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a b s t r a c t 

This paper presents reduced-order modeling of time-series data for a special class of Markov models 

using symbolic dynamics. These models are constructed from the time-series signal by partitioning the 

data and then inferring a probabilistic finite state automaton (PFSA) from the resulting symbol sequence, 

capturing a finite history (or memory) of symbol strings. In the proposed approach, the size of the tem- 

poral memory of a symbol sequence is estimated from spectral properties of the resulting stochastic 

matrix corresponding to a first-order Markov model of the symbol sequence. Then, agglomerative hier- 

archical clustering is used to cluster states of the corresponding full-order Markov model to construct a 

reduced-order Markov model based on information-theoretic criteria with a non-deterministic algebraic 

structure; the parameters of the reduced-order model are identified from the original model by making 

use of a Bayesian inference rule. The model size is inferred using an information-theoretic inspired crite- 

ria; the Markov parameters of the reduced-order model are identified from the original model by making 

use of a Bayesian inference rule. The paper also identifies theoretical bounds on the error induced in 

the reduced-size model in terms of expected Hamming distance between the sequences generated by 

the original and final reduced-size models. The proposed concept is elucidated and validated by two ex- 

amples on different data sets. The first example analyzes a set of time series of pressure oscillations in a 

swirl-stabilized combustor, where controlled protocols are used to induce flame instabilities. Variations in 

the complexity of the derived Markov model represent how the system operating condition changes from 

stable to an unstable combustion regime. The second example is built upon a public data set of NASA’s 

repository for prognosis of rolling-element bearings. It is shown that: (i) even with a small state-space, 

the reduced-order models are able to achieve comparable performance, and (ii) the proposed approach 

provides flexibility in the selection of a reduced-order model for data representation and learning. 

© 2018 Elsevier B.V. All rights reserved. 
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1. Motivation and introduction 

Markov models are widely used as a statistical learning tool for

uncertain dynamical systems [1] , where, in general, a Markov chain
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ith unobserved states is constructed from the associated tem-

oral data; in this setting, the learning task is to infer the states

nd the corresponding parameters of the Markov chain. In addition

o hidden Markov modeling (HMM), several other techniques have

een proposed for Markov modeling of time-series data. For exam-

le, in symbolic time series analysis (STSA)-based Markov model-

ng [2,3] , the states of a Markov chain are represented as a col-

ection of words (i.e., symbol blocks, also referred to as memory

ords) of different lengths, which can be identified from the time-

eries data on a discrete space with finite cardinality [2–5] . The

ymbols are created from the continuously varying time-series by

rojection onto a set with finite cardinality. The learning involved

or these models is inference of the hyperparameters of discretiza-

ion and memory. A common ground among all these modeling
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ools is that a Markov chain is induced by probabilistic representa-

ion of a deterministic finite state automaton (DFSA), called prob-

bilistic finite state automaton (PFSA) [6] . While the PFSA-based

nference provides a consistent and deterministic graph for learn-

ng the algebraic structure of the model, it is generally not a very

ompact representation and may lead to a large number of states

n the resulting Markov model. To circumvent this problem, at-

empts have been made to reduce the state-space by merging sta-

istically similar states of the model [3] . However, the problem may

till persist because these models are constructed by partitioning

he phase space of dynamical systems and the merging states that

re statistically similar may lead to algebraic inconsistency. On the

ther hand, if the states are merged to preserve the algebraic con-

istency, it may lead to statistical impurity in the resulting models

i.e., states that have different statistics could be merged together).

ther approaches for state aggregation in Markov chains could be

ound in [7–9] ; however, these tools do not consider inference of

he Markov model from the data, which may not be suitable for

nalysis of dynamic data-driven application systems (DDDAS) [10] . 

The state space for Markov models, created by symbolic anal-

sis, may grow exponentially with increase in memory or order

f the symbolic sequence. Estimating the right memory is criti-

al for temporal modeling of patterns observed in the sequential

ata. However, some of the states may be statistically similar and

hus merging them could reduce the size of state-space. Several re-

earchers (e.g., [11,12] ) have reported reduced-order Markov mod-

ling of time-series data from temporal patterns, where the size of

emporal memory of the symbolic data is estimated from the spec-

ral properties of a PFSA and the constraint of deterministic alge-

raic structure is imposed by the end objective due to this choice

f the data representation model. 

The current paper proposes to merge the states by removing

he constraint of deterministic algebraic properties associated with

FSA, where the states of the Markov chain are now collection

f words from its alphabet of length estimated in the last step;

his state aggregation induces a non-determinism in the finite state

odel. The parameters of the reduced-order Markov model are es-

imated by a Bayesian inference technique from the parameters as-

ociated with the higher-order Markov model. The reduced-order

odel for data representation is selected by using information-

heoretic criteria, where a unique stopping point terminates the

tate-merging procedure. A bound on the distortion of the predic-

ive capability of the models is identified for order reduction of the

tate-space. The final product is a generative model for the data;

owever, some of the predictive capabilities of a DFSA could be

ost. 

Contributions. Reduced-order Markov modeling of time series,

resented in this paper, is constructed in a PFSA setting with a

ondeterministic algebraic structure. Nondeterminism is induced

y merging states of a PFSA with deterministic algebraic struc-

ure inferred from discrete sequential data, which in turn allows

 compact representation of temporal data. In contrast to the ap-

roach reported by Mukherjee and Ray [3] , the proposed method

elies more strongly on information-theoretic concepts to arrive

t a consistent stopping criterion for model selection. The result-

ng reduced-order model has fewer parameters to estimate, which

eads to faster convergence and decision-making. These reduced-

rder Markov models can be used with streaming data for se-

uential hypothesis testing for early fault detection [13,14] . In ad-

ition, a bound is quantified on degradation in the model’s pre-

ictive capability due to state-space reduction, based on the Ham-

ing distance between the sequences generated by the original

odel and the reduced-order model. The algorithms presented in

he paper are elucidated and validated on two different exam-

les: (i) time series of pressure oscillations, collected from a swirl-

tabilized combustor apparatus [15] to monitor thermo-acoustic in-
tabilities, and (ii) a public data set for prognosis of rolling-element

earings [16] . In addition to the results on Markov modeling, some

f the results on pressure instabilities could be of independent in-

erest in the combustion community for machine learning and ac-

ive control, as discussed below. 

Excellent surveys on the current understanding of the mecha-

isms for the combustion instability phenomena could be found

n [17–21] . Active combustion instability control (ACIC) with fuel

odulation has proven to be an effective method for suppres-

ion of pressure oscillations in combustors [22,23] . Based on the

ork available in literature, one may conclude that the perfor-

ance of ACIC is primarily limited by the large delay in the feed-

ack loop and the limited actuator bandwidth [22,23] . Early de-

ection of combustion instability can potentially alleviate the prob-

ems due to time delays in the ACIC feedback loop and thus pos-

ibly improve the combustion performance [13,24–27] . While the

esults in these papers are encouraging, there is no interpretation

f the expected variations in the data-driven model that represent

hanges in the operating regimes of the underlying process. In con-

rast to the work reported in the existing literature, the current

aper demonstrates the changes in the complexity of the underly-

ng time-series model for the pressure fluctuations as the system

oves to instability. In summary, this paper has presented a con-

ept of structural changes in the underlying stochastic model and

ertinent parameters due to combustion instabilities. 

