of D-Markov Machines. Oversampling is
often preferred for data collection from engineering perspectives
and may mask the true nature of system dynamics when real-
valued time-series data are symbolized. To avoid such a problem,

the pressure measurements from combustors are first down-
sampled by a factor that is representative of a typical lag, which is
the first minimum of the average mutual information plot [28], as
demonstrated in Fig. 3. Then, the time-series data are symbolized
through maximum entropy partitioning [21] with a ternary alpha-
bet R¼ {1, 2, 3} for both stable and unstable cases, where the
ground truth is decided such that the root mean square value of
pressure greater than 0.483 kPa (0.07 psi) indicates an unstable
situation.

To construct a D-Markov machine, symbolized pressure time-
series data are analyzed using the proposed Bayesian nonparamet-
ric method. The hyperparameters in Eqs. (8)–(13) are set at
l¼ 0.5, c¼ 1, a¼ 1/3, and bj¼ 1/3 for each j. For each case, the
data length is 500 with depth D¼ 10 and 2000 posterior samples
are collected from 10,000 MCMC iterations. Figures 4 and 5 sum-
marize the MCMC results for pressure data under stable and
unstable cases, respectively. Figures 4(a), 4(b), 5(a), and 5(b)
illustrate the method’s ability to identify the maximal order and
relevant lags of the D-Markov machine. The proposed method
also leads to parsimonious representations, as shown in Figs. 4(c),
4(d), 5(c), and 5(d). A comparison of Figs. 4(a) and 5(a) reveals
that the maximal order for the unstable case is significantly higher
than that for the stable case, which indicates a more deterministic
(i.e., less random) behavior and is in agreement with the previ-
ously published works [15,29].

3.3 Sequential Testing. One hundred samples of pressure
measurements are selected from each of stable phase (class 0) and
unstable phase (class 1) to serve as test data. Figure 6 shows the
posterior probability of each class as a function of the length of
the observed data. It is seen in Fig. 6 that the observed time series
is correctly be classified as unstable because the posterior proba-
bility of class 1 approaches one, while that of class 0 approaches
zero very fast. For all the test data, the posterior probability cor-
rectly converged to either zero or one. Figure 7 exhibits a family
of ROC curves for the proposed detection algorithm with varying
length of test data. It is observed that the ROC curve improves

Fig. 2 Schematic diagram of the combustion apparatus

Table 1 Operating conditions

Parameters Value

Equivalence ratio 0.525, 0.55, 0.60, 0.65
Inlet velocity 25–50 m/s in 5 m/s increments
Combustor length 25–59 (in) in 1 (in) increments

Fig. 3 Profile of the average mutual information
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Fig. 5 MCMC results for histograms of pressure measure-
ments under unstable operation: (a) histogram of the maximal
order (i.e., depth D), (b) inclusion proportions of different lags,
(c) histogram of the number of clusters of the tensor ks1 ;...;sD

,
and (d) histogram of combinations of realizations (s1,. . . , sD)

Fig. 4 MCMC results for histograms of pressure measure-
ments under stable operation: (a) histogram of the maximal
order (i.e., depth D), (b) inclusion proportions of different lags,
(c) histogram of the number of clusters of the tensor ks1 ;...;sD

,
and (d) histogram of combinations of realizations (s1,. . . , sD)
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(i.e., moves toward the top left corner) considerably as the test
data length is increased from 11 to 50. With a test data length of
20, Fig. 8 compares the proposed method with two other reported
methods: (i) naive method that selects the maximal order of the
D-Markov machine to be 1 and (ii) spectral method that optimizes
the maximal order [11]. Both these methods use the frequency
counting to estimate the parameters of D-Markov machine. The
proposed method yields larger detection rates pD at different
specified false alarm rates pF, as compared to both naive and spec-
tral methods. The implication is that a larger pD indicates
improved efficacy of the classifier to detect the onset of unstable
operating conditions at a given pF, and this timely information is
crucial for adaptation of the combustion system’s behavior to a
stable operation. Since the proposed method is capable of execut-
ing these actions with a very short data length, it is ideally suited
for early detection and control of combustion instabilities in real-
life combustion systems.

4 Summary, Conclusions, and Future Work

This paper has proposed a dynamic data-driven algorithm for
detecting the onset of thermoacoustic instabilities in confined
combustors, which requires very short lengths of time-series data
and thus provides sufficient lead time for active decision and con-
trol. The algorithm is developed in a nonparametric Bayesian set-
ting and is built upon a special class of probabilistic finite state
automata, called D-Markov machines [16,17]. These D-Markov
machines are constructed from symbol strings, generated by parti-
tioning of (finite length) time series with automated selection of a
set of lags for parsimonious representation.

The proposed method has been validated with experimental
data of pressure oscillations from a laboratory-scale swirl-
stabilized combustor apparatus. Analysis of the experimental data
has revealed that the maximal order (i.e., depth D) for pressure
time series under unstable operations is relatively higher than
those under stable operations, which implies a more deterministic
(i.e., less random) behavior of unstable operations compared to
that of stable operations.

While there are many areas of theoretical and experimental
research to be conducted before this method can be used for real-
time monitoring and active control of combustors in industrial
applications, the authors suggest the following areas for research
topics in the near future:

(1) Treatment of the operating conditions as exogenous labels
for pressure time series and extension of the proposed
method to spatial-temporal symbol strings.

(2) Integration of the proposed algorithm with those of active
combustion control to improve the performance of combus-
tion systems.

(3) Investigation on scalability and feasibility of the algorithm
for wider ranges of operation.

(4) Usage of other methods (e.g., confusion matrices), in addi-
tion to ROC curves, for performance comparison of differ-
ent methods.

(5) Theoretical research on trade-off between alphabet size jRj
and depth D for construction of D-Markov machines, sup-
ported by experimental validation.
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