
Neural Probabilistic Forecasting

of Symbolic Sequences With Long

Short-Term Memory

Michael Hauser
Department of Mechanical Engineering,

The Pennsylvania State University,

University Park, PA 16802

e-mail: mzh190@psu.edu

Yiwei Fu
Department of Mechanical Engineering,

The Pennsylvania State University,

University Park, PA 16802

e-mail: yxf118@psu.edu

Shashi Phoha
Applied Research Laboratory,

The Pennsylvania State University,

University Park, PA 16802

e-mail: sxp26@arl.psu.edu

Asok Ray1

Professor

Fellow ASME

Department of Mechanical Engineering,

The Pennsylvania State University,

University Park, PA 16802

e-mail: axr2@psu.edu

This paper makes use of long short-term memory (LSTM) neural
networks for forecasting probability distributions of time series in
terms of discrete symbols that are quantized from real-valued
data. The developed framework formulates the forecasting prob-
lem into a probabilistic paradigm as hH: X�Y! [0, 1] such thatP

y2Y hHðx; yÞ ¼ 1, where X is the finite-dimensional state space,
Y is the symbol alphabet, and H is the set of model parameters.
The proposed method is different from standard formulations
(e.g., autoregressive moving average (ARMA)) of time series mod-
eling. The main advantage of formulating the problem in the sym-
bolic setting is that density predictions are obtained without any
significantly restrictive assumptions (e.g., second-order statistics).
The efficacy of the proposed method has been demonstrated by
forecasting probability distributions on chaotic time series data
collected from a laboratory-scale experimental apparatus. Three
neural architectures are compared, each with 100 different com-
binations of symbol-alphabet size and forecast length, resulting in
a comprehensive evaluation of their relative performances.
[DOI: 10.1115/1.4039281]

1 Introduction

Time series forecasting is a well-studied problem across a
diverse range of fields [1]. From the perspectives of dynamical
systems, accurate forecasting of future states can be implemented
within a feedback mechanism in the case where control actions
can be used to drive the system to a desired state or away from an

undesired state. To this end, linear stationary forecasting models
[1] have been widely used. For example, autoregressive moving
average (ARMA) models provide a standard benchmark for linear
stationary time series forecasting; if the time series is nonstation-
ary, then autoregressive integrated moving average models [1] are
used to deal with these nonstationary processes.

Previous work has shown that even feedforward (FF) neural
networks significantly outperform the linear ARMA model [2],
which provides a valuable baseline for time series forecasting. In
that work, a feedforward neural network was used to forecast
symbol sequences derived from an experimental combustion
apparatus. If the ARMA model made a forecast prediction in the
same bin as the true trajectory, then it was deemed a correct pre-
diction, otherwise it was incorrect. Under these conditions the
simple feedforward neural network significantly outperformed
ARMA. Additionally, it was shown in Ref. [2] that feed forward
neural symbolic forecasting outperforms taking an expectation
over symbol centroids to yield a mean trajectory, which is analo-
gous to a nonlinear neural network ARMA model. The current
paper is built upon the previous work [2] by systematically evalu-
ating the relative performance of different neural architectures.

To overcome the limitations of linear models, forecasting time
series with neural networks has been reviewed by Zhang et al. [3].
Neural networks can be made to be highly nonlinear, and with
even a single hidden layer they have the ability to approximate
any Borel measurable function [4]. Additionally, it is desirable to
replace these single-valued hard predictions by forecasting proba-
bility distributions over symbolic states [5,6].

A forecasting paradigm requires evaluation of both a predicted
value and the bounds on its accuracy [7]. Casting the problem in a
symbolic-probabilistic setting provides a wide range of general-
ities; for example, symbols can be interpreted as emanating from
a state space. Furthermore, they facilitate probabilistic predictions
without prior assumptions on data distributions (e.g., second-order
statistics). However, they lack the fidelity that comes with deter-
ministic predictions, although this shortcoming can be partially
alleviated by taking an expectation over the prediction space.

Statistical characterizations of symbol sequences have been
extensively investigated within the framework of probabilistic
finite state automata [8,9]. Within this framework, symbol emis-
sion probabilities are estimated, given a current state of the sys-
tem. Estimation of this symbol emission probability matrix has
been cast in a Bayesian framework as well [10].