Organization. The paper is organized in six sections includ-

ng the present section. Section 2 succinctly provides the back-

round and mathematical preliminaries on symbolic dynamics and

arkov modeling. Section 3 describes the details of the technical

pproach for inferring a reduced-order Markov model from time

eries data. Section 4 presents validation of the underlying theoret-

cal concept on the experimental data of pressure oscillations from

 laboratory-scale combustion apparatus [15] . Section 5 presents

he results of validation of the underlying theoretical concept on a

ublic data set [16,28] . Finally the paper is summarized and con-

luded in Section 6 along with recommendations for future re-

earch. 

. Background and mathematical preliminaries 

Symbolic analysis of time-series data is a relatively recent tool,

here continuous sensor data are converted to symbol sequences

ia partitioning of the continuous domain [2,29] . The stationary

ynamics of the symbols sequences are then modeled as a prob-

bilistic finite state automaton (PFSA), which is defined as follows:

efinition 2.1 (PFSA) . A probabilistic finite state automaton (PFSA)

s a tuple M = (Q , A , δ, M) where 

• Q is a finite set of states of the automaton having cardinality

| Q | ; 
• A is a finite alphabet set of symbols having cardinality | A | ; 
• δ : Q × A → Q is the state transition function; 
• M : Q × A → [0 , 1] is the | Q | × | A | emission matrix (also

known morph matrix). The matrix M = [ m i j ] is row stochastic

such that m ij is the probability of generating symbol a j from

state q i . 

emark 2.1. An alternative representation of a PFSA is M =
(Q , �) where � : Q × Q → [0 , 1] is called the | Q | × | Q | state-

ransition probability matrix. The matrix � = [ πi j ] is row stochas-

ic and π ij is the probability Pr( q j | q i ) of visiting state q j from state

 i . The stationary state probability p of an irreducible (also called

rgodic) PFSA is the sum-normalized eigenvector of � correspond-

ng to its (unique) unity eigenvalue [30] . 

emark 2.2. The PFSA defined above has a deterministic algebraic

tructure which is governed by the transition function δ; thus
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Fig. 1. Graphical model showing non-determinism in a PFSA. The symbol 1 emit- 

ted from state q 1 leads to different states with fixed probabilities indicating non- 

deterministic behavior. 
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the emission of a given symbol from a particular state leads to a

fixed state (including the original state, which forms a self-loop).

However, the symbol emissions are probabilistic (represented by

the emission matrix). On the other hand, the transition function

for a non-deterministic finite state automaton is given by a map,

δ : Q × A → 2 Q where, 2 Q denotes the power set of Q and includes

all subsets of Q . The idea is elucidated in Fig. 1 , where the same

symbol may lead to multiple states, albeit in a probabilistic fash-

ion. This configuration allows flexibility in modeling (possibly) at

the expense of some predictive accuracy. 

For symbolic analysis of time-series data, a class of PFSA called

the D -Markov machine [2,3] has been proposed as a sub-optimal

but computationally efficient model to encode the dynamics of

symbol sequences as a finite state machine. 

Definition 2.2 D -Markov machine . A D -Markov machine is a sta-

tistically stationary stochastic process S = . . . a −1 a 0 a 1 . . . (modeled

by a PFSA in which each state is represented by a finite history of

at most D symbols), where the probability of occurrence of a new

symbol depends only on at most the last D symbols, i.e., 

Pr (s n | . . . s n −D . . . s n −1 ) = Pr (s n | s n −D . . . s n −1 ) 

where D is called the depth (or memory) of the Markov machine. 

Remark 2.3. A D -Markov machine is thus a D 

th -order Markov ap-

proximation of the discrete symbolic process. For many stable and

controlled engineering systems that tend to forget their initial con-

ditions, a finite length memory assumption is reasonable. The D -

Markov machine is represented as a PFSA and states of this PFSA

are words over alphabet A of length D (or less); the state transi-

tions are described by a sliding block code of memory D and antic-

ipation length of one [31] . The notion of depth D is approximately

applicable to systems with fading memory, where it is expected

that the predictive influence of a symbol progressively diminishes.

An accurate estimation of depth for the symbolic dynamical pro-

cess is required for the precise modeling of the underlying dynam-

ics of the discrete sequence. 

Remark 2.4. Given a symbol sequence and a structure of D -

Markov machine, the emission matrix M and the transition ma-

trix � are estimated using frequency counting with uniform prior.

In the frequency counting method, the number of occurrences of

symbol s j at state q i is computed to obtain the count n ij . This count

is used to estimate the emission matrix parameters as follows: 

m i j = m (q i , s j ) � 

1 + n i j 

| �| + 

∑ | �| 
� =1 

n i� 

. 

Here the initial value of each parameter is chosen to be 1 / | �| ; this

implies that, in the absence of any symbol emission at the end

of an observation period, the probability of symbol emission from

each state is uniformly 1 / | �| . This initialization ensures that each

entry of the morph matrix is strictly positive; the details of this

estimation procedure are given in [3,32] . 

Next an information-theoretic metric is introduced, which will

be used for merging the states of the Markov model in Section 3 . 
efinition 2.3 (Kullback–Leibler Divergence [32] ) . The Kullback–

eibler (K–L) divergence of a discrete probability distribution P

rom another discrete probability distribution 

˜ P is defined as fol-

ows. 

 KL (P ‖ ̃

 P ) = 

∑ 

x ∈ X 
p X (x ) log 

(
p X (x ) 

˜ p X (x ) 

)
It is noted that K-L divergence is not a proper distance as it is

ot symmetric. However, to treat K-L divergence as a distance it is

enerally converted into symmetric divergence as follows, d(P, ˜ P ) =
 KL (P ‖ ̃  P ) + D KL ( ̃  P ‖ P ) . This is defined as the K-L distance between

he distributions P and 

˜ P . This distance will be used to find out

he structure in the set of the states of the PFSA-based Markov

odel whose states are words, over the alphabet of the PFSA, of

ength equal to the depth estimated for the discretized sequence.

ater sections present some results, which are used to bound the

istortion in model accuracy using K-L divergence. 

. Technical approach 

This section presents the details of the proposed approach for

nferring a Markov model from time series data. As discussed ear-

ier, the first step is the discretization of time-series data to gen-

rate a discrete symbol sequence. While it is possible to optimize

he symbolization of time-series by using some optimization crite-

ion, such a technique is not presented here. In this paper, the data

re discretized using the unbiased principle of entropy maximiza-

ion of discrete sequences [33] via maximum entropy partitioning

MEP) [34] . The proposed approach for Markov modeling then con-

ists of the following steps: 

• Estimate the approximate size of temporal memory (or order)

of the symbol sequence. 
• Cluster the states of the high-order Markov model. 
• Estimate the parameters of the reduced-order Markov model

(e.g., the state transition matrix �). 
• Select the final model using information theoretic scores, de-

scribed later in Section 3.3 . 

Memory of the discrete sequence is estimated using a recently

ntroduced method [11,12] based on the spectral analysis of the

arkov model that is induced by a PFSA with unity depth (i.e.,

 = 1 ). It is noted that the above steps are followed during training

o construct the reduced-order model from time series and, dur-

ng test, the model parameters are estimated. The key ideas behind

hese steps are explained next. 

.1. Estimation of reduced-order Markov model 

This section presents the estimation of the reduced-order

odel from observed symbol sequences. This is a two-step pro-

edure – in the first step, the memory of the model is estimated;

n the second step, the states of the full-order model are clustered

o identify the reduced-order model. These steps are explained in

he following subsections. 

