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Estimation of a generating partition is critical for symbolization of mea-
surements from discrete-time dynamical systems, where a sequence of
symbols from a (finite-cardinality) alphabet may uniquely specify the un-
derlying time series. Such symbolization is useful for computing mea-
sures (e.g., Kolmogorov-Sinai entropy) to identify or characterize the
(possibly unknown) dynamical system. It is also useful for time series
classification and anomaly detection. The seminal work of Hirata, Judd,
and Kilminster (2004) derives a novel objective function, akin to a clus-
tering objective, that measures the discrepancy between a set of recon-
struction values and the points from the time series. They cast estimation
of a generating partition via the minimization of their objective func-
tion. Unfortunately, their proposed algorithm is nonconvergent, with no
guarantee of finding even locally optimal solutions with respect to their
objective. The difficulty is a heuristic nearest neighbor symbol assign-
ment step. Alternatively, we develop a novel, locally optimal algorithm
for their objective. We apply iterative nearest-neighbor symbol assign-
ments with guaranteed discrepancy descent, by which joint, locally op-
timal symbolization of the entire time series is achieved. While most
previous approaches frame generating partition estimation as a state-
space partitioning problem, we recognize that minimizing the Hirata
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et al. (2004) objective function does not induce an explicit partitioning
of the state space, but rather the space consisting of the entire time series
(effectively, clustering in a (countably) infinite-dimensional space). Our
approach also amounts to a novel type of sliding block lossy source cod-
ing. Improvement, with respect to several measures, is demonstrated over
popular methods for symbolizing chaotic maps. We also apply our ap-
proach to time-series anomaly detection, considering both chaotic maps
and failure application in a polycrystalline alloy material.

1 Introduction

Classification, modeling, and abstraction of (possibly noisy) time series
have attracted great attention in machine learning and pattern recogni-
tion (Petridis & Kehagias, 1996; Ahmad, Alexander, Purdy, & Agha, 2017;
Baragona & Battaglia, 2007). Symbolic dynamics techniques, which involve
discretizing a time series, have been widely used to help achieve these objec-
tives in an efficient manner (Godelle & Letellier, 2000; Daw & Finney, 2003;
Mukherjee & Ray, 2014). These techniques are also useful for accurately de-
scribing a nonlinear dynamical system, by estimating its generating parti-
tion (Hirata, Judd, & Kilminster, 2004; Kennel & Buhl, 2003). While other
important time-series modeling objectives include time-series segmenta-
tion and the related change point detection problem (Chamroukhi, Same,
Govaert, & Aknin, 2009) and time series prediction (Wong & Li, 2000), the
focus in this work is on time-series abstraction (symbolization or discretiza-
tion), applicable to both estimating a nonlinear dynamical system’s gener-
ating partition and estimating a time series null model, useful for detecting
anomalous time series.

As noted, an important problem in symbolic dynamics is the estimation
of a generating partition, a symbolization process generating a finite car-
dinality symbol sequence which, for certain dynamical systems, uniquely
specifies the time series. Such symbolization is the basis for the evaluation
of measures that characterize the (in general unknown) dynamical system,
such as Kolmogorov-Sinai entropy (Beck & Schlogl, 1993; Kennel, Shlens,
Abarbanel, & Chichilnisky, 2005). Symbolization also provides a convenient
representation useful for anomaly/fault detection and time-series classifi-
cation (Daw, Kennel, Finney, & Connolly, 1998; Kennel & Mees, 2000; Ray,
2004; Rao, Ray, Sarkar, & Yasar, 2009). Some previous work has proposed
methods for estimating a generating partition from an observed time se-
ries (Kennel & Buhl, 2003; Hirata et al., 2004). A popular method is a clus-
tering algorithm developed in the seminal work by Hirata et al. (2004).
They derived a discrepancy clustering objective from first principles and
cast estimation of the generating partition as minimization of their objec-
tive. While they recognized the value in developing a locally optimal algo-
rithm for minimizing their objective, the actual algorithm they proposed is
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nonconvergent, exhibiting nonmonotonic behavior with respect to their dis-
crepancy objective during the algorithm’s steps, with no guarantee even of
local optimality with respect to the discrepancy cost. The difficulty lies in
their use of a heuristic nearest-neighbor symbol assignment step, which is
not guaranteed to descend in the discrepancy cost. To overcome this prob-
lem, our letter develops and validates a novel, locally optimal generating
partition estimation (LOGPE) algorithm with respect to the discrepancy
cost, with guaranteed convergence, based on an iterative nearest-neighbor
symbol assignment step that possesses guaranteed descent in the discrep-
ancy cost.1 In this way, locally optimal symbolization of the entire time
series is achieved. Some approaches perform scalar or low-dimensional vec-
tor quantization and thus explicitly achieve a low-dimensional state-space
partition (Beck & Schlogl, 1993). By contrast, our approach does not ex-
plicitly partition the state space, but rather the space consisting of the en-
tire time series. Since the time series may be of any length, the proposed
approach thus essentially performs partitioning in a (countably) infinite-
dimensional space. The proposed method also amounts to a novel type of
sliding block lossy source coding (Gray, 1975). We demonstrate improve-
ment in the discrepancy objective over Hirata et al. (2004) starting from
the same initialization, as well as using their final solution as our method’s
initialization, with consistent gains seen across different system parame-
ter choices. We also demonstrate better dynamical systems characterization
with respect to the widely applied Kolmogorov-Sinai entropy, for several
well-known nonlinear maps. Finally, LOGPE is demonstrated to yield im-
proved anomaly detection for both a well-known chaotic map and a metal
fatigue application domain.

The rest of the letter is organized as follows. Section 2 reviews the method
from Hirata et al. (2004) and develops LOGPE. Section 3 presents exper-
imental results for LOGPE in symbolization of time series generated by
chaotic maps and in anomaly detection, in comparison with Hirata et al.
(2004), the maximum entropy partition, and K-means clustering. Section 4
discusses some future work extensions.

