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Abstract—This paper presents information-theoretic
performance analysis of passive sensor networks for detection
of moving targets. The proposed method falls largely under the
category of data-level information fusion in sensor networks.
To this end, a measure of information contribution for sensors
is formulated in a symbolic dynamics framework. The network
information state is approximately represented as the largest
principal component of the time series collected across the
network. To quantify each sensor’s contribution for generation
of the information content, Markov machine models as well as
x-Markov (pronounced as cross-Markov) machine models, con-
ditioned on the network information state, are constructed; the
difference between the conditional entropies of these machines
is then treated as an approximate measure of information
contribution by the respective sensors. The x-Markov models
represent the conditional temporal statistics given the network
information state. The proposed method has been validated on
experimental data collected from a local area network of passive
sensors for target detection, where the statistical characteristics
of environmental disturbances are similar to those of the target
signal in the sense of time scale and texture. A distinctive
feature of the proposed algorithm is that the network decisions
are independent of the behavior and identity of the individual
sensors, which is desirable from computational perspectives.
Results are presented to demonstrate the proposed method’s
efficacy to correctly identify the presence of a target with
very low false-alarm rates. The performance of the underlying
algorithm is compared with that of a recent data-driven,
feature-level information fusion algorithm. It is shown that the
proposed algorithm outperforms the other algorithm.

Index Terms—Information fusion, sensor networks, symbolic
time series analysis, target detection.
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I. INTRODUCTION

SENSOR networks serve the important role of collect-
ing and processing information in a variety of (possibly

dynamic) environments, whose structure may be partially or
completely unknown [1]. Such a network consists of a num-
ber of sensor nodes, each having the capability to process the
signals that it measures from its own or a neighboring envi-
ronment. The sensor nodes communicate with each other for
information aggregation to enhance the quality of collected
information in the network. However, due to the constraints
on power, computation, and communication resources [2], [3],
it becomes a challenge to reduce both installation and oper-
ating costs, while enhancing the system performance [4], [5].
From the perspectives of target detection in a dynamic envi-
ronment, sensor network design (e.g., sensor placement, sensor
selection, and the associated decision criteria) relies on the
statistical characteristics of target behavior in the surveillance
region. For temporally and spatially distributed events, a poten-
tial problem may arise due to large volumes of data with
spurious background noise; this problem could be partially
mitigated by data collection with a sparse set of sensors across
the network.

A. Motivation

The problem, presented in this paper, is motivated from
the perspective of information fusion over a local network of
passive sensors, where the background environment interferes
with sensor measurements. This situation could cause unstable
boundaries of the statistical decision space during the training
process [6]. In such cases, it is necessary to find a network
statistic that remains invariant even with a time-varying back-
ground environment so that stable decision boundaries can
be estimated. Applications of such locally-distributed sen-
sor networks include unattended ground sensing, underwater
target detection, and Internet-of-Things deployed for activ-
ity recognition; in all such applications, the use of pas-
sive (and inexpensive) sensors may result in environmental
interference, which leads to classification errors for individual
sensors. Nevertheless network performance could be signif-
icantly improved by including information from all sensors
and inferring the collective undistorted information statistics.
A major challenge here is that, besides high-frequency mea-
surement noise, the spectral characteristics of environmental
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and event signals are largely similar in both amplitude and
time scale. Consequently, the underlying sensor fusion algo-
rithms must be able to represent the characteristics across the
network, which are preserved during the events of interest
and which could be used to reliably detect the events of
interest. Another challenge is that the statistics of the dynamic
environment may be nonstationary and completely unknown.
Therefore, sensor fusion algorithms for target detection must
be executed in an unsupervised (or semi-supervised) fashion
to adapt to environmental conditions.

B. Related Work

From the perspective of decision making, sensor fusion is
important to reach a reliable decision for situation aware-
ness. Most of the work in sensor network analysis is focused
on model-based analysis, where performance is optimized
for different performance criteria (e.g., target localization [7],
target tracking [8], [9], sensor querying [10], and overall
performance improvement [11]). Performance analysis from
a data-driven perspective is challenging largely due to the
lack of accurate models for data representation. Moreover, the
problem becomes more complex when the environment and
event dynamics are coupled and thus, the environment dynam-
ics cannot be ignored for learning the data-driven statistical
models for the events of interest. Additionally the develop-
ment of parameterized models to account for environmental
variation requires large amounts of training data that may
not be easily accessible for many practical applications in
sensor networks. For efficient operations, the sensor network
must capture pertinent low-dimensional information across the
network, which remains invariant, or may suffer very little
distortion, due to changes in the environmental conditions.
Recently, much work have been reported on information fusion
in sensor networks under the data-driven paradigm with appli-
cations to target detection, intrusion detection, fault detection,
denial-of-service attack, etc. [12]. A survey on information
fusion in sensor networks could be found in [12] and [13] and
that on data aggregation in [14]. Sensor fusion-based target
detection has been extensively reported in the literature using
detection theory-based local decisions [15], classification-
based distributed detection [16], and fusion of local detection
thresholds [17].