.1.1. Depth estimation for Markov models 

Srivastav [11] has interpreted the significance of depth D of a

ymbol sequence (see Definition 2.2 ) as the number n of time steps

fter which probability of current symbol is independent of any

ast symbol, i.e., 

r (s k | s k −n ) = Pr (s k ) ∀ n > D, (1)

here the statistical dependence is evaluated on individual past

ymbols as Pr (s k | s k −n ) instead of assessing the dependence on

ords of length D as Pr (s k | s k −1 , . . . , s k −D ) . It is shown that if the

bserved process is forward causal , then observing any additional
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Fig. 2. The symbol emission probabilities for a Markov chain with 3 symbols shown 

on a simplex. Symmetric K–L distance is used to find the structure in the state- 

set in the information space and the states are clustered based on the revealed 

structure. 
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ntermediate symbols s k −1 , . . . , s k −n +1 does not induce a depen-

ence between s k and s k −n if it did not exist on the individual level

11] . Since the equality in Eq. (1) may not strictly hold, the follow-

ng approximation is made for estimation of depth D as follows:

 Pr (s k | s k −n ) − Pr (s k ) ‖ ≤ ε ∀ n > D (2)

here ‖ •‖ is a distance metric (or norm) and ε is a user-specified

olerance or convergence condition. It is noted that Pr( s k ) is the

tationary distribution for the one-step transition matrix. Then,

q. (2) is further approximated using the eigenvalues of the one-

tep Markov matrix as explained below. Interested readers are re-

erred to [11] for a detailed analysis of the same. 

Let � = [ π(1) 
i j 

] be the one-step (i.e., D = 1 ) state-transition

robability matrix of the PFSA M constructed from a symbol se-

uence, i.e., 

= Pr (s k | s k −1 ) . (3)

hen, the n -step transition probability πn 
i j 

= Pr (s k = a j | s k −n = a i ) is

btained as: 

n 
i j = 

∑ 

a r ∈A 
π� 

ir π
(n −� ) 
r j 

, (4) 

hich is the probability of observing a symbol a r at an interme-

iate step � and followed by summing over all possible choices

 r ∈ A . By expanding Eq. (4) recursively, it is seen that πn 
i j 

is the ij th 

lement of the matrix �n . The following relationship is obtained in

 matrix form: 

r (s k | s k −n ) = �n . (5)

f the one-step transition matrix � is irreducible and aperiodic,

hen all (except the unity) eigenvalues of � satisfy | λj | < 1 ∀ j ≥ 2

2] . If the one-step transition matrix π is diagonalizable, then it

ollows by using the eigen-decomposition that � = U �U 

−1 . Then,

he n -step transition matrix can be written as: 

n = U �n U 

−1 . (6) 

hus, the convergence rate of �n can be used to obtain the sta-

ionary distribution �∞ for computing the size of the tempo-

al memory defined by Eq. (2) . Using the distance of the state-

ransition probability matrix after steps from the stationary point,

epth D is obtained such that the following condition is satisfied:

 

trace ( �n ) − trace ( �∞ ) | ≤
J ∑ 

j=2 

∣∣λ j 

∣∣n 
< ε ∀ n > D, (7)

here n is the number of iterations of the PFSA; J is number of

non-zero) eigenvalues of �; and ε is the user-specified threshold

s an appropriate convergence condition, i.e., the depth D of the

ymbol sequence is estimated for a choice of ε by estimating the

tochastic matrix for the one-step PFSA. For real-life applications,

n approximate value of ε can be estimated by the decay rate of

he eigenvalues of � by adjusting n in Eq. (7) . In general, a value

f n is selected such that with any further increment in n , there

s no noticeable change in the value of Eq. (7) . The physical ex-

lanation for the such an approximation is based on the fact that

ypical controlled dynamical systems have stable orbits and they

end to forget their initial conditions. Thus, it is reasonable to jus-

ify the approximation as systems with fading memory, which is

epresented by Eq. (7) . 

Next, another pass of data is executed to estimate the param-

ters of the PFSA (i.e., � = Pr (s k | s k −1 , . . . , s k −D ) ) whose states are

ords of length D over the symbols in the alphabet over A ; this

tep is critical for modeling accuracy. 
.1.2. Model reduction using agglomerative hierarchical clustering 

The states of the reduced-order Markov model are identified

rom the set of words of length D over the alphabet A . This step

s executed by agglomerative hierarchical clustering, which is a

ottom-up approach [35] and generates a sparse network (e.g., a 

inary tree) of the state set Q , where |Q| = |A| D by successive ad-

ition of edges between the elements of Q . In general, the agglom-

rative hierarchical clustering algorithm is built upon a hierarchical

tructure and is capable of visualizing the structure of the set of

he original states by using an appropriate metric. Initially, each of

he states q 1 , q 2 , . . . , q n of the model M is in its own cluster C i ∈ C,

here C is the set of all clusters, C 1 , C 2 , . . . , C n , for the hierarchical

luster tree. The distance between any two states in Q is measured

sing the K-L distance between the symbol emission probabilities

onditioned on them, i.e., 

(q i , q j ) = D KL ( Pr (A| q i ) ‖ Pr (A| q j )) + D KL ( Pr (A| q j ) ‖ Pr (A| q i )) 
(8) 

here the terms on the right have the following meaning. 

 KL ( Pr (A| q i ) ‖ Pr (A| q j )) = 

∑ 

s ∈A 
Pr (s | q i ) log 

(
Pr (s | q i ) 
Pr (s | q j ) 

)
n terms of the distance measured by Eq. (8) , the pair of clusters

hat are nearest to each other are merged and this step is repeated

ntil only one cluster is left. A pseudo-code for the clustering al-

orithm has been provided in the Appendix as Algorithm 1 , where

he underlying tree structure displays the order of splits in the

tate set of the higher-order Markov model and is used to aggre-

ate the states close to each other. For clarification of presenta-

ion, Fig. 2 shows an example of a Markov chain with 27 states

nd 3 symbols on a simplex plane, where each pentagon on the

implex plane represents one row of the symbol emission matrix.

he hierarchical clustering is used to find the structure of the state

et on the simplex plane using the K–L distance. The set of states

lustered together could be obtained based on the number of final

tates required in the reduced-order Markov model. 

.2. Parameter estimation of the reduced-order Markov model 

The parameters of the Markov model are identified after clus-

ering the states of the original PFSA that has |A| D states. This is

ccomplished by a Bayesian inference technique, where the state

ransition matrix �, the emission matrix M , and the state proba-
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Fig. 3. Graphical models representing the dependencies between the random variables. 
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bility vector p of the original PFSA model M are available; in ad-

dition, the deterministic assignment map 

f : Q → 

˜ Q 

is available, where Q is the state set of the original model, and˜ Q is the state set of the reduced-order model. Since the reduced

order model is represented by the tuple ˜ M = ( ̃  Q , ̃  �) , where ˜ � =
[ ̃  πi j ] is the state transition matrix, a Bayesian inference technique

is applied to infer the individual values of transition probabilities

˜ πi j = Pr ( ̃  q k +1 = j | ˜ q k = i ) for all i, j ∈ 

˜ Q . 

Let the random variable Q k be the state of the original model

at the k th time epoch and let S k be the symbol emitted from

that state. Then, this probabilistic emission process is governed by

the emission matrix M . The state of the reduced order model is

obtained from a deterministic mapping of the state of the PFSA

model; therefore the state of the reduced-order model is also a

random variable, denoted as ˜ Q k = f (Q k ) . The Bayesian network

representing the dependencies between these variables is shown

in the recursive as well as unrolled form in Fig. 3 . 