2 Algorithm Formulation

2.1 Review of the Hirata et al. (2004) Method. Consider a discrete-time
dynamical system

xn+1 = f (xn), (2.1)

1
This paper is the journal version of Miller, Ghalyan, and Ray (2017), giving a fuller

exposition of the method introduced there, more extensive experimentation, and applica-
tions to time-series anomaly detection.
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where n ∈ Z and f : Rk → U ⊂ Rk. Let X = {. . . , x−1, x0, . . . , xN, . . .}, xi ∈
Rk be an infinite-duration (vector-valued) time series, generated ac-
cording to this map. Further, define the infinite symbol sequence s =
{. . . , s−1, s0, . . . , sN, . . .}, si ∈ A, A a finite alphabet, produced via some
deterministic mapping operation that assigns a sequence s given a time
series X. Hirata et al. (2004) focus on symbol sequences generated by ap-
plying state-space partitioning (i.e., of Rk) to xn,∀n. However, as we em-
phasize throughout this letter, this is not the only mapping of interest
for generating s. The purpose of the symbol sequence is to describe the
time series. In particular, such a symbol sequence is called a generating
partition if it uniquely specifies the initial state x0 (up to a set of mea-
sure zero). The initial state determines the subsequent time series and,
further, if the map is invertible, it in fact determines the entire time se-
ries. Let us also define an infinite-duration reconstruction sequence R =
{. . . , r0(s), r1(s), . . . , rN(s), . . .}, ri(s) ∈ Rk, where we can think of ri(s) as
an estimate of xi that is informed by s. Further, define the subsequence
s[−m, m] = {s−m, s−m+1, . . . , s0, s1, . . . , sm}. Then r0(s[−m, m]) is an estimate
of x0 based on this finite subsequence of symbols. Hirata et al. (2004)
prove that if s is such that r0(s) can be chosen consistent with supx0∈U ||x0 −
r0(s[−m, m])|| → 0 as m → ∞, then the partitioning is generating. Further,
note that the initial time is arbitrary. That is, if we consider s[−m + i, m + i],
then if ri() can be chosen so that supxi∈U ||xi − ri(s[−m + i, m + i])|| → 0 as
m → ∞, the partitioning is also generating. That is, a (strict) generating
partition uniquely specifies (or within a set of measure zero) the value of
the time series at every time instant. Accordingly, a good estimate of a gen-
erating partition should be such that the sequence of reconstructions well
approximates the time series (with small error at every time instant). The
authors coin the phrase symbolic shadowing, referring to the reconstruction
“alphabet” R = {r(s) ∈ Rk,∀s} and a particular symbol sequence s, jointly
chosen so that the reconstruction sequence R (determined by s) closely ap-
proximates the observed time series.

In order to develop a practical algorithm, one needs to consider a
finite-duration time series X = (x0, x1, . . . , xN} and a practical (finite) re-
consruction alphabet, R. Accordingly, Hirata et al. (2004) define a fi-
nite temporal window, with the reconstruction at time n a function
of the (possibly noncausal) length m + l + 1 symbol subsequence s[n] =
{sn−m, sn−m+1, . . . , sn, sn+1, . . . , sn+l}. This limits the size of R to |A|m+l+1 k-
dimensional vectors. Then, consistent with the symbolic shadowing idea,
they define a goodness measure of reconstruction fidelity as the (mean-
squared error-based) discrepancy:

D =
N−l∑

n=m

||xn − r(sn−m, . . . , sn+l )||2.
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Estimating a generating partition is thus boiled down in Hirata et al. (2004)
to the optimization problem:

min
R,s

N−l∑

n=m

||xn − r(sn−m, . . . , sn+l )||2.

This optimization problem bears close resemblance to that of K-means clus-
tering (Duda, Hart, & Stork, 2012) and vector quantization (VQ) (Gersho &
Gray, 1993). Accordingly, it is not surprising that Hirata et al. (2004) pro-
posed an algorithm that seemingly resembles the Linde-Buzo-Gray (LBG)
algorithm for designing vector quantizers (Linde, Buzo, & Gray, 1980).
However, unlike the standard VQ problem, the reconstruction at time n is
not a function of a single quantization index; it depends on the discrete sym-
bol subsequence {sn−m, sn−m+1, . . . , sn+l}. It is this complication that causes
nonmonotonicity and nonconvergence problems for the Hirata et al. (2004)
algorithm. Thus, while the algorithm proposed in Hirata et al. (2004) (which
is detailed next) seems to resemble LBG, unlike LBG, which possesses guar-
anteed convergence and local optimality properties, the algorithm from Hi-
rata et al. (2004) does not possess these properties and suffers from non-
monotonicity and nonconvergence problems.

Suppose that m, l, and |A| are fixed.2 Further, we introduce the indicator
variable vn,q, q ∈ Al+m+1, taking on 1 if s[n] = q, that is, if it is the symbol
subsequence mapping (specifying the reconstruction) for sample xn and 0
otherwise. The Hirata et al. (2004) algorithm, which aims to minimize D, is
then summarized as follows:

1. Initialization. Choose an initial reconstruction table R with associated
symbol sequence “codewords.” While a variety of initializations are
possible, Hirata et al. (2004) proposed one based on unstable periodic
state-space points from the time series.

2. “Nearest neighbor” symbolization Step. For n = m, . . . , N − l

q∗ = argmin
q∈Al+m+1

||xn − r(q)||2

sn = q∗
0, where q∗ = (q∗

−m, . . . , q∗
l )

End For

2
In practice, these are all hyperparameters of the algorithm that must be chosen. One

such approach, which will be considered in our future work, is to cut the time series in
two, into a training “half” and a validation “half,” with the best hyperparameters’ con-
figuration the one that minimizes the discrepancy measured on the validation half of the
time series. Another is to apply K-fold cross-validation. However, this will entail (K + 1)
objective function minimizations for each hyperparameter configuration and is thus more
costly computationally.
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3. Centroid rule. r(q) =
∑N−l

n=m vn,qxn∑N−l
n=m vn,q

, evaluated for all q ∈ Al+m+1 for which

the denominator is nonzero.
4. Termination. Go to step 2 unless there are no further changes or a stop-

ping condition is met.