This paper formulates the probabilistic forecasting problem in a
classification sense by using the concept of deep neural networks
such that, conditioned on its history, the desired output is a proba-
bility over symbols; the symbols partition the range space and
each symbol corresponds to a class. This procedure is significantly
different from a deterministic regression of the mean and its asso-
ciated quantiles.

The technical approach of the proposed method is to estimate
symbol emission probabilities largely analogously to what is done
in finite state automata with stochastic symbolic emissions from
given states; however, it does so with deep neural networks. In
contrast to a D-Markov model [11,12] that generates probabilities
of emitting certain symbols given a finite history symbol sequence
of length D, the proposed model generates symbol emission prob-
abilities based on a finite history of time series of length D. The
proposed model is also able to identify nonlinear relationships
between past history and future symbols in the setting of dynamic
data-driven application systems [13]. The primary contributions
of this paper are in the formulation of a novel approach to proba-
bilistic forecasting, namely, symbolic probabilistic forecasting,
not in how to train neural networks.

The paper is organized in five sections including the present
section. Section 2 introduces the mathematical preliminaries
needed for algorithm development, with special attention payed to
the long short-term memory (LSTM) neural network model. Sec-
tion 3 describes the technical details of the proposed neural proba-
bilistic forecasting algorithm. Section 4 presents the results of

1Corresponding author.
Contributed by the Dynamic Systems Division of ASME for publication in the

JOURNAL OF DYNAMIC SYSTEMS, MEASUREMENT, AND CONTROL. Manuscript received
April 17, 2017; final manuscript received January 8, 2018; published online March
30, 2018. Assoc. Editor: Dumitru I. Caruntu.

Journal of Dynamic Systems, Measurement, and Control AUGUST 2018, Vol. 140 / 084502-1
Copyright VC 2018 by ASME



algorithm validation on experimental data, collected from a
laboratory-scale combustion apparatus. Section 5 summarizes the
contents and concludes the paper. Additionally, Sec. 5 suggests
directions of future research to test the neural network models on
vector time series data.

2 Mathematical Preliminaries

This section succinctly presents the key mathematical concepts
that are necessary to develop the algorithms.

2.1 Probabilistic Formulation. Neural networks are a gen-
eral class of algorithms that have nested compositions of affine
transformations followed by a simple nonlinearity. They can be
either strictly FF, or include some type of feedback mechanism.
Neural networks with feedback are called recurrent and are usu-
ally preferred means of modeling temporal dynamics within a
neural network framework.

Classification neural networks are mappings hH: X� Y! [0, 1]
such that

P
y2Y hHðx; yÞ ¼ 1, which is usually interpreted as

hHðx; yÞ :¼ pðY ¼ yjX ¼ xÞ, where X is the finite dimensional
state space, Y is the finite space of labels (i.e., symbol alphabet)

and H ¼ fðWl; blÞgL�1
l¼0 is the parameterization of architecture

class H such that hH � H. The notation hHðxÞ :¼ hHðx; �Þ ¼
pðYjX ¼ xÞ will be used to represent the output distribution.

Classification neural networks are trained by minimizing a loss
function l(hH, q), where q : X � Y 7!½0; 1� such that

P
y2Y

qðx; yÞ ¼ 1 is the true classification model. It is noted that the true
distribution q may not be an element of H, i.e., q 62 H, but because
neural network models are very flexible, they may still well
approximate q.

2.2 Long Short-Term Memory. Long short-term memory
neural networks [14,15] are recurrent neural networks with a spe-
cific architecture in the hidden space which allows the network to
act as if it has a memory unit it can read from and write to. Figure
1 presents a schematic diagram of the LSTM neural network
structure for understanding how the different data elements are
related-to and operate-on each other.

The LSTM has an input xt, an output ht and a cell state Ct that
acts as the memory and is the central component of the LSTM. It
is noted that the sigmoid function rðzÞ :¼ 1=ð1þ expð�zÞÞ has a
range of 0 to 1, and the hyperbolic tangent function tanhðzÞ :¼
ðexpðzÞ � expð�zÞÞ=ðexpðzÞ þ expð�zÞÞ has range �1 to 1.