The work reported in this paper is a significant extension
of the authors’ earlier paper [18] that was presented in a con-
ference as a preliminary version. The network data are first
linearly decomposed into respective orthogonal components by
using the standard principal component analysis (PCA) [19],
and the network information state is then represented as the
component that embeds the maximum variance in the network
data. The time series at each sensor node is discretized into a
symbol sequence for information compression. Eventually, two
different types of Markov machine models are constructed; one
based on the sensor symbol sequence itself [20], [21], and, in
the other one, the individual sensor data are conditioned on
the approximate network state [22]. Finally, the contribution
of each sensor to the network information is computed based
on the difference between the conditional entropy of these two

types of Markov machines, which is inspired from the concept
of transfer entropy [23]. For detecting the correlations across
the network, the concept of transfer entropy is used, which is
treated as a measure for causality detection [24], [25].

C. Contributions

While the earlier work by Li et al. [26] presented a
feature-level fusion algorithm for passive sensor networks, this
paper presents algorithms for analysis and improvement of
information fusion across a sensor network by modeling the
correlations between measurements of different sensors across
the network using x-Markov machines [22]. The proposed
method has been experimentally validated for multisensor tar-
get detection on a laboratory-scale network setting that was
reported in a recent publication [26]. The results suggest that
the proposed information-theoretic, conditional entropy-based
sensor fusion algorithm is robust to the dynamic environment
and it is able to achieve near-perfect performance for a small
alphabet size (used for discretization of data).

Major contributions of this paper reported in this paper are
outlined below.

1) Development of an information-theoretic sensor fusion
algorithm for target detection, which is based on cross-
dependencies between the network state and sensor
states in a local network. The proposed algorithm is
shown to be independent of the placement of the sensors
and their individual identities.

2) Experimental validation in a laboratory setting,
which demonstrates its efficacy for target detection.
Dependence of the algorithm on the associated hyperpa-
rameters of the algorithm is illustrated using achievable
target detection rates.

3) Performance enhancement, which is established by com-
parison of the proposed method with a recent feature-
level sensor fusion method [26].

D. Organization

This paper is organized in five sections including the current
section. Section II briefly describes the underlying principles
of symbolic analysis that is used for feature extraction of
the time-series signals from sensors. Section III elaborates
the algorithm developed in this paper along with the list of
pertinent assumptions. Section IV briefly presents the exper-
imental procedure and the results of experimental validation
of the proposed algorithm. Finally, this paper is summarized
and concluded in Section V along with recommendations for
future research.

II. BACKGROUND

This section briefly describes the concept of symbolic time
series analysis as well as the associated principles of infor-
mation theory, upon which the work reported in this paper
is constructed. Although the information in this section is
available in standard literature and the authors’ previous publi-
cations, it is presented here in a succinct and coherent fashion
for completeness of the paper.
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A. Symbolic Time Series Analysis for Markov Modeling

This section briefly describes the underlying concepts of
D-Markov and xD-Markov machine models. For a detailed
analysis and interpretation, interested readers are referred to
earlier publications [20]–[22], [27]. In symbolic analysis of
time-series data, continuous sensor data are mapped to a dis-
crete set, thus generating a discrete symbol sequence. The
dynamics of the continuous system are then studied in the
symbolic space, which can be encoded in a finite-memory,
finite-state probabilistic machine [20]. The dynamics of the
symbol sequences are modeled as a probabilistic finite state
automaton (PFSA), which is defined as follows.

Definition 1 (PFSA): A PFSA is a tuple M = (Q,A, δ,�)

where
Q finite set of states of the automata;
A finite alphabet set of symbols s ∈ A;
δ : Q × A → Q state transition function;
� : Q × A → [0, 1] emission matrix of dimension |Q| ×

|A|. The matrix � = [πij] is row
stochastic such that πij is the proba-
bility of generating symbol Aj from
state qi.

For symbolic analysis of time-series data, a class of PFSAs,
called the D-Markov machine, has been proposed [20] as a
suboptimal but computationally efficient approach to encode
the dynamics of symbol sequences as a finite state machine.

Definition 2 (D-Markov Machine [20], [21]): A D-Markov
machine is a statistically stationary stochastic process
S = · · · s−1s0s1 · · · (modeled by a PFSA in which each state
is represented by a finite history of D symbols), where the
probability of occurrence of a new symbol depends only on
the last D symbols, that is

Pr(sn | · · · sn−D · · · sn−1) = Pr(sn | sn−D · · · sn−1)

where the positive integer D is called the depth (or memory)
of the Markov machine.

A D-Markov machine is thus a Dth-order Markov
approximation of the discrete symbolic process. The assump-
tion of a finite-length memory is reasonable for many stable
and controlled engineering systems that usually tend to forget
their initial conditions. The D-Markov machine is represented
as a PFSA and states of this PFSA are words of length D
or less. The state transitions are described by a sliding block
code of memory D that could be state-dependent [21], [27]
and, often for simplicity, are assumed to be uniform for all
states [28]. In this way, the symbolic system is approximated
as a finite-memory PFSA with a memory of length D.

The information content of the time-series is compressed
as a PFSA by approximating the states by words of finite
length from the symbol sequence. The PFSA induces a Markov
chain of finite order, and the parameters of the Markov chain
(e.g., the stochastic matrix) are estimated from data by fol-
lowing a maximum a priori probability (MAP) approach [21].
Once the parameters are estimated, they can be used for differ-
ent machine learning applications (e.g., pattern matching and
clustering) with underlying data sets.

Next the concept of xD-Markov machine is introduced and
the underlying concept is also pedagogically illustrated in

Fig. 1. Pedagogical representation of xD-Markov machines, where the (tem-
poral) dynamics of a symbolic stochastic sequence are captured relative to
another such sequence.