The centroid step is a global minimization step, given the symbol se-
quence s fixed. Thus, this step descends in D. However, Hirata et al. (2004)
were well aware that step 2 is not guaranteed to descend in D. In fact, they
noted that the ideal step 2 would globally minimize D with respect to the
symbol sequence, given fixed R. However, they recognized that this is ut-
terly intractable, requiring exhaustive evaluation of all |A|(N+1) symbol se-
quences. They justified their chosen, heuristic step (which assigns as sn the
“middle” value q∗

0 in (q∗
−m, . . . , q∗

0, . . . , q∗
l )) by noting that in the “majority of

tested cases, a stationary state is achieved”. Moreover, they also suggested
the use of their nearest-neighbor step to estimate a state-space (generat-
ing) partition. That is, they divide Rk into |A| regions, where the region
indexed by a ∈ A is defined by {x : ||x − r(q)||2 ≤ ||x − r(q′)||2, where q sat-
isfies q0 = a,∀q′ ∈ Al+m+1}.

Experimentally, however, we have found that nonconvergence and oscil-
latory behavior of their algorithm are also often observed. This necessitates
use of heuristic stopping criteria. Moreover, since the symbolization step is
not guaranteed to descend in D, there is concern whether Hirata et al. (2004)
makes good descent in D before the stopping condition is reached.

While there are problems with the algorithm proposed in Hirata et al.
(2004), their work is seminal in that they derived their discrepancy objec-
tive function from first principles and explicitly cast generating partition
estimation as the minimization of their objective function. In this letter, we
build on their foundational work, proposing an algorithm that is locally
optimal with respect to D, with guaranteed convergence. When initialized
using a Hirata et al. (2004) solution, our method is guaranteed to find bet-
ter solutions unless the Hirata solution is already at a local minimum of
D. Moreover, when given the same initialization as Hirata et al.’s (2004)
method, our algorithm often finds much better solutions. In fact, this ini-
tialization is generally preferred in practice.3

2.2 LOGPE Algorithm. The key observation we make is that since
the reconstruction at time n′ is a function of (sn′−m, . . . , sn′+l ), the choice
of sn affects (restricts) the reconstruction choices for time instants n′ =
n − l, . . . , n + m.4 For example, if l = m = 1, sn restricts the possible

3
Initializing from a poor (Hirata) solution may be an unfavorable starting point for

our method, potentially close to a poor local minimum.
4
This observation in fact makes it clear that the Hirata symbolization step is not

a descent step in D, since their step first considers an unrestricted assignment for xn
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reconstructions at time instants n − 1, n, and n + 1. Thus, sn should be cho-
sen to minimize the sum of the squared reconstruction errors incurred at
these time instants. Specifically, if R is fixed and all other symbol assign-
ments are fixed, choosing sn in this way is optimal and is a guaranteed
descent step in D. Accordingly, we specify the following locally optimal
algorithm.

1. Initialization. Choose an initial symbol sequence s(0) and reconstruc-
tion table R(0). The Hirata et al. (2004) initialization is one good ini-
tialization approach that can be chosen. For all symbol subsequences
that occur in s(0), initialize their associated reconstructions using the
centroid rule. For the remaining possible subsequences, choose a
common initial reconstruction value (e.g., the mean value of the time
series is a reasonable choice). In this way, R(0) is determined; t ← 0.

2. Symbolization pass.

t + +
For n = m, . . . , N − l

s(t)
n = argmin

sn∈A

n+m∑

n′=n−l

||xn′ − r(t−1)(s(t−1)
n′−m, . . . , sn, . . . , s(t−1)

n′+l )||2

End For5

3. Centroid rule. Same as Hirata et al. (2004).
4. Termination. Go to step 2 unless there are no further changes.

A number of comments follow:
• Symbolization that descends in D. Note that step 2 is equivalent to

argminsn
D, given all other variables fixed. Thus, each symbol choice is a

descent step in D.
• Convergence. The LOGPE algorithm is guaranteed to converge. The

proof argument, which follows standard arguments for convergence of vec-
tor quantizer design (Gersho & Gray, 1993), is as follows. Although there are
a huge number of possible symbol sequence assignments (|A|(N−l−m+1)), this
number is finite. The two algorithm steps defining an iteration (centroid and
symbolization pass) are both nonincreasing in D (the centroid step in fact
globally minimizes D with respect to R, given s fixed). Moreover, the cen-
troid updates can be written as a function of the symbol assignments. Thus,

(considering the entire reconstruction table), which may lead to a reconstruction choice
whose associated state subsequence is inconsistent with the n + m (currently) fixed sym-
bol values in the temporal window [n − l, n + m] (i.e., all symbols except sn).

5
If multiple symbols attain the minimum distance given by the summation in this step,

then the first of these symbols is chosen. This is the tie breaker rule we use in this letter,
although other rules can also be used, such as randomly choosing from among this subset
of symbols.
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we can focus on the symbolization pass. The number of possible symbol-
ization passes that may decrease D following the initialization is of course
also finite (it is bounded below the total number of symbol sequence as-
signments). Thus, after a finite number of symbolization passes, D will no
longer decrease. Thus, LOGPE converges in a finite number of passes (itera-
tions). Furthermore, if there is always a unique state minimizing the partial
discrepancy in step 2 (ties occur with measure zero for a continuous-valued
map, f (·)), LOGPE also converges to a (fixed point) symbol sequence.
• Local optimality (following the proof argument given in Gray, Kieffer, & Linde,