The candidate cell state ~Ct, its weightings it, and the forget gate
[16] activations ft are computed as follows:

it ¼ rðWixt þ Uiht�1 þ biÞ (1)

~Ct ¼ tanhðWcxt þ Ucht�1 þ bcÞ (2)

ft ¼ rðWf xt þ Uf ht�1 þ bf Þ (3)

where W’s and U’s are appropriate weight matrices and the b’s
are bias vectors.

With * defined to be element-wise multiplication, the updated
cell state Ct is then found as

Ct ¼ it � ~Ct þ ft � Ct�1 (4)

and the output is obtained as a weighted version of the cell state

ot ¼ rðWoxt þ Uoht�1 þ bf Þ (5)

ht ¼ ot � tanhðCtÞ (6)

Because Eqs. (1)–(3) and (5) depend only on xt, ht and ht–1, their
arguments are computed in parallel.

2.3 Time Series Symbolization. The procedure of time series
symbolization is built by constructing a partition of the time series

feature space, defining mutually exclusive and exhaustive regions
over the feature space. Once a partition is defined over the feature
space, the data are symbolized by mapping each data point to a
corresponding symbol, which is uniquely identified with that par-
titioning region. With K symbols, the symbol set is defined to be
Y :¼ fy1; y2;…; yKg.

For one-dimensional time series, two commonly used partition-
ing schemes are the uniform partitioning and the maximum
entropy partitioning [17]. For general multidimensional time
series, the right column clustering, Gaussian mixture models, or
other unsupervised clustering techniques can be used [18]. This
work uses uniform partitioning.

3 Algorithm Development

This section outlines an algorithm for neural probabilistic fore-
casting of symbol sequences. Given a time series interval up to

the present fxðt� t0Þgl�1
t0¼0 of length l, the algorithm predicts the

probability of the symbol yk at a time instant tþ T as

pðYðtþ TÞ ¼ ykjXðtÞ ¼ fxðt� t0Þgl�1
t0¼0Þ. The data can, thus, be

organized into input–output pairs as follows:

D :¼ fðfxðn� t0Þgl�1
t0¼0; yðnþ TÞÞgN

n¼l�1 (7)

where l is the memory length of the time series obtained from the
first minima of the mutual information with a time-shifted version
of itself [19]), N is the number of data samples, and T is the future
forecasting time-step. It is noted that l � N. The dataset is care-
fully organized so that the experiments conducted in Sec. 4.2 use
exactly the same conditions for the different neural architectures
at a given forecast-length and number-of-symbols pair. This data
organization ensures fairness in generating exactly the same con-
ditions for all neural architectures by comparing the plotted true
trajectory for a fixed pair.

3.1 Mathematical Formulation. As described in Sec. 2.1, a
neural network defines a mapping: hH : X � Y 7!½0; 1� such thatP

y2Y hHðx; yÞ ¼ 1, where X and Y are the input and label spaces,

and H ¼ fðWl; blÞgL�1
l¼0 is the parameterization. Because we are

dealing with time series of the input and output spaces, the map-
ping used here is defined as hH : ðX � T1Þ � ðY � T2Þ7!½0; 1�,
where X is the input space, Y is the symbol alphabet set, and T1

and T2 are the forecast shifted time indices of X and Y, respec-
tively. The definition of hH is as follows:

hHðfxðt� t0Þgl�1
t0¼0Þ

:¼ pðYðtþ TÞjX ¼ fxðt� t0Þgl�1
t0¼0Þ (8)

Fig. 1 Schematic of the LSTM neural network stucture. The
nonlinear activations, r and tanh, act elementwise on their
respective input vectors. Similarly, multiplication and addition
blocks operate on their input pairs elementwise.