The conditional density Pr ( ̃  Q k = ˜ q | Q k = q ) can be evaluated by

checking if state q belongs to the state cluster ˜ q and assigning the

value of 1 if true, else assign it the value of 0. Since it is known

that ˜ Q partitions the set Q , the conditional density is well-defined.

Thus, it can be written as 

Pr ( ̃  Q k = 

˜ q | Q k = q ) = I ˜ q (q ) , (9)

where I is the indicator function with I ˜ q (q ) = 1 , if element q be-

longs to the set ˜ q , else it is 0. The derivation of the Markov model

Pr ( ̃  Q k +1 | ˜ Q k ) using Pr (Q k +1 | Q k ) , stationary probability vector p ,

and assignment map f is shown below. 

Pr ( ̃  Q k +1 | ˜ Q k ) = 

∑ 

q ∈Q 
Pr ( ̃  Q k +1 , Q k +1 = q | ˜ Q k ) (

= 

∑ 

q ∈Q 
Pr (Q k +1 = q | ˜ Q k ) Pr ( ̃  Q k +1 | ˜ Q k , Q k +1 = q ) (C

= 

∑ 

q ∈Q 
Pr (Q k +1 = q | ˜ Q k ) Pr ( ̃  Q k +1 | Q k +1 = q ) (

= 

∑ 

q ∈Q 
Pr (Q k +1 = q | ˜ Q k ) I ˜ Q k +1 

(q ) (

= 

∑ 

q ∈ ̃  Q k +1 

Pr (Q k +1 = q | ˜ Q k ) . 

Since the assignment of state of a full-order model to a cluster is

a deterministic many-to-one mapping, the states ˜ Q k +1 and 

˜ Q k are

conditionally independent given Q k +1 . 

The density Pr (Q k +1 | ˜ Q k ) is obtained by Bayes’ rule as 

Pr (Q k +1 | ˜ Q k ) = 

Pr ( ̃  Q k | Q k +1 ) Pr (Q k +1 ) ∑ 

q ∈Q Pr ( ̃  Q k | Q k +1 = q ) Pr (Q k +1 = q ) 
. (11)
 

inalization) 

 rule of probability) 

orization using Figure 3) 

 Eq. (9)) 

(10)

imilar to the steps to obtain (10) , the following expression is de-

ived as 

r ( ̃  Q k | Q k +1 ) = 

∑ 

q ∈ ̃  Q k 

Pr (Q k = q | Q k +1 ) . (12)

hen Pr (Q k | Q k +1 ) is obtained from Bayes’ rule using transition

atrix and stationary probability vector as follows: 

r (Q k | Q k +1 ) = 

Pr (Q k +1 | Q k ) Pr (Q k ) ∑ 

q ∈Q Pr (Q k +1 | Q k = q ) Pr (Q k = q ) 
. (13)

Now the desired state transition matrix ˜ � of the reduced order

odel is obtained by combining Eqs. (10) , (11), (12) , and (13) to-

ether. Once the state cluster set ˜ Q and state transition matrix ˜ �
re available, the reduced order model is completely defined. 

.3. Model selection using information-theoretic criteria 

This subsection describes the model selection process during

he underlying state merging process for model inference. After

omputation of “penalized” likelihood estimates for different mod-

ls, the model with the lowest score is selected as the optimal

odel. This is explained next. 

The (unpenalized) log-likelihood of a symbol sequence � s given

 Markov model M is computed as follows: 

 ( � s |M ) = log Pr ( � s | G ) (14)

his expression is simplified by using the Markov property that the

ymbol emission probabilities are independent given the current

tate of the model M . 

 ( � s |M ) ∼= 

log 

N ∏ 

k =1 

Pr ( s k | q k ) 

∼= 

N ∑ 

k =1 

log Pr ( s k | q k ) , (15)
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here the effects of the initial state are ignored because they

ecome insignificant for long statistically stationary symbol se-

uences. It is noted that, with a finite symbol sequence, the log-

ikelihood is always finite. Furthermore, with the Markov models

onsidered in this paper, this sum could be further simplified using

he fact that the states are completely observable and are defined

y a finite collection of past symbols, i.e., q k = s k −1 , . . . , s k −D . Under

his assumption for the current class of Markov models, Eq. (15) is

urther simplified as follows: 

 ( � s |M ) ∼= 

N ∑ 

k = D +1 

log Pr ( s k | s k −1 , . . . , s k −D ) (16) 

s discussed earlier in Section 3.1 , the states are merged using hi-

rarchical clustering and thus, for every desired number of final

tates, the map f N max 
determines how the original states are par-

itioned using the hierarchical clustering. This map is known for

very terminal number of states and thus, the current state in the

educed model can be estimated by using the map f N max 
. Once the

urrent state is determined, the log-likelihood is estimated by us-

ng Eqs. (15) and (16) . 

 ( � s | ̃  M ) ∼= 

N ∑ 

k = D +1 

log Pr ( s k | ̃  q k = f N max 
(q k ) ) (17) 

here ˜ q k is a state of the reduced-order model and q k is a state of

he original full-order model. Alternatively, the likelihood can also

e computed with the state transition matrix of the reduced-order

odel (see Section 3.2 ) as follows: 

 ( � s | ̃  M ) ∼= 

N ∑ 

k = D +1 

log Pr ( ̃  q k +1 = f N max 
(q k +1 ) | ̃  q k = f N max 

(q k ) ) . (18) 

nce the log-likelihood for all possible reduced-order models are

stimated, a penalty on the complexity of the models is introduced

ased on their size as explained below. 

In the next step of the model selection process, a “complexity

enalty” is added to the log-likelihood estimates, thereby balanc-

ng goodness of fit against the complexity of the model to pre-

ent over-fitting. This paper has adopted two widely-used model

election functions, namely the Akaike information criterion (AIC)

36] and the Bayesian information criterion (BIC) [37] : 

1. M BIC = −2 L ( � s | ̃  M ) + K log (N) , where K is the number of free

parameters and N is the number of observations. 

2. M AIC = −2 L ( � s | ̃  M ) + 2 K, where K is the number of free param-

eters. 

The free parameters to be estimated from the data are those of

he symbol emission parameters, i.e., the number of such parame-

ers is K = | A || ˜ Q | . It is noted that this procedure facilitates model

election for individual symbol sequences. The criterion here al-

ows a terminal condition for state merging; however, different

ymbol sequences may have different models. The model with the

inimum score is selected as the best model. Based on the results

resented in next sections, it will be shown that the temporal and

redictive capabilities are preserved for the reduced-order models

ith a very small number of states as compared to the original

odel. 

It is noted that the calculation of log-likelihood for the reduced-

rder models is independent of the choice of penalty imposed on

he model complexity. In this paper has used the AIC and BIC to

rrive at a final model size. This is based on the results from lit-

rature that criterion result in consistent model selection results.

owever, since a theoretical analysis of the models estimated by

IC and BIC is not within the scope of this paper, it is considered

s a topic of future research. 
emark 3.1. The final Markov model is a finite-depth approxi-

ation of the original time-series data. However, compared to

he PFSA-based D -Markov machines [2,3] , the current aggregated

odel has a non-deterministic algebraic structure, i.e., the same

ymbol emissions from a state can lead to different states. While

his leads to some loss in predictive capability as compared to the

odels in [2,3] , the size of the model is reduced as per the re-

uirement at hand. This allows faster convergence rates for the

ymbol emission probabilities as fewer parameters are required to

stimate from data, which would lead to faster decisions during

esting. 