1980 for vector quantization). Suppose that LOGPE has converged to a (fixed-
point) symbol sequence s. As noted above, the centroid rule determines the
global minimum choice of R with respect to D, given fixed s. Now suppose
we consider a perturbation of R (i.e., a reconstruction table R̃). Local opti-
mality means that for every R̃ such that ||R − R̃|| < ε and with ε made as
small as you like, the discrepancy cost will be larger when R̃ is used com-
pared with R (i.e., compared with the global centroid choice, given s fixed).
This is shown as follows. If ε is made sufficiently small, applying the sym-
bolization pass using any reconstruction table R̃ will yield the same state
sequence s as that determined when using R. But R is the globally opti-
mal reconstruction table with respect to D, given s. Thus, the discrepancy
incurred using R̃ must be strictly greater than that using R. We thus con-
clude that at convergence (assuming the state sequence s has converged (no
ties)), the LOGPE reconstruction table R is locally optimal.
•Variable memory. Note that the LOGPE algorithm need not require dedi-

cated memory storage for all |A|(l+m+1) vector reconstructions; we need not
(initially) store the reconstruction values for symbol sequences that do not
occur, based on s(0). Essentially, in step 2, whenever a symbol subsequence
that has not been seen before is being evaluated, we do not need to do a
table lookup to find its reconstruction value; we can simply use the rule of
evaluating that reconstruction as the (chosen) common value (e.g. the mean
of the time series). The implication here is that in practice, variable mem-
ory allocation can be used, with a new reconstruction added to the table R
each time a given symbol subsequence is found to have occurred for the
first time in the current s, following step 2.
•Alternative implementation. Step 2 performs one pass over the time series.

A valid alternative is to perform multiple passes until there are no further
changes, before performing the centroid rule. Both approaches are locally
optimal, with guaranteed convergence.
• Sequence space partition. Since the symbol assignments for the entire time

series are jointly determined, our approach explicitly partitions in the space
consisting of the entire time series, that is, a sequence space partition (it
does not explicitly induce a partitioning of the k-dimensional state space).
Specifically, for xn = xn′ = x̃, our symbolization could be such that sn �= sn′ .
To put this in perspective, Kennel and Buhl (2003) suggest that symbol-
ization necessitates forming a partition of the state space: “The obligatory
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discretization requires a partition of the state space.” Our approach demon-
strates this is not necessary. In fact, discretizing consistent with minimizing
D only performs explicit partitioning in a (countably) infinite-dimensional
space (considering time series of arbitrary integer length, N). Note that the
above does not imply that our approach does not yield smooth state-space
partition estimates in practice (we will give an example shortly).
• Lossy source coding interpretation. The above clustering algorithm is

also a special type of sliding block lossy source coding design algorithm
(Gray, 1975), which, to our knowledge, is itself novel. The associated source
coder operates on k-dimensional input blocks, has a source coding rate of
(log2 |A|)/k bits per sample, requires infinite delay at the encoder side (it
jointly encodes the entire time series), and uses a decoder codebook of size
|A|l+m+1 k-dimensional reconstructions.
•Distinction from time series clustering. In LOGPE (and in the Hirata et al.,

2004, algorithm) we are essentially discretizing or symbolizing a single
(possibly vector-valued) time series, with the measurement xn at each time
n assigned to one of |A| possible values. For a time series of length N, there
are |A|N possible such sequence symbolizations. By contrast, in time series
clustering (Aghabozorgi, Shirkhorshidi, & Wah, 2015; Nguyen, McLachlan,
Orban, Bellec, & Janke, 2017) one has a collection of, for example, M time
series, with each of these time series assigned to one of |A| clusters. This is
wholly different from our time-series symbolization problem. The similar-
ities are that both problems involve time series and both problems involve
assigning data to an element from a finite set (|A| possible values). The fun-
damental differences lie in the facts that in time-series clustering, there is a
finite collection of time series, whereas in our problem, there is only a sin-
gle time series. Moreover, in time-series clustering, the entire time series is
a data object getting assigned (in its entirety) to a cluster, whereas in our
problem, the measurement at each time is individually assigned to one of
the possible symbol values (which are not really “clusters” per se).
•Distinction from time-series segmentation and prediction. LOGPE performs

a time-series symbolization especially useful for estimating the generating
partition for an unknown nonlinear dynamical system. We will demon-
strate that this approach is also very effective for learning a time-series null
model, used to interrogate new time series to detect an anomalous time se-
ries or anomalous time-series segment (e.g., for fault detection). There are
time-series modeling approaches that also involve symbolization, albeit fo-
cused on other objectives, for which they are better suited and for which our
model is not really appropriate. However, these other models are not nec-
essarily appropriate for symbolizing nonlinear dynamical systems. In par-
ticular, Chamroukhi et al. (2009) focus on time-series segmentation, seeking
to partition the time series into K segments, each represented by a different
polynomial model. In such an approach, every measurement in the same
segment is essentially assigned the same symbol value (k). That is, the sym-
bol sequence contains long intervals where the same symbol value is used
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(indicating the same polynomial model is being used). But LOGPE’s symbol
sequence is not likely to be smooth in this sense at all, and the LOGPE sym-
bols do not carry the same meaning as those in Chamroukhi et al. (2009).
LOGPE’s sequence discretization is a joint encoding of the entire time se-
ries, yielding a symbol sequence that mirrors (tracks) the original time se-
ries produced by the nonlinear map. Rather than partitioning the time axis
as in Chamroukhi et al. (2009), LOGPE, as will be discussed next, induces
partitions of the state space (Hirata et al., 2004; Kennel & Buhl, 2003) and
the sequence space. Likewise, Wong and Li (2000) proposed a mixture of
autoregressive models. Again, this model does involve (latent) symboliza-
tion of the time series, with a (latent) autoregressive mixture component
used to generate the observation at each time instant. However, the focus
in Wong and Li (2000) is on time-series prediction (determining the predic-
tive distribution), not on “describing” the time series by a discrete (mixture
component) symbol sequence. Also, Wong and Li (2000) is well suited to
modeling data generated according to mixtures of autoregressive models,
but not, obviously, to data generated according to a nonlinear dynamical
system. Other differences between LOGPE and Wong and Li (2000) are that
LOGPE does not directly learn a (stochastic) generative model; moreover,
LOGPE has nonlinear (quantized) memory, with the reconstruction at the
current time a function of a finite memory symbol sequence, whereas in
Wong and Li (2000), conditioned on each mixture component, there is a lin-
ear (autoregressive) memory model.