084502-2 / Vol. 140, AUGUST 2018 Transactions of the ASME



The forecasting problem is formulated within a probabilistic
framework in terms of the objective function that is chosen as the
cross entropy between the true probability distribution q(x,y) such
that,

P
y2Y qðx; yÞ ¼ 1, and the model’s symbol emission probabil-

ity distribution hHðx; yÞ ¼ pðY ¼ yjX ¼ xÞ. The corresponding
loss function is

lðhHðxÞ; qðxÞÞ :¼ �
XK

k¼1

qðx; ykÞlogðhHðx; ykÞÞ (9)

where for brevity, x � fxðt� t0Þgl�1
t0¼0 and yk is realized at time

tþ T. Note that there are K symbols in the symbol set.
The cross entropy between two probability distributions q and hH

over the same sample space is intuitively understood as the average
number of bits required to identify a realization drawn from the sam-
ple space if the coding scheme is optimized for an approximated dis-
tribution hH, as opposed to the true distribution q [20]. Thus
minimizing the cross entropy between these two distributions is a
way of minimizing the distance, measured in bits, between them.

In a deterministic regression problem for forecasting hH: X !
Y, the cost functional of cross entropy is taken to be the loss func-
tion [21]

lðhHðxÞ; yÞ :¼ y logðhHðxÞÞ þ ð1� yÞlogð1� hHðxÞÞ (10)

where it is noted that hHðxÞ 2 R and y 2 R are not probability
distributions, because they are actual values and are not symbol-
ized in a finite state space; hence, they are not probabilistic and
takes the form as a deterministic regression. Similarly, the ‘2ðRÞ-
norm cost functional is also used for regression tasks, as opposed
to determining probabilities of new classes and symbols. If used
in a probabilistic sense the ‘2ðRÞ-norm cost functional assumes
restrictive second-order statistics.

Training the neural network to make inferences involves taking
the expected loss over Eq. (9)

LðH;DÞ :¼ EðX;YÞ½lðhHðx; yÞ; qðx; yÞÞ� (11)

The best model is taken to be argminhH2H LðH;DÞ, which is
trained by using Adadelta [22] in backpropagation over ten epochs
with a batch size of 100. The rationale for using Adadelta is
delineated in the following:

(1) Adadelta automatically updates the learning rate along each
dimension. In this sense, it is more user-friendly than stand-
ard stochastic-gradient-descent methods that often require
the user to manually tune the learning rate.

(2) Adadelta is an extension of Adagrad [23], but with the goal
to ensure that the learning rate does not monotonically
decrease to zero as the number of updates goes to infinity,
as is the case with Adagrad.

(3) Root-mean-square (RMS) propagation has been tried in
preliminary testing as the third update rule, which is an

unpublished technique used in Geoff Hinton’s Coursera
lecture series on machine learning. Root-mean-square prop-
agation yielded similar results as Adadelta.

(4) While stochastic gradient descent has been used in prelimi-
nary testing, Adadelta is consistently found to yield better
minima in Eq. (11).

3.2 Testing Three Neural Network Architectures. Three
different neural network architectures have been tested and com-
pared. The first of these three architectures is a simple FF archi-
tecture with three hidden layers. The second is a LSTM
architecture with a fully connected layer before and after the
LSTM hidden layer. The third is a hybrid LSTM-FF architecture,
which concatenates the outputs of the third hidden layer of the
LSTM and the FF networks. All three architectures use a softmax
classifier at the output and have a window size of eight time steps,
i.e., x 2 R8 with hidden layer dimensions equal to 50. These three
architectures have also been tested with other datasets, all yielding
very similar results. Therefore, in the selection of a network archi-
tecture, computational considerations are deemed to be very
important.

Graphics processing unit implementations of the aforemen-
tioned three neural network architectures have been written in the
Python library Theano [24–26]. The training would take, on the
average, about 15 min per symbol size-forecast length pair. With
three architectures and 100 pairs per architecture, the total training
time has been about 3 days on the graphics processing unit.

4 Results and Discussion

This section presents the results and comparisons of the three
proposed neural network algorithms, namely, LSTM, FF, and
LSTM-FF running in parallel, on the chaotic experimental data
collected from a combustor apparatus that is described in the
following.