The rest of this section presents a Hamming distance-based

ound for distortion in the predictive capabilities of reduced mod-

ls and demonstrate the utility of these models in practical prob-

ems of fault/anomaly detection from time-series data. 

.4. Analysis of the proposed algorithm 

This subsection derives an upper bound on the distortion of the

odel due to the reduction of state-space of the Markov model

sing Hamming distance between two symbol sequences. Pinsker’s

nequality [32] is first presented, which relates the information di-

ergence to the variational distance between probability measures

efined on arbitrary spaces. This is followed by another theorem

hich is used to derive Hamming distance bounds using the infor-

ational divergence. 

heorem 3.1 (Pinsker’s inequality) . [32] Let P and Q be two proba-

ility distributions on a measurable space (X , �) . Then, the following

s true 

 T V (P, Q ) ≤
√ 

1 

2 

D KL (P ‖ Q ) (19) 

here d T V (P, Q ) = sup A ∈ �{| P (A ) − Q(A ) |} is the total variation dis-

ance. 

heorem 3.2 [38] . Let X be a countable set and let us denote by x n 

he sequence (x 1 , x 2 , . . . , x n ) ∈ X 

n . Let q n be a Markov measure on

 

n , that is, q (x n ) = q (x 1 ) 
∏ n 

i =2 q i (x i | x i −1 ) . Then for any probability

easure p n on X 

n , the following is true 

 ̄(p n , q n ) ≤
[ 

1 

2 n 

D KL (p n ‖ q n ) 
] 1 / 2 

(20) 

here, d̄ denotes the normed Hamming distance on X 

n × X 

n : 

 ̄(x n , y n ) = n 

−1 
n ∑ 

n =1 

d(x i , y i ) , (21)

here d(x i , y i ) = 1 if x i � = y i and 0 otherwise. The d̄ -distance between

 

n and q n is 

 ̄(p n , q n ) = min E d̄ ( ̂  X 

n , X 

n ) , (22) 

here min is taken over all joint distributions with marginals p n =
ist ˆ X n and q n = dist X n and E denotes the expectation operator. 

Theorems 3.1 and 3.2 provide a means to bound Hamming dis-

ance between sequences generated by two different distributions.

his leads to a bound on the Hamming distance between the sym-

ol sequences generated by the reduced-order Markov model and

he original model, which is obtained by estimating the K–L dis-

ance between the measure on symbol sequences induced by these

odels. The following paragraph explains how an approximate es-

imate of the K–L distance between the original and a reduced

odel is constructed. 

Let the original D-Markov model be denoted by M and the

educed-order model by ˜ M . The Markov measure on the prob-

bility space (S n , E, P ) , where the set S 
n consists of sequences
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Fig. 4. Schematic diagram of the combustion apparatus. 

Table 1 

Operating conditions. 

Parameters Value 

Equivalence ratio 0.525, 0.55, 0.60, 0.65 

Inlet velocity 25–50 m/s in 5 m/s increments 

Combustor length 25–59 inch in 1 inch increments 
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of length n from an alphabet A could be estimated using the

symbol emission probabilities. More explicitly, the Markov mea-

sure of a sequence S n on S 
n induced by M is given by P M 

(S n ) =
Pr (q 1 ) 

∏ n 
i = D +1 Pr (s i | q i ) , where D is the depth of the model. Then,

the K–L divergence between M and 

˜ M is given by the following

expression: 

D KL (P n M 

‖ P n ˜ M 

) = 

∑ 

S n ∈ S n 
P M 

(S n ) log 

(
P M 

(S n ) 

P ˜ M 

(S n ) 

)
. (23)

The above expression is simplified as follows: 

log 

(
P M 

(S n ) 

P ˜ M 

(S n ) 

)
= log ( Pr (q 1 )) − log ( Pr ( ̃  q 1 )) 

+ 

n ∑ 

i = D +1 

log ( Pr (s i | q i )) − log ( Pr (s i | ˜ q i )) , 

where ˜ q i is the merged state of the reduced-order model and q i 
is the original state of the full-order model. The merged state may

consist of multiple original states and then Pr ( ̃  q 1 ) = 

∑ 

q ∈ ̃ q 1 
Pr (q ) ≥

Pr (q 1 ) as q 1 ∈ ˜ q 1 . Using this inequality and monotonicity of the

logarithm function, the first term log ( Pr (q 1 )) − log ( Pr ( ̃  q 1 )) in the

above equation is non-positive, and the relation (24) is obtained.

The expression on the right in (24) could be further bounded by

using the Lipschitz constant for the logarithm function and under

the assumption that log (Pr( s j | q i )) � = 0 ∀ q i ∈ Q and all s j ∈ A . 

log 

(
P M 

(S n ) 

P ˜ M 

(S n ) 

)
≤

n ∑ 

i = D +1 

log ( Pr (s i | q i )) − log ( Pr (s i | ˜ q i )) (24)

≤
n ∑ 

i = D +1 

(
Pr (s i | q i ) − Pr (s i | ˜ q i ) 

Pr (s i | q i ) 
)

(25)

≤ (n − D − 1) κ, (26)

where, κ = max q ∈ Q,s ∈A 
Pr (s | q ) −Pr (s | ̃ q ) 

Pr (s | q ) . In the above inequalities,

Eq. (25) is obtained from equation (24) by using the observation

that Pr (s i | ˜ q i ) = Pr (s i | q i ) + η, where η is the perturbation in the

symbol emission probability from q i when it is clustered into a

new state ˜ q i . Hence, the K-L distance in Eq. (23) could be bounded

by the following term. 

D KL (P n M 

‖ P n ˜ M 

) ≤
∑ 

S n ∈ S n 
P M 

(S n )(n − D − 1) κ

= (n − D − 1) κ
∑ 

S n ∈ S n 
P M 

(S n ) 

= (n − D − 1) κ. (27)

Thus, a uniform bound on the Hamming distance between the

original and the final model could then be obtained as follows. 

d̄ (P M (S n ) , P ˜ M 

(S n )) ≤
√ 

(n − D − 1) κ

2 n 

(28)

The above inequality thus, allows comparison of models with

different state-space based on the predictive accuracy of a reduced

model when compared to the original model. As compared to the

earlier information theoretic criteria, which were based on the ef-

ficiency of data compression by different models, the inequality

in (28) allows to compare them based on their symbol emission

statistics and thus, is computationally efficient. It is possible to find

a rather tighter bound in an expected sense by using the stationary

distribution of the two Markov chains to find an expected bound

on Hamming distance. However, finding the same is left as an exer-

cise for future work. Using the above bound for selection of models

could be more efficient than the information theoretic metrics (as

it can estimated by using the symbol emission probabilities instead
f the penalized likelihoods); however, finding a penalized version

f the bound for model selection is also left as a future exercise.

n the following sections, we present modeling and analysis of two

ifferent data sets using the proposed algorithms and present rel-

vant inference. 

. Concept validation on time series of pressure oscillations in 

 combustor 

This section validates the proposed concepts on experimental

ata from a laboratory-scale combustion apparatus [15] , where the

bjective is to investigate instabilities in lean-premixed combus-

ion. A reduced order data-driven model has been used for cor-

ect labeling of transition of the combustion process from the sta-

le to unstable phase, because a sufficiently accurate physics-based

odel of the combustion process is not available. The following

ubsections demonstrate that the proposed algorithm is capable

f model order reduction to achieve trade-offs between predic-

ive accuracy and model complexity. Results on classification and

nomaly detection show that the proposed method of model learn-

ng yields good performance in terms of the machine learning ob-

ectives of class separability and anomaly detection. 