2.3 Partitions of the State Space and the Sequence Space. Consider a
discrete-time dynamical system described by the map

xn+1 = f (xn), (2.2)

where f : Rk → Rk. Let M = {X} denote the set of all possible time se-
ries generated by equation 2.2. Let P be a partition, mapping each time-
series X = {x0, x1, x2, . . .} generated by equation 2.2 to a symbol sequence
s = {s0, s1, s2, . . .}, si ∈ A, A a finite alphabet. The shift space � is the set of
all possible such symbol sequences (Lind & Marcus, 1995).

As indicated in section 2.2, LOGPE explicitly partitions in the sequence
space M and does not necessarily partition the state-space Rk. An interest-
ing question is, In the symbolic dynamics literature, which partition defini-
tion is used—a partition of the state space (which of course also determines
a partition of the sequence space) or just a partition of the sequence space
? Multiple references imply that the relevant definition is a partition of the
state space (Beck & Schlogl, 1993; Buhl & Kennel, 2005).

However, Cornfeld, Fomin, and Sinai (1982) use a sequence space par-
tition definition. Likewise, Kantz and Schreiber (2004) describe partition-
ing as the process of labeling specific patterns in the time series (not
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necessarily of fixed length) by symbols. Our LOGPE method forms such
a sequence partition P : M → �. Such a partition is generating if this map
is one-to-one up to a set of measure zero.6

Like Beck and Schlogl (1993) and Buhl and Kennel (2005), Hirata et al.
(2004) use a state-space partition definition. The derivation of their clus-
tering objective in fact begins from the assumption that one is seeking a
partition of the state space, and their theoretical results all assume a state-
space partition. However, this is somewhat ironic, because their resulting
algorithm does not, in fact, optimize over a state-space partition in attempt-
ing to minimize their discrepancy measure, D. In fact, their symbol assign-
ment step is not consistent with a state-space partitioning rule (the symbol
assignment at time n in their method depends on the symbol choices at
surrounding times). At the same time, their algorithm does not exploit this
“freedom” (i.e., not being restricted to assign consistent with a state-space
partition) to define an algorithm that descends in D.

We also relax the assumption of a state-space partition, but unlike Hi-
rata et al. (2004), we do exploit this relaxation to define an algorithm that
descends in and is locally optimal with respect to D. In fact, to achieve a
locally optimal solution with respect to D, one must define a sequence par-
tition (obviously, the global minimizer of D is a sequence space partition,
not a state-space partition, as is even pointed out in Hirata et al. (2004)). As
we will show next, our approach not only yields solutions with lower D
than those of Hirata et al. (2004), as one would expect. It also yields lower
maximum absolute error; better estimation of Kolmogorov-Sinai entropy,
a unique characterizer of a chaotic map; and better performance when ap-
plied to time-series anomaly detection.

3 Experiments

3.1 Symbolization of Time Series Generated by Chaotic Maps. In this
section we validate LOGPE on several chaotic maps, including the Ikeda
map (Ikeda, 1979), described by the following pair of equations:

x1,n+1 = a + b(x1,n cos φn − x2,n sin φn),

x2,n+1 = b(x1,n sin φn + x2,n cos φn),

6
It is worth mentioning that for many time-varying dynamical systems, the same point

in state space may recur multiple times. However, for each such occurrence, the point
may be part of a quite distinct (short- or long-term) temporal pattern. For a state-space
partition, the time series must be assigned the same symbol at these “recurrence” times.
However, it should be clear that such a restricted symbol assignment may be suboptimal,
with the symbol at time n, sn, giving information only about xn. By contrast, a sequence
partition is less restrictive, with sn, each n, providing some information about the entire
time series.
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Figure 1: (a) Nonmonotonicity in D of Hirata et al. (2004). (b) Limit cycles of
Hirata et al. (2004).

where φn = κ − η/(1 + x2
1,n + x2

2,n). We choose a = 1, b = 0.9, κ = 0.4, η = 6,
and an initial condition (x1,0, x2,0) = (0.5328, 0.2469) as in (Davidchack, Lai,
Bolt, & Dhamala, 2000). N denotes the time-series length and L = m + l +
1 the window size. Also, we chose A = {0, 1}. In this section, whenever a
figure is for a fixed window length, we used l = 0. When the figure is for an
increasing window length, we used the procedure in (Hirata et al., 2004) to
choose l and m, as follows:

1. Choose an initial window length L.
2. l = �L/2 and m = �(L − 1)/2.
3. L ← L + 1, and goto 2.

First, we illustrate nonmonotonicity in D of the algorithm from Hirata
et al. (2004). Figure 1a shows MSE versus algorithm steps for a length
N = 100 Ikeda sequence, where there are 99 symbol assignment steps (N −
l − m), followed by a centroid step. It is clear from the figure that Hirata
et al. (2004) is not strictly decreasing in D. As a consequence, there is no
guarantee the algorithm will converge. Figure 1b demonstrates an example
where limit cycle behavior occurs. Here, in this example, the centroid up-
date and a symbol assignment sweep over the time series are the two steps
consisting of one iteration.

Figure 2a shows a comparison between Hirata et al. (2004) and LOGPE
for 12 sweeps over the time series (with each symbol update and the cen-
troid update considered to be steps). Both algorithms used precisely the
same initial conditions, based on the procedure from Hirata et al. (2004). In
this case, Hirata converges. However, LOGPE converges to a much smaller
value of D, with significant descent occurring long after Hirata et al. (2004)
converged to a (shallower) fixed point. In Figure 2b LOGPE is initialized
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Figure 2: Comparison of Hirata et al. (2004) and LOGPE algorithms. (a) Same
initialization. (b) LOGPE initialized from Hirata et al. (2004) converged solution.

Figure 3: Comparison of Hirata et al. (2004) and LOGPE algorithms.

from the converged Hirata solution. In this case, LOGPE is mathematically
guaranteed to improve on (or do no worse than) the Hirata et al. (2004)
solution. As seen from the figure, LOGPE converges to a solution with es-
sentially the same MSE LOGPE achieved in Figure 2a, but in 9 iterations
(4491 steps) instead of 12 (5988 steps).