4.1 Description of the Combustor Apparatus. The appara-
tus is built upon a swirl-stabilized, lean-premixed, laboratory-
scale combustor that has been used to perform the experimental
investigation. Figure 2 shows a schematic diagram of the variable-
length combustor, consisting of an inlet section, an injector, a
combustion chamber, and an exhaust section. High-pressure air is
delivered to the apparatus from a compressor after passing
through filters to remove any liquid or solid particles that might
be present in the inlet air. The air supply pressure is set to approxi-
mately 1.34 MPa using a dome pressure regulator. The air is pre-
heated to a maximum temperature of 250 	C by an 88 kW electric
heater. The fuel for this study is natural gas (approximately 95%
methane) that is supplied to the combustor system at a pressure of
approximately 1.48 MPa. The flow rates of the air and natural gas
are measured by thermal mass flow meters. The desired

Fig. 2 Schematic diagram of the combustor apparatus

Journal of Dynamic Systems, Measurement, and Control AUGUST 2018, Vol. 140 / 084502-3



equivalence ratio and mean inlet velocity is set by adjusting these
flow rates with needle valves.

4.2 Forecasting Physical Phenomena. Combustion and fluid
processes, which are governed by physical process dynamics that
can be represented by highly coupled, nonlinear partial differen-
tial equations, generate chaotic pressure signals; the underlying
dynamics are very difficult to predict. The proposed algorithms,
which serve the purpose of instability prediction, are dynamic
data-driven [13,27], instead of solely relying on constitutive
model equations and thermodynamic state relations. The goal here
is to predict combustion instabilities for possible usage in a feed-
back control system to mitigate instabilities.

Tests were conducted at a nominal combustor pressure of 1 atm
over a range of operating conditions. At each operating condition,
time series of pressure data were collected for 8 s at sampling rate
8192 Hz, which is sufficiently long to capture the dynamic charac-
teristics of the underlying process and which, in addition, can be
considered to be approximately statistically stationary. Based on
these test data, individual models have been compared by averag-
ing over their element-wise relative error rates; reductions in the
average error rate between algorithms have been examined.

Combustion instabilities are commonly defined by the RMS
values of the pressure signals inside the combustion chamber of a
trailing window, with the intuition that a larger RMS value
implies existence of larger pressure fluctuations and thus larger
instabilities. Figure 3 shows characteristic probabilistic forecasts,
where black corresponds to low probability and white corresponds
to high probability. It is seen that the LSTM makes more confident
predictions than the FF architecture. As the forecast length is
increased from 4 to 10 time steps, both architectures are less

confident in their predictions and thus generate more diffuse pre-
diction densities. This is expected because there are more uncertain-
ties in the prediction with increased forecast length. The true
trajectory in red in Fig. 3 is compared with the expectation over the
forecasted probability distributions, where the centroid of the parti-
tioned region is taken to be the expected value of the random
variable.

Figure 4 shows how the different neural network architectures
perform across all test data sets. These data sets are composed of
all combinations of forecast lengths of 2, 4, 6,…, 20 and the sym-
bol alphabet size (i.e., number of symbols) being 2, 3, 4,…, 11,
making 100 unique combinations in total. Increasing the symbol
alphabet size (i.e., number of symbols) enhances the fidelity of the
model at the possible expense of model accuracy as seen in Fig. 4,
because of either the inherit difficulty in forecasting at such a high
resolution or the finite data length [10,12]. This general trend is
seen across all three tested architectures. It is noted that the design
parameters (i.e., fidelity, forecast length and accuracy) are appli-
cation specific.

Referring to Fig. 4, Table 1 lists the average relative reduction
in error over all pairwise combinations, where the relative error
reduction is calculated as mean (1�A/B), and A/B is element-
wise division of the matrices A and B from Fig. 4. In conclusion
the LSTM performs the best, followed closely by LSTM-FF and
the last is FF.

Figure 5 shows the errors, weighted by the distance between
the predicted symbol and the true symbol. This is perhaps a better
performance measure of the architectures because the error rate
should be penalized more heavily by the deviation of the predicted
symbol from the true symbol. The weighted error can be inter-
preted as the average distance between the predicted and true

Fig. 4 Test error rates for different combinations of forecast length and number of symbols. The lighter shade corresponds
to a lower error rate while a darker shade corresponds to a higher error rate. When averaged over all pairwise combinations,
the relative reductions in error can be seen in Table 1.

Fig. 3 Forecasts from the neural probabilistic framework; dark background corresponds to low probability and white corre-
sponds to high probability. The LSTM and feed forward networks are compared, as well as forecast lengths of 4 and 10 time-
steps. Solid lines are the true trajectory while dotted lines are the expectation over the forecasted probability distributions.