.1. Experimental data on combustion 

A swirl-stabilized, lean-premixed, laboratory-scale combustor

as been used for collection of experimental data for validation

f the proposed algorithm. Fig. 4 depicts the schematic diagram

f the variable-length combustor apparatus, consisting of an inlet

ection, an injector, a combustion chamber, and an exhaust sec-

ion. There is an optically-accessible quartz section followed by a

ariable-length steel section. Further details of the combustion ap-

aratus are available in [15] . 

The laboratory-scale combustor, shown in Fig. 4 , was used to

enerate the experimental data. Tests were conducted at a nominal

ombustor pressure of 1 atm over a range of operating conditions,

s listed in Table 1 . 

In each test, pressure dynamics in the combustion chamber and

he global OH and CH chemiluminescence intensity were mea-

ured to study the mechanisms of combustion instability. The

easurements were made simultaneously at a sampling rate of

192 Hz (per channel), and the data were collected for 8 seconds,

or a total of 65,536 measurements (per channel). A total of 780

ets of data were collected from all the tests; in every test, the

ombustion process was driven from stable to unstable by chang-

ng the equivalence ratio φ and the combustor length. It is noted

hat each data set includes a variety of the process behavior over a
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Fig. 5. Autocorrelation function of time-series data in the unstable phase of com- 

bustion. The time-series data is down-sampled by the lag marked in the red square. 

It is noted that the individual time-series have their own down-sampling lags. (For 

interpretation of the references to colour in this figure legend, the reader is referred 

to the web version of this article.) 
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arge number of operating conditions and thus provides rich infor-

ation contents to test the efficacy of the algorithm in detecting

lasses, irrespective of the underlying operating conditions. 

.2. Markov modeling of combustion data 

This subsection presents the results for modeling and analysis

f the combustion data generated from the experimental appara-

us in Fig. 4 . The time-series data are first normalized by subtract-

ng the mean and dividing by the standard deviation of its ele-

ents; this step corresponds to bias removal and variance normal-

zation. Data from engineering systems are typically oversampled

o ensure that the underlying dynamics can be captured, which is

192 Hz in the current experiments. Due to coarse-graining from 

he symbolization process, an over-sampled time-series may mask

he true nature of the system dynamics in the symbolic domain

e.g., occurrence of self loops and irrelevant spurious transitions in

he Markov chain). The procedure is outlined below. 

A time-series is first down-sampled to find the next crucial ob-

ervation. The first minimum of auto-correlation function gener-

ted from the observed time-series is obtained to find the un-

orrelated samples in time. The data sets are then down-sampled

y this lag. Fig. 5 shows the autocorrelation function for a typical

ime-series in the region of unstable combustion, where the data

re downsampled by the lag marked in red rectangles. To avoid the

isk of discarding significant amount of data due to downsampling,

he down-sampled data using different initial conditions have been

oncatenated. Further details of this preprocessing are reported in

11] . 

The continuous time-series data set is then partitioned using

aximum entropy partitioning (MEP) [34] , where the information

ich regions of the data set are partitioned finer and those with

parse information are partitioned coarser. In essence, each cell

n the partitioned data set contains (approximately) equal num-

er of data points under MEP. A ternary alphabet with A = { 0 , 1 , 2 }
as been used to symbolize the continuous combustion instability

ata. Data sets from different phases are analyzed as the process

volves from a stable region through the transient phase to the

nstable region; here, the ground truth is decided using the RMS-

alues of pressure. 
Fig. 6 a shows the observed changes in the behavior of the data

s the combustion operating condition changes from stable to un-

table; a change in the empirical distribution of data from uni-

odal to bi-modal is observed as the system makes this transi-

ion. In these experiments, 150 samples of pressure data were se-

ected for each transition from the stable to the unstable phase

or analysis and comparison. First, the expected sizes of tempo-

al memory are compared during these two phases of operation.

here are changes in the eigenvalue decomposition rate for the 1-

tep stochastic matrix calculated from the data during the stable

nd unstable phase, irrespective of the combustor length and inlet

elocity. During a stable operation, some of the eigenvalues very

uickly go to zero as compared to the unstable operating condi-

ion, as seen in Fig. 6 b, which suggests that the size of temporal

emory of the discretized data increases as the system moves to

he unstable operating condition. Therefore, under the stable con-

ition, the discretized data appear to behave as symbolic noise as

he predictive power of Markov models remain unaffected even if

he order of the Markov model is increased. In contrast, the pre-

ictive power of the Markov model can be enhanced by increasing

he order of the Markov model during an unstable operating con-

ition, indicating a more deterministic behavior. 

A threshold ε = 0 . 05 is chosen to estimate the depth of the

arkov models for both stable and unstable phases. The value of

is estimated by the behavior of the decay of eigenvalues with

 (see Eq. (7) in Section 3.1 ) which is shown in Fig. 6 b. Corre-

pondingly, the depth was calculated as 2 and 3 for the stable

nd unstable conditions, respectively (see Fig. 6 ). The correspond-

ng D ( ε) is used to construct the Markov models next. First, a PFSA

whose states are words of length D ( ε) over A ) is created and the

orresponding parameters, M and �, are estimated. Then, the hi-

rarchical clustering algorithm using K-L distance is used to clus-

er and aggregate the states. It is noted that individual models are

onstructed for every sample (i.e., every sample is partitioned in-

ividually) so that the symbols have different meaning (e.g., they

epresent different regions in the measurement space of the sig-

als) for every sample. Consequently, each sample may have a dif-

erent state-space structure when viewed in the continuous do-

ain. Thus, the mean behavior of the samples is not shown during

ny operating regime, because the state-space could be inconsis-

ent even though the cardinality may remain the same. 

Fig. 7 shows the hierarchical cluster tree of the PFSA with depth

 ( ε) for a typical sample during stable and unstable conditions.

he tree structure displays the order of splits in the states of

he full-order Markov model using the metric defined in Equation

8) in Section 3.1 . The figure also displays the states which are

lustered together if the reduced model has 3 states (denoted as

 1 , C 2 , C 3 in the figure). The cluster tree also suggests the sym-

olic noise behavior of the data during the stable regime, where

he states are very close to each other based on the K-L distance.

owever, clearly a coarse clustering of states in the model during

he unstable behavior would lead to significant information loss,

ecause the states are statistically different. However, to compare

he two Markov models, the state cardinalities of the respective

nal models are kept the same. For example, the algorithm (see

ppendix) is terminated with 3 states in the final Markov model

uring the stable as well as the unstable regime, and the final ag-

regated states are the three clusters depicted in Fig. 7 . Once the

nal aggregated states are obtained, the model parameters are es-

imated using the Bayesian inference as discussed in Section 3.2 . 

Next, results for model selection are presented using the

nformation-theoretic criteria discussed earlier in Section 3.3 ,

here AIC and BIC are used to select the model that achieves the

inimum score. These scores are estimated by first calculating the

og-likelihood of all the possible reduced models using Eq. (17) in

ection 3.3 and then using a penalty governed by AIC and BIC cri-
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Fig. 6. Profiles of probability density function. The left-hand plate shows the change in the empirical density calculated for the pressure time-series data as the process 

deviates from a stable operating condition to an unstable operating condition. The right-hand plate shows the spectral decomposition of the 1-step stochastic matrix for the 

data under stable and unstable operating conditions. 