We next consider longer time series – N = 10, 000, with both algorithms
again using precisely the same initialization. This time we plot performance
at stopping, as a function of L. The results are shown in Figures 3 and 4. As
shown in Figure 3, Hirata et al. (2004) does not strictly improve in D with
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Figure 4: Estimated partition using the Hirata et al. (2004) and LOGPE
algorithms.

increasing L.7 This is not totally surprising due to the heuristic nature of
the algorithm, which may result in finding a poor solution at a given L, and
nonconvergence at a given L, which necessitates use of a heuristic termi-
nation policy, possibly again resulting in a poor (final) solution.8 However,
this result is still disappointing. Since |R| grows exponentially with L, one
might still expect D to strictly decrease with increasing L. This monotonic
behavior is in fact observed for LOGPE. Note that LOGPE also gives signif-
icant MSE performance gain over Hirata as L increases. Finally, as shown
in Figure 3, LOGPE also gives much better maximum absolute error.9

Suboptimality of Hirata et al. (2004) is not only reflected in MSE and max-
imum error performance. It is also reflected with respect to the main objec-
tive of the algorithm: estimating a generating partition. The estimated par-
titions for L = 11 and |A| = 2 are shown for both algorithms in Figure 4.10

7
While we faithfully implemented the Hirata algorithm in its entirety, our results in

Figures 3 and 4 are not perfectly consistent with those reported in Hirata et al. (2004) for
the Ikeda map. Specifically, Hirata et al. (2004) does not show nonmonotonicity for D as
a function of L and they also do not show nonsmoothness in the estimated state-space
partition.

8
The stopping policy we used when implementing the Hirata algorithm is that if the

algorithm does not reach a fixed point, it is terminated after a maximum number of iter-
ations is reached, with the best solution (lowest D) found up to that point retained. The
exception is that whenever limit cycles are detected, the algorithm is terminated when the
cost function (D) reaches a minimum value of the limit cycle.

9
Although LOGPE (designed to minimize D) does not exhibit strictly monotonically

decreasing maximum error for increasing L, there is a clear monotonic decreasing ten-
dency, in contrast to what is seen for Hirata et al. (2004).

10
A state-space partition is estimated for both algorithms by labeling each sample xn

by the symbol sn.
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Here, we see that LOGPE achieves a smooth manifold partition of the state
space (expected and desirable), whereas the partition of Hirata et al. (2004)
possesses two regions of discontinuity.

There are two further important points to emphasize about Figure 4.
First, it is not possible for a state-space partitioning algorithm such as
K-means/LBG (applied to the vector measurements that form the time se-
ries) to have produced these state-space partitions. For Figure 4, a sym-
bol alphabet of cardinality two was used. In general, vector quantization
(assuming squared Euclidean distance) induces a Voronoi partition on the
given feature space, with each cluster’s region a convex polytope. How-
ever, the situation here is actually far simpler. The number of clusters is
only two: the Voronoi partition’s decision boundary (in the plane) in this
case is mathematically guaranteed to be a straight line. Note that neither the
LOGPE nor the Hirata estimated partitions are consistent with a straight-
line decision boundary. Thus, neither of them could have been produced
by a K-means/LBG algorithm (with symbol alphabet/number of clusters
equal to two). Second, we note that the LOGPE partition is in very good
(visual) agreement with the published estimated generating partition (ob-
tained using a different method) in Davidchack et al. (2000). This is a further
validation of our obtained partition and of our approach.

We also provide an estimate of Kolmogorov-Sinai (K-S) entropy, h, for
the Ikeda map using both algorithms. By definition, K-S entropy is the
supremum of the joint entropy of all symbol sequences taken over all
alphabets (see, e.g., Beck & Schlogl (1993), and Kantz & Schreiber (2004)).
Theoretically, this supremum can be achieved by partitioning the state
space with an infinite-cardinality alphabet. Interestingly, a generating parti-
tion achieves the same supremum with finite, and it is hoped, a very small,
alphabet. Furthermore, K-S entropy is unique to each map (Beck & Schlogl,
1993). In particular, for the Ikeda map, the true K-S entropy has been ap-
proximated in the literature by the value 0.726 (Hirata et al., 2004). Given a
symbol sequence {s1, s2, . . . , sN}, we construct a finite set of states Q = {qi},
where each state qi is a concatenation of symbols occurring in the sym-
bol sequence. One way to create such a set of states is to use the so-called
context-tree model (Willems, Shtarkov, & Tjalkens, 1995). Then the set Q
is the collection of all terminal nodes in the tree. It is clear that given a
tree depth and an alphabet A, there are many possible tree models that
could be constructed. However, tree models that satisfy the well-known
minimum description length (MDL) model-selection criterion (Barron, Ris-
sanen, & Yu, 1998) provide an efficient and reliable means to model a time
series (Kennel et al., 2005). To compute the K-S entropy, we use the estimate
h = LMDL/N, where LMDL is the data code length component of the MDL
given by LMDL = ∑N−1

j=0 − log2 p(s j+1|q( j) ), where q( j) ∈ Q is the most recent
state (including symbols up to time j), and p(s j+1|q( j) ) is estimated from fre-
quency counts (Kennel & Buhl, 2003). The resulting K-S entropy estimate is
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Figure 5: Comparison of Hirata et al. (2004) and LOGPE algorithms with addi-
tive noise.

h = 0.6915 for Hirata et al. (2004) and h = 0.7239 for LOGPE. The K-S en-
tropy was computed for both algorithms using L = 11 and an alphabet size
of two. Clearly, LOGPE’s estimate is very close to the true K-S entropy and
closer than Hirata’s estimate. As a second example, we also compute the
K-S entropy for the Hénon map (Kantz & Schreiber, 2004), given by

x1,n+1 = 1 − ax2
1,n + bx2,n,

x2,n+1 = x1,n,

where (a, b) = (1.4, 0.3). For this map, the true entropy is approximated by
the value 0.6048 (Hirata et al., 2004). We follow the same procedure we
did to compute the K-S entropy for the Ikeda map. The resulting K-S en-
tropy is h = 0.6204 for Hirata et al. (2004) and h = 0.6084 for LOGPE. Again,
LOGPE’s estimate is very close to the true K-S entropy and closer than Hi-
rata’s estimate. These K-S entropies computed by the LOGPE algorithm for
both the Ikeda map and the Hénon map are suggestive of the accuracy of
the algorithm in estimating the generating partition for these two maps us-
ing an alphabet size of just two.