084502-4 / Vol. 140, AUGUST 2018 Transactions of the ASME



symbol, scaled between 0 and 1. The general trend reaffirms that
the error rates increase as the forecast length increases, as well as
when the number of symbols increases. When averaged over all
pairwise combinations, the relative reductions in weighted error
can be seen in Table 2, where again the relative reduction in
weighted error is calculated from Fig. 5 as mean (1�A/B), and A/
B is element-wise division of matrices A and B.

It is seen that the LSTM algorithm outperforms the FF algorithm,
because the recurrent feedback mechanism in LSTM is specifically
designed to accommodate time series data. Similarly, the LSTM
outperforms the LSTM-FF, likely because the feed forward aspect
of LSTM-FF is corrupting the dynamic features learned by LSTM.

5 Summary, Conclusions, and Future Work

This brief paper has developed a neural probabilistic framework
for forecasting time series from neural network architectures in
terms of discrete symbols as opposed to real values without any
major limiting assumptions such as second-order statistics.
Although discrete symbolization is subjected to potential loss of
resolution compared to continuous data, it enhances performance
robustness especially if the signal-to-noise ratio is not high [28].
In particular, the proposed method yields performance robustness
by taking the expectation over the forecasted probability distribu-
tion. This formulation of probabilistic forecasting is suitable for
continuously varying uncertain dynamical systems, in which con-
trol actions operate at a slower time scale than that of system
dynamics; such systems are prevalent in diverse mechanical engi-
neering applications.

Three neural probabilistic architectures, namely, FF, LSTM,
and combined LSTM and FF neural networks running in parallel,
have been tested on experimental (time series) data of chaotic
pressure oscillations collected from a laboratory-scale combustor

apparatus. The performance of these three architectures has been
comprehensively compared, where each architecture has been
trained for 100 combinations of forecast length and number of
symbols, so that application-specific requirements can be opti-
mally chosen. It is found that, on the average, the LSTM performs
the best, followed by LSTM-FF, and finally the FF.

The future research should focus on comparison of the afore-
mentioned three neural architectures with AR(I)MA models on
user-defined, controlled chaotic datasets. For example, such data-
sets can be generated from solutions of the Duffing equation [29]
that can be studied as a two-dimensional time-series trajectory in
the phase-space with multidimensional symbolization techniques
(e.g., k-means), as described in Sec. 2.3. While there are many
other issues that need to be resolved by further theoretical and
experimental research, the authors suggest comparison of the pres-
ent work with various other applications (e.g., Cheng et al. [30])
as a topic of future research.

Acknowledgment

The first author has been supported by PSU/ARL Walker Fel-
lowship. Any opinions, findings, and conclusions or recommenda-
tions expressed in this publication are those of the authors and do
not necessarily reflect the views of the sponsoring agencies. The
authors would like to thank Professor Domenic Santavicca and
Mr. Jihang Li for kindly providing the experimental data used in
this work.

Funding Data


 U.S. Air Force Office of Scientific Research (AFOSR)
(Grant No. FA9550-15-1-0400).

References
[1] Montgomery, D. C., Jennings, C. L., and Kulahci, M., 2015, Introduction to

Time Series Analysis and Forecasting, Wiley, Hoboken, NJ.
[2] Hauser, M., Fu, Y., Li, Y., and Ray, A., 2017, “Probabilistic Forecasting of

Symbol Sequences With Deep Neural Networks,” American Control Confer-
ence (ACC), Seattle, WA, May 24–26, pp. 3147–3152.

[3] Zhang, G., Patuwo, B. E., and Hu, M. Y., 1998, “Forecasting With Artificial
Neural Networks: The State of the Art,” Int. J. Forecasting, 14(1), pp. 35–62.

[4] Hornik, K., Stinchcombe, M., and White, H., 1989, “Multilayer Feedforward
Networks are Universal Approximators,” Neural Networks, 2(5), pp. 359–366.

[5] Gneiting, T., 2008, “Editorial: Probabilistic Forecasting,” J. R. Stat. Soc. Ser.
A, 171(2), pp. 319–321.