Fig. 1. The concept of xD-Markov machines is a generalization
of the D-Markov machines which models the conditional
temporal statistics between two stochastic processes.

Definition 3 (xD-Markov Machine) [22]: Let S1 =
{. . . s1s2s3 . . . } and S2 = {. . . σ1σ2σ3 . . . } be two symbol
sequences. Then, a xD-Markov machine, where the Markov
assumption holds for S2 with respect to the observations of
S1, is defined as a 5-tuple M1→2 � (Q1,A1,A2, δ1,�12)

such that:
1) Q1 = {q1, q2, . . . , q|Q1|} is the state set corresponding

to symbol sequence S1;
2) A1 = {s1, . . . , s|A1|} is the alphabet set of symbol

sequence S1;
3) A2 = {σ1, . . . , σ|A2|} is the alphabet set of symbol

sequence S2;
4) δ1 : Q1 × A1 → Q1 is the state transition mapping. It

is noted that the PFSA structure is built on S1 and thus,
the transition map explains the same symbol sequence;
however, the Markov assumption holds for S2 on the
states inferred in S1;

5) �12 : Q1 ×A2 → [0, 1] is the x-morph (pronounced as
cross-morph) matrix of size |Q1|×|A2|; the ijth element
�12(i, j) of �12 denotes the probability of finding the
symbol σj in the symbol string S2 at next time step
while making a transition from the state qi of the PFSA
constructed from the symbol sequence S2.

Similarly, a 5-tuple M2→1 � (Q2,A2,A1, δ2,�21) is
defined for S1 with respect to the observations of S2. One
might be able to draw analogy with the conditional distribution
of two random variables. However, the transition matrix of the
cross-model captures also the temporal dependence between
the two processes and thus, is more suitable for modeling of
temporal processes.

B. Concepts of Entropy in Information Theory

This section very succinctly introduces a few standard
concepts of information theory, which will be used later for
the analysis presented in this paper. Interested readers are
referred to [23] for an introductory text in information theory
and entropy.
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Definition 4 (Mutual Information [23]): Formally, the
mutual information of two discrete random variables, X and
Y , is defined as

I(X; Y) =
∑

x∈X,
y∈Y

pXY(x, y) log

(
pXY(x, y)

pX(x)pY(y)

)
. (1)

The mutual information is a measure of the relative depen-
dence between two random variables and it is a symmetric
function of X and Y , which can be equivalently expressed as

I(X; Y) = H(X) − H(X|Y) (2)

= H(Y) − H(Y|X). (3)

Definition 5 (Transfer Entropy [24], [25]): Transfer
entropy from a (discrete) random process Xt to a (discrete)
random process Yt (t ∈ N) is measured by the mutual infor-
mation between Yt and the history of the random variable
Xt−1

t−D = [xt−D . . . xt−1] given the history of the random
variable Yt−1

t−D = [yt−D . . . yt−1] in the condition

TX→Y = I
(

Yt; Xt−1
t−D|Yt−1

t−D

)

= H
(

Yt|Yt−1
t−D

)
− H

(
Yt|Xt−1

t−D, Yt−1
t−D

)
. (4)

Given the past information on X and Y , transfer entropy quan-
tifies the reduction of uncertainty in future values of Y . It is a
measure of directed information transfer between two random
processes. This idea of transfer entropy is closely related to
the information contribution measure introduced later in this
paper.

III. TECHNICAL APPROACH

This section presents the proposed method of measuring
the information contribution of each sensor in the network
under a dynamic environment. First, a general sensor model
is formulated and the basic assumptions are provided with
due consideration of feasible applications. Then, the proposed
measurement model is developed based upon the background
material provided in Section II.

A. Modeling and Assumptions

Let a sensor network consist of N sensor nodes for surveil-
lance in the region of interest. The ith sensor node generates
a real-valued time series yi = {yi[1], yi[2], . . . , yi[nobs]} for
nobs ∈ N. The sensor signal yi[k] at an instant k is a (nonlinear)
function of environment state (which is dynamic) SE[k], tar-
get state ST [k], and measurement noise ν[k]. No assumptions
are made on the underlying information about the environ-
ment and target state distribution and thus, the problem is
entirely dynamic data-driven. The respective sensor signals
for both “target absent” (i.e., environmental disturbances only)
and “target present” cases at time k = 0, 1, . . . , nobs could be
modeled by two distinct joint probability distributions.

In this paper, the information state of the sensor network is
represented by the first principal component x obtained from
the matrix of all of the sensors’ time series Y = [y1y2 . . . yN].
Let vi be the normalized eigenvectors of the real symmetric
matrix YYT corresponding to the (real positive) eigenvalues

λi that are arranged in decreasing order of magnitude, i.e.,
λ1 ≥ λ2 ≥ · · · ≥ λN > 0. The corresponding (normalized)
eigenvectors ui in the original data space are obtained in terms
of vi and λi as follows [19]:

ui = vi√
Nλi

YT , i = 1, 2, . . . , N. (5)

Then, the first (i.e., largest) principal component x of all sensor
time series matrix can be expressed as

x = Yu1. (6)

It is noted that the first principal component x is a weighted
linear combination of the readings, and it contains both envi-
ronment and target information under the target present cases.
To simplify the problem in the absence of any target or envi-
ronment information, the following assumptions are made on
the local sensing model.