Figure 5 considers the Ikeda map corrupted by additive noise. We used
zero-mean, gaussian white noise with a variance of two in both dimensions.
The figures show significant improvement in both MSE and the maximum
error curves for LOGPE compared with Hirata et al. (2004).

Although Figure 3 shows LOGPE achieves monotonic decrease in D for
increasing L, this is in fact not guaranteed because LOGPE produces only
a locally optimal solution at a given L. To ensure such descent, we propose
a prefix-based initialization of the solution for window length L + 1, given
the solution at length L. After updating L to L + 1, keep the symbol sequence
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Figure 6: LOGPE performance with and without prefix-based initialization.

fixed; then consider the smaller window size symbol subsequence as a pre-
fix, and for all the larger window size symbol subsequences with the same
prefix, assign them to the same centroid reconstruction. This makes the so-
lution at window size L + 1 initially equivalent to the solution at window
size L (with the same value of D). Now, if we take one centroid step for the
larger window size, this will descend in D (unless already at a local min-
imum) and will improve the solution. Hence, a guaranteed decrease in D
for increasing L is achieved. Figure 6 shows that beyond theoretically guar-
anteed decrease in D for increasing L, there is modest performance gain
for this prefix-based approach, compared with LOGPE initialized using the
method from Hirata et al. (2004) at each L.

3.2 Computational Complexity. We now explicate the computational
complexity of LOGPE in comparison to Hirata et al. (2004). The two algo-
rithms use the same centroid update rule, so excepting differences in the
size of the reconstruction tables for the two algorithms, the main difference
lies in the symbolization step. Inspecting the given pseudocodes, one can
see that for Hirata et al. (2004), to determine each symbol (in one sweep or
pass over the time series), one must perform a nearest-neighbor rule, ex-
haustively evaluating all possible vectors in the reconstruction table to find
the one that is nearest to the time-series vector at the current time, xn. This
requires at most |Al+m+1| vector distance computations (the actual number
required is the number of reconstructions that occur for the training set (the
size of the reconstruction table), which may be much smaller). On the other
hand, for LOGPE, one only needs to consider |A| reconstructions (since one
is only considering changing sn). However, for each such choice, l + m + 1
vector distance computations (and l + m additions) are required to imple-
ment the summation in a LOGPE symbolization step at time n. Thus, for
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determining sn, LOGPE requires |A|(l + m + 1) vector distance computa-
tions and |A|(l + m) additions. While this analysis characterizes the com-
plexity of the two algorithms at each symbol update step, both the actual
size of the reconstruction table that is used and the number of symboliza-
tion sweeps performed until convergence or termination will determine the
relative required execution times of the two algorithms in practice.

Thus, to assess execution times, we conducted 10 trials, in each generat-
ing an Ikeda time series of length 10,000 from slightly different initial condi-
tions, and then we report average execution times (and standard deviation),
as well as the average number (and standard deviation) of iterations (passes
over the data) until convergence, as a function of L. The 10 initial conditions
were x0 = (0.53280, 0.24690), (0.53281, 0.24690), (0.53280, 0.24691), (0.53281,
0.24691), (0.53282, 0.24690), (0.53280, 0.24692), (0.53282, 0.24691), (0.53281,
0.24692), (0.53282, 0.24692), and (0.53283, 0.24690). The experiments were
performed on a Dell Precision T3400, with an Intel Core2 Quad CPU Q9550
at 2.83 GHz, with 8 GB RAM, and running under Windows 7. The results
are shown in Table 1. Inspecting the average number of sweeps until con-
vergence (or until termination for Hirata et al., 2004), we observe that this
number tends to decrease as L increases for both algorithms. At the same
time, the mean execution time for Hirata et al. (2004) tends to increase with
L. This is due to the increasing size of the reconstruction table with L. Such
an execution time tendency does not clearly exist for LOGPE. The results
show that LOGPE, run until convergence, is more computationally expen-
sive than Hirata et al. (2004) for L = 2 to 9, but less expensive for L = 10
and 11. Based on our complexity analysis, these results, for varying L, are
a function of both the average number of sweeps taken and the reconstruc-
tion table sizes of the two algorithms.

Table 2 shows the results for LOGPE initialized from the Hirata et al.
(2004) solution at each L and run until convergence. The results show that
in contrast to Table 1, the average number of sweeps until convergence for
LOGPE does not decrease as L increases. Thus, since the reconstruction table
size grows with L, the average execution time tends to increase with L, as
seen in the table.

Comparing Tables 1 and 2 indicates that the choice of the initial symbol
sequence affects the amount of LOGPE optimization needed to reach con-
vergence. However, as noted earlier, it is not required to run LOGPE until
convergence; one can instead use a stopping condition or a fixed computa-
tional allowance. Either way, the algorithm is guaranteed to achieve a lower
discrepancy than Hirata et al. (2004), initialized from their solution.

3.3 Anomaly Detection for a Noisy Duffing System. In this section, we
further demonstrate the efficacy of LOGPE applied to anomaly detection for
a nonlinear system. Specifically, we consider the forced Duffing system de-
scribed by the following differential equation (Thompson & Stewart, 2002):
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Table 2: Number of Sweeps and Execution Time for LOGPE Applied to the
Ikeda Map and Initialized, at Each L, from the Hirata et al. (2004) Solution.