[6] Gneiting, T., and Katzfuss, M., 2014, “Probabilistic Forecasting,” Annu. Rev.
Stat. Appl., 1(1), pp. 125–151.

[7] Box, G. E., Jenkins, G. M., Reinsel, G. C., and Ljung, G. M., 2015, Time Series
Analysis: Forecasting and Control, Wiley, Hoboken, NJ.

Table 1 Relative reduction in error

LSTM/FF LSTM/LSTM-FF LSTM-FF/FF

2.57% 0.587% 1.99%

Fig. 5 Weighted error rates for different combinations of forecast length and number of symbols, where the weighting factor is
determined by the distance between the predicted symbol and the true symbol (determined by partition centroid). The weighted
error can be interpreted as the average distance between the predicted and true symbol, scaled between 0 and 1. The lighter
shade corresponds to a lower error rate while a darker shade corresponds to a higher error rate. When averaged over all pair-
wise combinations, the relative reductions in weighted error can be seen in Table 2.

Table 2 Relative reduction in weighted error

LSTM/FF LSTM/LSTM-FF LSTM-FF/FF

3.94% 0.997% 2.98%

Journal of Dynamic Systems, Measurement, and Control AUGUST 2018, Vol. 140 / 084502-5

http://dx.doi.org/10.23919/ACC.2017.7963431
http://dx.doi.org/10.1016/S0169-2070(97)00044-7
http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1111/j.1467-985X.2007.00522.x
http://dx.doi.org/10.1111/j.1467-985X.2007.00522.x
http://dx.doi.org/10.1146/annurev-statistics-062713-085831
http://dx.doi.org/10.1146/annurev-statistics-062713-085831


[8] Dupont, P., Denis, F., and Esposito, Y., 2005, “Links Between Probabilistic
Automata and Hidden Markov Models, Probability Distributions, Learning
Models and Induction Algorithms,” Pattern Recognit., 38(9), pp. 1349–1371.

[9] Rozenberg, G., and Salomaa, A., 1997, Handbook of Formal Languages:
Beyonds Words, Vol. 3, Springer Science & Business Media, Berlin.

[10] Wen, Y., Mukherjee, K., and Ray, A., 2013, “Adaptive Pattern Classification
for Symbolic Dynamic Systems,” Signal Process., 93(1), pp. 252–260.

[11] Ray, A., 2004, “Symbolic Dynamic Analysis of Complex Systems for Anomaly
Detection,” Signal Process., 84(7), pp. 1115–1130.

[12] Mukherjee, K., and Ray, A., 2014, “State Splitting and Merging in Probabilistic
Finite State Automata for Signal Representation and Analysis,” Signal Process.,
104, pp. 105–119.

[13] Darema, F., 2005, “Dynamic Data Driven Applications Systems: New Capabil-
ities for Application Simulations and Measurements,” Fifth International Con-
ference on Computational Science (ICCS), Atlanta, GA, May 22–25, pp.
610–615.

[14] Hochreiter, S., and Schmidhuber, J., 1997, “Long Short-Term Memory,” Neural
Comput., 9(8), pp. 1735–1780.

[15] Graves, A., 2012, “Supervised Sequence Labelling,” Supervised Sequence
Labelling With Recurrent Neural Networks, Springer, New York, pp. 5–13.

[16] Gers, F. A., Schmidhuber, J., and Cummins, F., 2000, “Learning to Forget:
Continual Prediction With LSTM,” Neural Comput., 12(10), pp. 2451–2471.

[17] Li, Y., Chattopadhyay, P., and Ray, A., 2015, “Dynamic Data-Driven Identifi-
cation of Battery State-of-Charge Via Symbolic Analysis of Input–Output
Pairs,” Appl. Energy, 155, pp. 778–790.

[18] Hauser, M., Li, Y., Li, J., and Ray, A., 2016, “Real-Time Combustion State
Identification Via Image Processing: A Dynamic Data-Driven Approach,”
American Control Conference (ACC), Boston, MA, July 6–8, pp. 3316–3321.

[19] Abarbanel, H., 2012, Analysis of Observed Chaotic Data, Springer Science &
Business Media, New York.

[20] Cover, T. M., and Thomas, J. A., 2012, Elements of Information Theory, Wiley,
Hoboken, NJ.