Fig. 7. State clustering under stable and unstable conditions. 
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teria. As seen in Figs. 8 a and b, a model structure with 5 states is

selected for both stable and unstable conditions; it is noted that

the original model for the stable condition had 9 states with a

depth of 2 and the unstable model had 27 states with a depth of

3. In contrast to cross-validation, these criteria provide an unsuper-

vised way for model selection, which implies that a much smaller

state-space is able to preserve the temporal statistics of the data. It

is interesting to note that while in general, the AIC and BIC criteria

might lead to different final models, we get the same final model

using both of them. 

Fig. 9 shows the Hamming distance between the sequences

generated by the original model and the reduced models for a

typical sample, one each for stable and unstable combustion. The

box-plots are generated by simulating the original model and the

reduced-order model to generate symbol sequences of length 10 0 0

from 100 different initial states (i.e., a total of 100 strings are gen-

erated) and the Hamming distance between the respective pairs

is calculated. A bound on the Hamming distance between the se-

quences generated by the original model and final model is also

calculated by using the inequality in Eq. (28) , and the results are

shown in Fig. 9 . Although the proposed Hamming distance met-

ric can be used to select a final model, it only measures the dis-

tance between the distributions induced by the Markov models. It
s noted that the bounds on Hamming distance can provide a com-

utationally convenient way to select model scores based on the

ymbol emission probabilities of the model, instead of relying on

he likelihood of the symbol sequences. This issue has not been

ddressed here and is suggested as a topic of future research in

ection 6 . 

.3. Classification and anomaly detection results on combustion data 

This subsection presents the results for anomaly detection and

lassification using the pressure time-series data to infer the un-

erlying reduced-order Markov model. As discussed earlier in

ection 4.1 , since the exact transition point of the system from sta-

le to unstable is unknown, the results are presented for anomaly

etection and segregation of the data into different clusters, which

an be then be associated with stable and unstable classes. Two

ifferent metrics are presented for anomaly detection for compar-

son of models having different state-spaces and algebraic struc-

ures. It is noted that the word metric is used here in a loose

ense; it is meant to be a divergence that could be used to com-

are two different Markov models. 

As individual time-series have different state spaces, appropri-

te metrics are introduced to compare them. These metrics reflect
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Fig. 8. Unsupervised model selection under stable and unstable conditions. 

Fig. 9. Box plot for Hamming distance between the original and reduced-order models obtained after merging. 
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hanges in the information complexity of Markov models and re-

eal different behavior of the combustion process based on the

hanges in the inferred data model. In particular, the following two

easures are introduced. 

1. Cluster divergence : This divergence is defined for individual

Markov models based on the cluster structure of the state-

space model. It represents the maximum statistical difference

between the states of the Markov model M using the K-L di-

vergence as follows: 

�M 

= max 
q i ,q j ∈Q 

d(q i , q j ) (29)

where d ( · , · ) is defined in Eq. (8) . 

2. Discrepancy statistics : The discrepancy between the i.i.d. statis-

tics and the Markov statistics is measured for the discretized

data, which could also be interpreted as the information gain

for Markov models; this measure also represents information

complexity of data. If the i.i.d. statistics and the Markov statis-

tics are very close, then the data has no significant temporal

statistics; however, an increase in this measure would indicate

the information gain by creating a temporal Markov model of
the data, which is given by the following equation: 

H M 

= 

∑ 

q ∈Q 
Pr (q ) D KL ( Pr (A | q ) ‖ Pr (A )) (30)

where Pr (A | q ) represents the symbol emission probability

conditioned on a state q of the Markov model and Pr (A ) , and

the term D KL represents the symmetric K–L distance between

two distributions. 

Fig. 10 presents results to show the behavior of �M 

with in-

reasing pressure fluctuations. It is noted that each model has been

reated in an unsupervised fashion by first discretizing and then

stimating the memory of the discrete data sequence. As seen in

ig. 10 a, there are three distinct behaviors that can be associated

ith �M 

. With low pressure fluctuations, the metric is very close

o 0, indicating that the states of the model are statistically very

imilar. This is seen until the data number 200 with corresponding

 rms ∼ 0.065 psig, which leads to a gradual change to a point where

M 

saturates with P rms ∼ 0.12 psig, when the process becomes un-

table. Thus, different behaviors of the process can be associated

ith the gradual trend of increasing pressure fluctuations. How-

ver, as is seen in Fig. 10 a, the transition from stable to unstable
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Fig. 10. Anomalous behavior of data in the combustion process. 

Fig. 11. Variation of discrepancy statistics H M 

with increasing pressure fluctuations 

in the combustion process. This also shows an anomaly around the point 200 and 

qualitatively agrees to the behavior of �M 

. 
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ehavior is not clearly defined and is very difficult to label during

he experiments because the process is very fast. Fig. 10 b shows

he pressure signals from the three different clusters, where the

ample number 250 approaches an approximate limit-cycle behav-

or. An important point to note is that this phenomenon is inde-

endent of the operating conditions and only depends on stability

or instability) of the process; the associated metric may thus be

sed for anomaly detection. Fig. 10 c shows the statistics of �M 

ith four states, which is subjected to (possible) loss of informa-

ion due to state merging in the unstable class, while the stable

luster remains unchanged implying that the states are statistically

imilar and that the model distortion due to state merging is in-

ignificant. Thus, �M 

can be reliably used to detect departure from

 stable behavior. 

Variations of discrepancy statistics for full state models are

hown in Fig. 11 that qualitatively agrees with the earlier results on

M 

. From these plots, it is inferred that the Markov statistics for

he stable cluster are very similar to the i.i.d. statistics and thus the

ata are very much independently distributed. Conditioning on the

nferred states of the Markov models does not improve predictabil-

ty (or information complexity) of the temporal model. Thus, these

wo measures help infer the changes in the behavior of the data

uring the combustion process and are useful for anomaly detec-

ion. 

The underlying changes in the models are now visualized in

he information space during stable and unstable phases by re-

ucing the state space of the models to just 2 states and estimat-

ng the corresponding emission parameters. As the models have

hree symbols, the emission matrix has 2 rows and each row cor-

esponds to the symbol emission probabilities conditioned on the

wo states. Each of these rows is plotted on a single simplex plane

or 100 stable cases and 100 unstable cases. This is displayed in

ig. 12 that shows the clusters of stable and unstable cases in the

nformation space. The figure also shows that the model with even

 states are clustered separately and that that there is a struc-

ured change in the temporal dynamics of data at the two phases,

here the inferred Markov models are able to capture this change.

urthermore, the distinctive features of the models are sufficiently

etained even after significant reduction in the state-space of the

odels. 
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Fig. 12. Clusters of stable and unstable combustion in information space. Each point 

is a row of the emission matrix for the reduced Markov model with 2 states. The 

plot shows the change in the Markov model as the process moves from stable and 

unstable. Red diamonds represent the unstable phase while green diamonds repre- 

sent the stable phase. (For interpretation of the references to colour in this figure 

legend, the reader is referred to the web version of this article.) 

Table 2 

Performance of classifiers with different number of states. 

Mean Error = Lower is better. 