1) The sensors are passive and homogeneous, i.e., all
sensors are of the same modality.

2) Sensor deployment is heterogeneous, i.e., sensors are
not necessarily co-located and their orientations may be
different.

3) Within a given time span of observation, there is at most
one (moving) target.

4) The time scale of environmental changes is largely
similar to that of event occurrence (e.g., target motion).

The usage of homogeneous sensors is cost-effective and
placing them non-co-located with different orientations pro-
vides heterogeneity that allows a variety of views of the target
and environment. Therefore, different sensors may yield dif-
ferent measurements even in the presence of the same single
target. The sensors are usually looking for rare events (i.e.,
hard-to-find targets), which generally means only one target,
will appear in a field-of-view within a short time span, or
else the field of view would be too large to detect a faint tar-
get. In other words, the observed time series outputs of the
sensors correspond to the same event (i.e., the same target
if it is present). Finally, the real-world environment is often
dynamically changing during the observation of encountering
hard-to-find targets. Thus, the above assumptions are conse-
quences of phenomena that may naturally occur at a node of
a sensor network in real-life applications.

B. xD-Markov Machines

Following Definition 3, a xD-Markov machine represents
a Markov model that incorporates the behavior of a sym-
bolic stochastic process based on the observations of another
stochastic process by using the algebraic structure of a finite
state automaton (FSA). The concept is qualitatively elucidated
in Fig. 1 (please note that the figure has been simplified
for pedagogical understanding), where the states of the xD-
Markov machine M1→2 are created as words from the symbol
string S1 and the emission probabilities of symbols are inferred
from the symbol string S2. It is noted that the xD-Markov
machine M2→1 could be similarly constructed. A step-by-step
procedure to generate a xD-Markov machine from a sensor
network time series is described next.
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1) Signal Preprocessing: First, the raw time series for each
sensor is normalized to be zero-mean and unit-variance as

ȳ[k] = y[k] − μy

σy
for i = 1, 2, . . . , L (7)

where μy is the mean and σy is the standard deviation of
the raw time series y having a finite length of L. The objec-
tive of this signal preprocessing is to remove the undesirable
effects (e.g., due to bias and spurious noise) from the time
series before symbolization. As an additional preprocessing
step, independent identically distributed zero-mean Gaussian
noise (ξ ∼ N (0, σ 2

ξ )) is added to the time series uniformly at
each data point. The preprocessed signal for the ith sensor at
each time instant k is expressed as

ŷi[k] = ȳi[k] + ξ. (8)

The addition of independent identically distributed noise to
signals before discretization is motivated by the fact that
adding noise to inputs acts as regularization in machine
learning techniques [29]. During the symbolization pro-
cess, the addition of noise has been empirically shown to
improve the signal-to-noise ratio [30]. To avoid loss of signif-
icance of the embedded information, which could undermine
the PFSA feature, the standard deviation of the injected
Gaussian noise is chosen as σ 2

ξ = 1/|A| in this paper,
where |A| is the alphabet size of the underlying FSA
(see Definition 1).

2) Symbolization of Time Series: This step requires parti-
tioning (also known as quantization) of the time series data
of the measured signal. The signal space is partitioned into
a finite number of cells that are labeled as symbols, i.e.,
the number of cells is identically equal to the cardinality
|A| of the (symbol) alphabet A. The choice of alphabet
size |A| largely depends on the specific data set and the
allowable loss of information (e.g., leading to error of detec-
tion and classification) [27], [31]. However, in general, the
alphabet size is selected using cross-validation. The parti-
tioning depends largely on the underlying statistics of the
data—the probability distribution of the data and the cor-
responding temporal statistics of the discrete data. While it
is difficult to provide a universal rule for partitioning, for
supervised learning problems, cross-validation provides a rea-
sonable solution. Interested readers are referred to [32] for a
review of related techniques. For unsupervised learning tasks,
the problem remains largely open.

The ensemble of time series data are partitioned by
using a partitioning tool (e.g., maximum entropy partition-
ing (MEP) [21]) that maximizes the entropy of the generated
symbols; therefore, the information-rich cells of a data set are
partitioned finer and those with sparse information are parti-
tioned coarser. As an example for the 1-D time series in Fig. 1,
the alphabet A1 = {s1, s2, s3}, i.e., |A| = 3, and two horizon-
tal lines divide the ordinate (i.e., y-axis) of the time series
profile into three mutually exclusive and exhaustive regions.
These disjoint regions form a partition, where each region is
labeled with one symbol from the alphabet A1.

3) xD-Markov Modeling: The problem of xD-Markov
modeling could be stated as follows (see Definition 3). Given

two stochastic symbolic processes S1 and S2, the task is
to create a generative model M1→2 for S2 based on the
observations from S1. This requires an inference of the gener-
ative model of causal dependence between the two processes
S1 and S2. In this model, the temporal dependence is captured
by assuming a Markov structure between the observed vari-
ables. Such a cross-dependence is represented as x-automata
(pronounced as cross automata), which induces a Markov
chain.

The states of the xD-Markov machine are inferred by using
a state-splitting algorithm that, under the D-Markov assump-
tion, leads to states of variable depth for the xD-Markov
machine. In particular, the states of the xD-Markov machine
are split by using conditional entropy as the metric, where
the largest decrease in conditional entropy is used to select
the state to be split. The conditional entropy of a xD-Markov
machine is defined next.