[21] Nasr, G. E., Badr, E., and Joun, C., 2002, “Cross Entropy Error Function in
Neural Networks: Forecasting Gasoline Demand,” Fifteenth International Flor-
ida Artificial Intelligence Research Society Conference (FLAIRS), Pensacola,
FL, May 14–16, pp. 381–384.

[22] Zeiler, M. D., 2012, “Adadelta: An Adaptive Learning Rate Method,” preprint
arXiv:1212.5701.

[23] Duchi, J., Hazan, E., and Singer, Y., 2011, “Adaptive Subgradient Methods for
Online Learning and Stochastic Optimization,” J. Mach. Learn. Res., 12, pp.
2121–2159.

[24] Bastien, F., Lamblin, P., Pascanu, R., Bergstra, J., Goodfellow, I., Bergeron, A.,
Bouchard, N., Warde-Farley, D., and Bengio, Y., 2012, “Theano: New Features
and Speed Improvements,” preprint arXiv:1211.5590.

[25] Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G.,
Turian, J., Warde-Farley, D., and Bengio, Y., 2010, “Theano: A CPU and GPU
Math Compiler in Python,” Ninth Python in Science Conference, Austin, TX,
June 28–July 3, pp. 1–7.

[26] Theano Development Team, 2016, “Theano: A Python Framework For Fast
Computation Of Mathematical Expressions,” e-print arXiv:1605.02688.

[27] Sarkar, S., Chakravarthy, S., Ramanan, V., and Ray, A., 2016, “Dynamic Data-
Driven Prediction of Instability in a Swirl-Stabilized Combustor,” Int. J. Spray
Combust., 8(4), pp. 235–253.

[28] Graben, P. B., 2001, “Estimating and Improving the Signal-to-Noise Ratio of
Time Series by Symbolic Dynamics,” Phys. Rev. E, 64(5), p. 051104.

[29] Thompson, J., and Stewart, H., 1986, Nonlinear Dynamics and Chaos, Wiley,
Chichester, UK.

[30] Cheng, L., Liu, W., Hou, Z.-G., and Yu, J., 2015, “Neural Network Based Non-
linear Model Predictive Control for Piezoelectric Actuators,” IEEE Trans. Ind.
Electron., 62(12), pp. 7717–7727.

084502-6 / Vol. 140, AUGUST 2018 Transactions of the ASME

http://dx.doi.org/10.1016/j.patcog.2004.03.020
http://dx.doi.org/10.1016/j.sigpro.2012.08.002
http://dx.doi.org/10.1016/j.sigpro.2004.03.011
http://dx.doi.org/10.1016/j.sigpro.2014.03.045
http://dx.doi.org/10.1007/11428848_79
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.1162/089976600300015015
http://dx.doi.org/10.1016/j.apenergy.2015.06.040
http://dx.doi.org/10.1109/ACC.2016.7525429
https://dl.acm.org/citation.cfm?id=708603
https://arxiv.org/abs/1212.5701
http://jmlr.org/papers/v12/duchi11a.html
https://arxiv.org/abs/1211.5590
http://svn.ucc.asn.au:8080/oxinabox/Uni%20Notes/honours/Background%20Reading/theano_scipy2010.pdf
https://arxiv.org/abs/1605.02688
http://dx.doi.org/10.1177/1756827716642091
http://dx.doi.org/10.1177/1756827716642091
http://dx.doi.org/10.1103/PhysRevE.64.051104
http://dx.doi.org/10.1109/TIE.2015.2455026
http://dx.doi.org/10.1109/TIE.2015.2455026

	s1
	aff1
	l
	s2
	s2A
	s2B
	FD1
	FD2
	FD3
	FD4
	FD5
	FD6
	s2C
	s3
	FD7
	s3A
	FD8
	1
	FD9
	FD10
	FD11
	s3B
	s4
	s4A
	2
	s4B
	4
	3
	s5
	1
	2
	3
	4
	5
	6
	7
	1
	5
	2
	8
	9
	10
	11
	12
	13
	14
	15
	16
	17
	18
	19
	20
	21
	22
	23
	24
	25
	26
	27
	28
	29
	30