Number of States Classifier Classification Error (%) 

9 SVM 3.48 ± 0.74 

DT 9.83 ± 3.24 

8 SVM 3.62 ± 0.71 

DT 9.38 ± 3.11 

7 SVM 2.87 ± 0.68 

DT 7.70 ± 2.61 

6 SVM 2.48 ± 0.61 

DT 7.00 ± 2.55 

5 SVM 2.05 ± 0.54 

DT 6.10 ± 2.17 

4 SVM 1.86 ± 0.43 

DT 4.72 ± 2.29 

3 SVM 1.69 ± 0.45 

DT 5.56 ± 1.90 

2 SVM 1.67 ± 0.43 

DT 4.83 ± 1.80 
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Fig. 13. Model scores using the BIC and AIC criteria for prognosis of rolling-element 

bearings; selected models are depicted by black rectangles. 

Fig. 14. Box plot of the Hamming distance between the original and reduced-order 

models along with the analytical bound for prognosis of rolling-element bearings. 
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.4. Classification 

These models are then used to train classifiers using support

ector machines (SVM) and decision trees (DT) [1] . The rationale

ehind using multiple classifiers is to show that the performance

f the Markov models is independent of the classification tech-

ique (i.e., it works equally well with maximum-margin classifiers

r decision-tree classifiers). The SVM classifier is trained using a

adial basis function kernel while the decision tree is trained using

he standard Euclidean distance. The classifiers are trained with

00 data points from each class and are tested on the remaining

ata (around 80 and 380 for stable and unstable cases, respec-

ively). The tests are repeated for 100 different training and testing

ata sets from the total data. The results of classification accuracy

re listed in Table 2 . The SVM classifier is able to achieve around

.67% error using models with 2 states while the decision-tree clas-

ifier is able to achieve around 4.70% error using models with 4

tates. This provides another way of selecting the final model for

tate merging in a setting of supervised learning. It is noted that

he original models contain 9 states for the stable and 27 states

or the unstable class. 
. Validation on a benchmark public data set 

This section validates the proposed concepts on a benchmark

ublic data set, where the objective is to predict service life of

olling element bearings in rotating machinery. It is demonstrated

hat the proposed algorithm is capable of model order reduction

o achieve trade-offs between predictive accuracy and model com-

lexity. Results on classification and anomaly detection demon-

trate that the proposed method of model learning yields good

erformance in terms of the machine learning objectives of class

eparability and anomaly detection. 

In this paper, NASA’s prognostics data repository [16,39] is the

ource of the data set on rolling element bearings; a detailed de-

cription of the experiments is given in [28] . The bearing test rig

osts four test bearings on one shaft which is driven by an AC mo-

or at a constant speed. A constant force is applied on each of the

earings, and the accelerometer data were collected at every bear-

ng at a sampling rate of 20kHz for about 1 s. The tests were car-

ied for 35 days until a significant amount of debris was found in
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the magnetic plug of the test bearing. A defect in at least one of

the bearings was found at the end of every test. This paper uses

the data from Bearing 3, which show anomalous behavior in later

parts of the test. 

5.1. Test results of rolling element bearing data 

This subsection presents the results on modeling of the bearing

data using the same procedure as explained earlier for combus-

tion data. The same procedure of downsampling and depth esti-

mation is followed for analysis of bearing data as was described

in Section 4.2 for combustion. A ternary alphabet is also chosen

here to discretize the continuous data after downsampling and the

maximum entropy partitioning is used to find the partitions. Using

the spectral method, a depth of 2 (i.e., a total of 3 2 = 9 states) is

estimated for an ε = 0 . 02 ; however, the plot of spectral decompo-

sition plot is not icluded here for brevity. 

The Akaike information criterion (AIC) and the Bayesian infor-

mation criterion (BIC) scores for the different models are shown

in Fig. 13 and the model with five states is selected using the ob-

tained scores (marked in black rectangle). In Fig. 14 , we show the

Hamming distance between the sequences generated by the origi-

nal model (with 9 states) and the reduced models and the corre-

sponding bounds obtained by inequality (28) . 

6. Summary, conclusions and future work 

In recent times the idea of representation learning has become

very popular in the machine learning literature as it allows decou-

pling of data for model learning from the end-objectives like clas-

sification or clustering. This paper has presented a technique for

Markov modeling of time-series data using concepts of symbolic

dynamics, which allows inference of model structure as well as pa-

rameters for compact data representation. The proposed technique

first estimates the memory size of the discretized time-series data.

Then, the size of memory is estimated using spectral decompo-

sition properties of the one-step Markov model created from the

symbol sequence. A second pass of data is made to infer the model

with the right memory and the corresponding symbol emission

matrix is estimated. Then, the equivalence class of states based on

K–L distance between the states are estimated using hierarchical

clustering of the corresponding states of the Markov model. 

The proposed concept has been validated using two different

datasets– combustion instability and service life of rolling element

bearing. Since modeling of instability phenomena still remains a

puzzle in the combustion community, the Markov modeling tech-

nique in the symbolic domain has been used to analyze the prob-

lem of combustion instability in this paper. The proposed concepts

have been tested on experimental data from a swirl-stabilized

combustor [15] that was constructed in Penn State laboratories

to investigate unstable thermo-acoustic phenomena in combus-

tion processes. The proposed approach is capable of quantifying

the complexity of time-series data based on the inferred Markov

model. Two different metrics have been proposed for anomaly de-

tection and classification of the stable and unstable classes. While

the results presented in this paper are encouraging as the inferred

models are able to identify the stable and unstable phases inde-

pendent of any other operating condition, further theoretical re-

search and experimental validation are deemed necessary before

the proposed methodology can be used to develop codes for use in

real-life applications. A few topics of future research are suggested

below. 

1. Simultaneous optimization of discretization and memory esti-

mation for model inference. 

2. Comparison of the proposed models with hidden Markov mod-

els (HMM) of similar state-space size. 
3. Theoretical analysis of the models estimated by Akaike infor-

mation criterion (AIC) [36] and the Bayesian information crite-

rion (BIC) [37] . 

4. Analysis of transient data for prognosis and control of combus-

tion instabilities. 
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ppendix : Pseudocode of the main algorithm 

This appendix presents Algorithm 1 as a the pseudo-code,

hich has been used to find the model parameters in the train-

ng phase. The parameters in the testing phase are estimated us-

ng the clustering map f N max 
. Algorithm 1 has been executed on

wo different data-sets to find the model parameters in the train-

ng phase. The parameters in the testing phase are estimated using

he clustering map f N max 
. 

Algorithm 1: Reduced order Markov modeling. 

Input : The observed symbol sequence 

�
 s = { . . . s 1 s 2 s 3 . . . | s i ∈ A} 

Output : The final Markov model, M = ( ̃  Q , ˜ M , ˜ �) 

1 Estimate the � matrix for 1-step Markov model using 

frequency counting with an uniform prior; 

2 Estimate the size of temporal memory, D (ε) for � s using 

equation (7); 

3 Estimate M and � for the D (ε) -Markov model using 

frequency counting with an uniform prior; 

4 C |Q| = { q i | q i ∈ Q} ; 
5 for i = | Q | −1 , . . . , 1 do 

6 find distinct clusters A, B ∈ C i +1 minimizing d(A ∪ B ) ; 

7 C i := (C i +1 \ { A, B } ) ∪ { A ∪ B } 
8 return C 1 , . . . , C |Q| and f i : Q → C i ∀ i ∈ { 1 , . . . , | Q |} 
9 Calculate the parameters of reduced model using ˜ Q = C N max 

, 

f N max 
and equations (10) through (13); 

10 Calculate the Log-likelihood for models with Equation (17); 

11 The final model is selected using the Akaike information 

criterion (AIC) or Bayesian information criterion (BIC) criteria 

explained in Section 3-C; 
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