Definition 6 (Conditional Entropy of xD-Markov
Machines [22]): The conditional entropy of a xD-Markov
machine M1→2 = (Q1,A1,A2, δ1,�12) representing
the causal dependence of the stochastic symbolic process
S2 = {σt ∈ A2 : t ∈ N} on the stochastic symbolic process
S1 = {st ∈ A1 : t ∈ N} is defined as

H(A2|Q1) �
∑

qi∈Q1

P(qi)H(A2|qi)

= −
∑

qi∈Q1

∑

σj∈A2

P(qi)�12(i, j) log �12(i, j) (9)

where P(qi) is the probability of the xD-Markov machine state
qi ∈ Q1 and P(sj|qi) is the conditional probability of the sym-
bol sj ∈ A2 given that a xD-Markov machine state qi ∈ Q1
has been observed.

The process of splitting a state q ∈ Q1 of the xD-Markov
machine M1→2 = (Q1,A1,A2, δ1,�12) is executed by
replacing the symbol block for q by its branches given by the
set {sq : s ∈ A1}. Then, the maximum reduction in the condi-
tional entropy of M1→2 is the governing criterion for selecting
the state to be split, based on the user-input parameters of max-
imum number of states nmax or threshold ηspl [21]. As a result,
not all the states are split and thus, this creates a variable-depth
structure of M1→2. The underlying state splitting algorithm
is delineated in Algorithm 1.

Remark 1: Algorithm 1 creates a model with suboptimal
predictive accuracy; however, this is helpful in restricting the
state-space size of the constructed automaton. Another point
to be noted is that the entropy rate is a submodular function
of the size of state-space; thus adding more states leads to
a decreased rate of reduction in entropy rate. Hence, a stop-
ping rule is used to terminate the splitting algorithm based
on either the rate of change of entropy rate or the maximum
number of states allowed in the final automaton. It is further
noted that this allows the flexibility of inferring states with
different memories, depending on the data statistics. Both the
number of states nmax and ηspl are chosen during training using
cross-validation of modeling or classification accuracies. It is
noted that the transition model δ(q, s) is estimated based on
the topology of the FSA with a known memory.
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Algorithm 1 State Splitting for Variable-Depth
xD-Markov Machine

Input: Symbol sequences S1 = {· · · s1s2s3 · · · : si ∈ A1}
and S2 = {. . . σ1σ2σ2 · · · : σi ∈ A2}.

User Input: Maximum number of states nmax or threshold
ηspl

Output: xD-Markov M1→2 = (Q1,A1,A2, δ1,�12)

Initialize: Create a 1-Markov machine Q∗ := A1
repeat

Q1 := Q∗
Q∗ = arg minQ′ H(A2|Q′)
where Q′ = Q\q ∪ {sq : s ∈ A1} and q ∈ Q1

until
(
|Q∗| ≤ nmax

)
or

(
H(A2|Q1) − H(A2|Q∗) ≤ ηspl

)

for all q ∈ Q∗ and s ∈ A1 do
if δ(q, s) is not unique then

Q∗ := Q∗\q ∪ {sq : s ∈ A1}
/ ∗ ∗ Consistent algebraic structure of M1→2 ∗ ∗ /

end if
end for
return M1→2 = (Q1,A1,A2, δ1,�12)

Remark 2: The hyperparameters associated with the xD-
Markov modeling are the partitions of the individual time-
series and the depth (memory) of the corresponding Markov
model. To reduce the complexity of the associated models,
the search of the hyperparameters is generally done by fix-
ing a partitioning (e.g., MEP as described earlier) and then
an estimate of the depth (memory) of the corresponding
Markov model could be obtained from the behavior of the
cross entropy rate of the Markov model, as was illustrated
in [22]. However, much more generalized approaches (e.g.,
minimum description length [33] or even cross-validation)
can be adopted to estimate the optimal (in some desired
sense) hyperparameter. In this paper, a model with a vari-
able depth (memory) is selected by state-splitting with entropy
rate [21] as outlined in Algorithm 1. The state-splitting algo-
rithm is terminated after the model exceeds a number of states
or from observing the entropy-rate behavior (i.e., the algo-
rithm is stopped when the rate of entropy-rate decrease is
smaller than a threshold). The worst-case time complexity of
the state-splitting-based tree search is O(log(N)) where N is
the maximum number of states (equivalent to greedy nearest-
neighbor tree search). The worst-case time complexity of the
stochastic matrix estimation is O(|A| × |Q| + |S|).

Once the hyperparameters (i.e., alphabet size |A| and depth
D) are fixed, the statistical parameters of the xD-Markov
model are estimated by using the maximum a posteriori
(MAP) rule with uniform prior [21]. Let ncount(σj|qi) denote
the number of times that a symbol σj is generated in S2
when the state qi as the symbol string is observed in S1.
The MAP estimate of the emission probability of the symbols
σj ∈ A2 conditioned on qi ∈ Q1 is estimated by frequency
counting [21] as follows:

p̂
(
σj|qi

) = 1 + ncount
(
σj|qi

)

|A2| + ∑|A2|

=1 ncount(σ
|qi)

. (10)

If no event is generated at a combination of symbol
σj ∈ A2 and state qi ∈ Q1, then there should be no
preference to any particular symbol and thus, we choose
p̂(σj|qi) = (1/|A2|). The above procedure guarantees that the
xD-Markov machines, constructed from two (finite-length)
symbol strings, must have an (elementwise) strictly positive
x-morph matrix �12.

C. Information Contribution Measures in Sensor Network

This section introduces an information contribution measure
of the individual sensor time series yi (i ∈ [1, 2, . . . , N]) con-
ditioned on the first principal component in the time series x,
as being a representative of the overall information from the
sensor network. The objective here is to evaluate the contribu-
tion of each sensor to the information content of the network.
All time series are preprocessed and discretized into symbol
sequences for reduction of communication and computation
costs before initiating any network operation.

Following Section II-B, the transfer entropy from the time
series x to an individual time series yi is expressed as

Tx→yi = H(yi[k] | yi[k − D : k − 1])

− H(yi[k] | x[k − D : k − 1], yi[k − D : k − 1])

(11)

which quantifies the amount that the uncertainty of predicting
future the value yi[k] is (possibly) reduced as a consequence of
having the additional information xi[k−D : k−1]. In this way,
a new information measure is introduced, which compares the
predictability of the future yi[k] given the past value of itself
yi[k − D : k − 1] and the past value of the first principal com-
ponent x[k − D : k − 1] with a predefined depth (memory) D.
This new information measure is expressed as

�Ix→yi = H(yi[k] | yi[k − D : k − 1])

− H(yi[k] | x[k − D : k − 1]). (12)

It is noted that �Ix→yi is an information contribution measure
between x and yi. If �Ix→yi < 0, then the conditional entropy
of the future yi[k] given the past x[k − D : k − 1] is higher
than that given the past yi[k − D : k − 1] only. In that case,
the predictability of yi[k] by observing x[k −D : k −1] is less
than that of yi[k − D : k − 1]. Since x is assumed to represent
the overall information in the network, the sensor time series
yi should influence x in time; the rationale is that x contains
information about the network. By a similar argument, the
first principal component x influences the sensor time series
yi, because the information derived from sensor data is com-
monly shared in the network when �Ix→yi > 0. Equivalently,
sensors with a detected target are expected to have a negative
information contribution measure, while that of sensors that
capture environment information only is likely to be positive.

To compute the proposed information measure in the frame-
work of xD-Markov machines, the set of states Q is assigned
as all words (i.e., symbol blocks) w having the same length
as the depth D, i.e., |w| = D. Equivalently

Q =
⋃

|w|=D

w. (13)
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Fig. 2. Flow chart to generate information contribution for each sensor in
the network.

Fig. 3. Schematic of the experimental setup for target detection.

With the conditional entropy of xD-Markov machine defined
in (9), the proposed information measure is reformulated as

�Ix→yi = H
(Ayi |Qyi

) − H
(Ayi |Qx

)
. (14)

Fig. 2 presents the flow chart of the procedure to generate
the information contribution measure for each sensor in the
sensor network.

IV. EXPERIMENTAL VALIDATION

This section presents the results of experimental validation
on a laboratory apparatus that is served by the sensor network.
Fig. 3 depicts the layout of the laboratory apparatus; although
this figure was presented in a recent publication [6], [26], it
is replicated in this paper for convenience of referring to the
experimental results.

The sensor network is configured as a ring of nine
TCRT5000 infrared sensors; details of the collected time-series
data characteristics could be found in [6]. A computer-
instrumented and computer-controlled Khepera III mobile
robot [34] serves as a single moving target. The dynamic
environment and the associated environmental disturbances are
emulated as variations in the daylight intensities on partially
cloudy days. As seen in Fig. 3, the local area of the sensor
network is placed at the center of a square room in which only
one wall has open windows that are exposed to the sun. For a
more detailed description of the laboratory facility, the reader

is referred to the website http://nrsl.mne.psu.edu of Networked
Robotic Systems Laboratory at Penn State. All experiments
were conducted during days under partially cloudy conditions,
where the sunlight is intermittently blocked by clouds. During
the experiments, the moving target travels at a constant speed
in straight lines between the sensor network and the ambient
light source, as illustrated in Fig. 3. The infrared sensors are
oriented toward the moving target and are subjected to distur-
bances when the target is moving in and out, which causes
intermittent blocking of the ambient light source. Due to the
orientation of sensors, effects of the environment are different
for different individual sensors. Sensors that face the windows
(i.e., the ambient light source) have different levels of reading
when compared with the rest of the sensors. When a target
is moving in, ambient light sources are partially blocked for
some of the sensors, which increases their readings temporar-
ily. Changes in the ambient light affect the moving target as
the readings of some of the sensors fluctuate more signifi-
cantly. Thus, it becomes difficult to correctly detect a target
by simply estimating a threshold on the sensor readings under
environmental changes [26].

In total, 50 experiments with environment-only (i.e.,
absence of a target) and another 50 experiments with target
present have been conducted. For each experiment, each of
the nine sensors record synchronized data for about 65 s with
an average sampling rate of ∼18.5 Hz.

A. Signal Preprocessing for Robustness

Fig. 4 presents the results of noise injection on a target
absent (i.e., dynamic environment only) event. Once symbol
strings are obtained from the sensor time series via MEP,
PFSA features are generated accordingly via the algorithm
described in Section II-A. The distance between two PFSA
features from different sensors is obtained by the cosine dis-
tance function DC(•, •), the rationale of which is explained in
an earlier publication [26]

DC(a, b) = 1 −
∑n

i=1 aibi√∑n
i=1 ai

2
√∑n

i=1 bi
2

(15)

where a = [a1a2 · · · an] and b = [b1b2 · · · bn] are two real
vectors with the same dimension n ∈ N.

The objective of preprocessing of time series is to increase
the similarity of PFSA features among sensors for the tar-
get absent case, while maintaining the dissimilarity of PFSA
features between sensors with target detected and the others
under target present (see Section III-B1 for intuition and more
details of noise addition). Table I presents the average ratio of
top cluster divergence for target present to target absent cases
with/without adding noise for different choices of the alphabet
size for PFSA feature generation. The sensor feature cluster
divergence for the target present cases (with noise injection in
the time series) is amplified compared to the measures under
the target present cases. This indicates that the performance
of using the PFSA feature to distinguish target present from
target absent is improved by signal preprocessing.

http://nrsl.mne.psu.edu
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(a) (b) (c)

(d) (e) (f)

Fig. 4. Feature clustering with alphabet size |A| = 5 and cosine distance measurement used as the distance among PFSA features. Plates (a)–(c), respectively,
show partitioning, symbolization, and feature clustering before noise injection. Plates (d)–(f), respectively, show the same after noise injection.

TABLE I
AVERAGE FEATURE DIVERGENCE RATIO BETWEEN TARGET PRESENT AND TARGET ABSENT CASES

B. Information Contribution Measures

As stated earlier, the sign of the information contribution
measure reflects the direction of information flow between a
pair of time series. A positive value of information contribution
indicates that the first principal component, which represents
overall network information, dominates the sensor under con-
sideration; a negative value indicates that the sensor has its
own unique information (i.e., transition pattern in time series)
that leads to a contribution to the network information content.

The proposed information contribution measure is computed
as the difference of the conditional entropy between two types
of Markov machines constructed from sensor time series. The
conditional entropy of a standard (self) D-Markov machine for
each sensor time series represents the uncertainty of predict-
ing the future based on its own past. The conditional entropy
of xD-Markov machines between sensor time series and the
first principal component measures the uncertainty of predict-
ing the future sensor time series based on the first principal
component.

Fig. 5 depicts the average values of conditional entropies
of both standard and xD-Markov machines for both target
absent and target present cases under the alphabet size of
|A| = 4. The conditional entropy of the standard D-Markov
machine for target absent is larger than that of xD-Markov

machine, possibly except for sensor 3 that dominates the infor-
mation contribution relative to the first principal component
due to its location and orientation to the ambient light. On the
other hand, sensors 3–5 have significantly smaller conditional
entropies for standard D-Markov machines as compared to xD-
Markov machines. Since sensors 3–5 are the three most likely
sensors that may have detected the target, their contributions
to the first principal component are more significant as com-
pared to other sensors that may only contain the environmental
information.

Fig. 6 depicts the average values of proposed information
contribution measures of each sensor under both target present
and target absent cases. For target absent, the information
contribution measures are all positive and similar among all
sensors, except for sensor 3. On the other hand, the information
contribution measures for target present have distinguishable
patterns for sensors. It is noted that sensors 3–5, which would
most likely detect the target, have negative average informa-
tion contribution measures, while the sensors with no target
information yield positive values of small magnitude.

C. Alternative Network Information Representation

In this paper, the first principal component is chosen as
the representation of overall network information, since it
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(a)

(b)

Fig. 5. Average conditional entropies for (a) target absent and (b) target
present.

(a)

(b)

Fig. 6. Mean (i.e., blue bar) and standard deviation (i.e., red line) of infor-
mation contribution measures for (a) target absent and (b) target present
cases.

maximizes the variance of the projection from sensor quan-
tized symbol strings. Following (5) and (6), the first principal
component is obtained as a weighted linear combination of
the original sensor strings.

In general, the first principal component, as a representation
of the overall network information, is a linear combination
of sensor symbol sequences with case-dependent numerical
weights. To simplify the step of acquiring network informa-
tion, an alternative representation of information is proposed
based on data averaging (DA)

X = 1

N

N∑

i=1

yi. (16)

The above information representation is a uniformly
weighted linear combination of all sensor symbol sequences,
which incurs a much lower computational cost, compared
to the first principal component. As shown in the next sec-
tion, this simplification provides an equivalent target detection
performance to that of the first principal component.

D. Results of Target Detection

In a previous publication [26], the decision rule for target
detection in a dynamic environment had been constructed by
thresholding of the clustering divergence of standard Markov
machine features, constructed from time series without any
noise injection. It showed (nearly) perfect performance with a
relatively large alphabet size (e.g., |A| = 10) and the cosine
distance measure between features. In this paper, the results
of feature clustering algorithm are compared with and without
injection of independent and identically distributed zero-mean
Gaussian noise, as well as with the result of the proposed infor-
mation contribution measures of sensors. As the conditional
entropy of the Markov models depends on the hyperparam-
eters (i.e., alphabet size |A| and depth D), they are kept the
same for both the target present and target absent cases for a
consistent comparison. However, the effects of changing these
hyperparameters are shown later in this section.

In this paper, the decisions on target detection are made by
thresholding on the selected information contribution measure
among all available sensors in the network for each testing
event. It is seen in Fig. 6 that only sensor 3 has a negative
mean value of information contribution measure for the tar-
get absent cases, along with a significant standard deviation.
On the other hand, there are three sensors with negative mean
information contribution measure and relatively small stan-
dard deviations for the target present cases. So, the second to
the last largest information contribution measures of all nine
sensors is chosen as the criterion for the target detection for
performance robustness in this paper.

To determine the threshold based on the information causal-
ity measure values, the target detection problem is formulated
as a binary hypothesis test in terms of the hypothesis pair as

{
H0 : X ∼ P0
H1 : X ∼ P1

(17)

where X represents the information contribution measure value
from the sensor of interest; and the probability measures P0
and P1 represent the feature distance under the null hypoth-
esis H0 (i.e., target absent) and the alternate hypotheses
H1 (i.e., target present), respectively. The decision thresh-
old η, which is user-selectable, yields the following decision
logic:

X
H1
≷
H0

η. (18)

It is a usual practice to select η from the receiver operat-
ing characteristic (ROC) curve [35] that is constructed from
X computed from all training events of both hypotheses H0
and H1.
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(a) (b) (c)

(d) (e) (f)

Fig. 7. ROC curves for target detection under different choices of the alphabet size. (a) |A| = 3. (b) |A| = 4. (c) |A| = 5. (d) |A| = 6. (e) |A| = 7.
(f) |A| = 8.

Fig. 8. ROC curve of target detection for |A| = 3 with different depths.

Fig. 7 presents the ROC curves for target detection for dif-
ferent alphabet sizes ranging from |A| = 3 to |A| = 8 under
the following four different algorithms.

1) Feature clustering without noise injection.
2) Feature clustering with noise injection.
3) Information measure with PCA.
4) Information measure with (uniformly weighted) DA.
The results in Fig. 7 show that the performance of the

ROC curves follows a general trend of improvement as the
alphabet size increases. In particular, the clustering algorithm
with injection of zero-mean Gaussian noise is generally supe-
rior to that with no noise injection. Apparently, the average
performance of the proposed information contribution measure
with PCA is the best among the four algorithms; unlike DA,
the PCA algorithm can be used with a relatively smaller subset
of available data. Furthermore, the PCA algorithm yields good

target detection even with a choice of small alphabet size and
it continues to obtain consistently good results as the alphabet
size is increased. In Fig. 7, the rationale for slight performance
degradation with a larger alphabet size (e.g., |A| > 6) is pos-
sibly due to the finite data size and probability estimation by
frequency counting (over-fitting with limited data). For a suf-
ficiently large data size, the detection performance in terms
of the ROC curves should be monotonically increasing with
alphabet size |A|.

Fig. 8 presents the ROC curves of target detection generated
by the proposed information fusion method when the alphabet
size |A| = 3 and the temporal memory (or depth) is chosen
at D = 1, 2, and 3. The results show that, on the average,
the target detection performance is noticeably improved as D
is increased for xD-Markov modeling. In particular, the true
positive rate is significantly larger with increased D at small
false positive rates in the range of 0.05–0.10. This observation
indicates that more robust and accurate information contribu-
tion measures can be achieved if more detailed xD-Markov
machines are constructed. Therefore, the proposed algorithm
appears to be able to consistently outperform the earlier algo-
rithm [26] by using a smaller alphabet size, which reduces
the communication load across the network in addition to
reduced computation at individual sensor nodes. Furthermore,
the proposed algorithm is not susceptible to the choice of a
metric for measuring distances between the features, which
played a central role in the earlier algorithm [26].

V. CONCLUSION

This paper develops a generalized framework and presents
computation of the measure of information contribution in
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passive sensor networks for target detection. Two different
concepts have been presented for network information state
representation: one based on simple averaging and the other
based on eigenvalue decomposition, both of which have been
experimentally validated for event detection in a dynamic envi-
ronment on a laboratory-scale apparatus that serves as the
local area of a sensor network. We have compared the work
with a feature-level information fusion algorithm and have
shown that we can outperform the same with very small com-
putational burden (using compact models for small alphabet
size). Also, the proposed fusion algorithm does not require
the exact positioning of the sensors or their spatial correlation
(assuming they remain the same during training and testing
events). The algorithm could be used to detect events which
are observed by a local network (i.e., sensors which observe
an event at almost the same time when compared to the event
dynamics).

While there are many issues that need to resolved by further
theoretical and experimental research, the authors suggest the
following potential topics of future research.

1) Selection of Hyperparameters for Cross Machines: An
important future work is to optimize the hyperparameters
of cross-machines, i.e., the right partition size and the
related depth—a theoretical analysis for consistency of
the technique would help establish the correctness of the
proposed approach.

2) Extended Experimental Validation: The test apparatus
should be expanded to accommodate large-scale sen-
sor networks, because a larger sensor network would
be able to characterize the performance of the proposed
concepts in more complex settings (e.g., multiple targets
and different target types).

3) Comparison With Other Sensor Fusion Techniques:
While in this paper, the proposed concepts have been
validated in the setting of the authors’ earlier work for
information fusion, an important future work is to com-
pare the concepts with other existing techniques for data
aggregation, which are available in open literature.

4) Investigation of Network Information State: This topic
requires further investigation as the choice of network
information state is expected to be largely system-
specific.
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