LOGPE Algorithm

Number of Sweeps Elapsed Time (seconds)

L Mean Standard Deviation Mean Standard Deviation

2 15.1 2.1318 64.082 9.1104
3 16.4 6.9634 91.825 39.0256
4 14.7 9.2382 102.62 64.5755
5 15.7 4.5228 131.54 38.1445
6 18.1 4.7947 176.65 46.8828
7 22.1 7.0309 246.94 78.1921
8 19.4 4.4771 244.37 55.9821
9 21.1 7.2793 296.68 102.4597
10 17.1 6.1001 264.63 94.4140
11 16 3.9721 270.58 67.0298

d2y
dt2 + β

dy
dt

+ y(t) + y3(t) = A cos(�t). (3.1)

The steady state solution of equation 3.1 is especially affected by the value
of β and the initial conditions y(0) and ẏ(0). Figure 7 shows the steady-state
behavior of equation 3.1 for a given initial condition and different values
of β. Each panel represents the phase plot at the given β shown at the top
of the plot. We used � = 5 and A = 22. As shown in this figure, a phase
transition occurs between β = 0.2 and β = 0.25. For different initial condi-
tions, this phase transition may occur at different values of β. We generated
90 realizations of equation 3.1 using 10 different initial conditions and 9
values of β. Therefore, for each initial condition, we have nine time series.
Time series before phase transition are labeled class 0 (the nominal class),
and those after phase transition are labeled class 1 (the anomalous class).
Then all these time series are corrupted by additive noise. Figure 8 shows
the phase plots of the time series from Figure 7 after being corrupted by
additive noise. From this figure, the process of identifying whether a time
series, after noise corruption, belongs to class 0 or class 1 appears to be a
difficult challenge.

We applied LOGPE (Hirata et al., 2004), K-means (Duda et al., 2012), and
maximum entropy partitioning (MEP; Rajagopalan & Ray, 2006) to symbol-
ize each of the 90 time series. Then, for each symbol sequence a D-Markov
machine of length D = 2 is constructed.11 To explain further, suppose that

11
A probabilistic finite state automata (PFSA) is a quadruple K = (A, Q, δ, π ), where A is a

finite-cardinality alphabet, Q is a finite set of states, δ : Q × A → Q is a transition function,



2520 N. Ghalyan, D. Miller, and A. Ray

Figure 7: Phase plots of Duffing system for different values of β.

β = 0.1 is considered. First, the time-series clustering solution (LOGPE, Hi-
rata, K-means, MEP) is learned on a nominal (β = 0.1) time series for a par-
ticular initial condition. Then this solution is used to symbolize (encode)
all the other time series generated using the same initial condition with
different values of β. Then the D-Markov machine constructed for each
time series is used to generate the (steady-state) probability vector of the
D-Markov machine’s states for that time series. Hence, for each initial con-
dition, there are nine such probability vectors, with one representing the
nominal time series (in this case, with β = 0.1). Then the Kullback-Leibler
divergence from each probability vector to its nominal reference point is
found. If this divergence is less than a preset threshold the time series is clas-
sified as class 0; otherwise to class 1. The performances of LOGPE (Hirata
et al., 2004), K-means, and MEP are evaluated by constructing the average
receiver operating characteristic (ROC; Duda et al., 2012) curve (averaging
over all the initial conditions) using each of these algorithms. The results for
alphabet sizes 4 and 6 are shown in Figure 9. As shown in the figure, LOGPE

and π : Q × A → [0, 1] is a state transition probability matrix (Hopcroft, Motwani, & Ull-
man, 2001). A D-Markov machine, where D ∈ N , is a PFSA corresponding to a stochastic
symbolic stationary process for which the probability of the next symbol depends only on
the previous (at most) D symbols (Ray, 2004).
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Figure 8: Phase plots of Duffing system with additive noise and different values
of β.

Figure 9: ROC performance for a noisy Duffing system.

performs very well, achieving average AUC = 0.9552 for alphabet size = 4
(much better than the other algorithms). LOGPE is further improved when
the alphabet size is increased to 6, achieving AUC = 0.98308, which re-
flects excellent performance and better than the other algorithms. The phase
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transition process in the Duffing system is an excellent example of anoma-
lies occurring in nonlinear systems. In the following section, we consider a
real example that frequently occurs in mechanical systems.

3.4 Application to Detection of Fatigue Failure in Mechanical Struc-
tures. Fatigue failure is one of the most frequent situations in which me-
chanical structures fail unpredictably. Modeling this type of failure has
received great attention by many researchers (e.g., Gupta & Ray, 2007;
Kwofie & Rahbar, 2012; and Aeran, Siriwardane, Mikkelsen, & Langen,
2017). In any mechanical structure, millions of initial materials’ defects
(such as dislocations, voids, inclusions, and slip bands) exist inside the mi-
crostructure even before the structure is used. In general, fatigue damage is
critically dependent on these initial defects, from which cracks start to nu-
cleate and merge together, generating bigger cracks, leading to catastrophic
failure of the structure (Suresh, 2004). These microstructural initial defects
are usually distributed in a highly random fashion, producing large uncer-
tainties in the crack initiation and propagation process even under identi-
cal loading. Therefore, fatigue failure is considered an unpredictable and
highly stochastic process.

Although structural fatigue damage is not a quantity that is easily mea-
sured directly, damage may be correlated with signals that can be measured
and used for fatigue damage detection. In this work, we use ultrasonic
signals that pass through a metallic specimen undergoing external cyclic
loading. These signals are continuously recorded after they pass through
the specimen’s structure. When cracks occur, part of the signal will be re-
flected instead of being transmitted to the receiver through the structure,
and hence the received signal is attenuated. The received signal keeps atten-
uating until the specimen breaks. Figure 10 shows such ultrasonic signals,
after downsampling, for 16 sample specimens made of steel-aluminum al-
loy. As shown in the figure, the signal begins to significantly attenuate at
a certain time instant. Such time instants roughly estimate phase transi-
tions in fatigue damage, where cracks reach critical lengths and the damage
process starts growing aggressively (until the specimen breaks and only a
noise signal remains). Although all the specimens used in this work have
the same dimensions and are made from the same material, the plots in Fig-
ure 10 show that the estimated phase transition instant is different from one
specimen to another. This difference is due to initial microstructural defects
that are specimen dependent. This situation is analogous to the Duffing sys-
tem with different initial conditions, where the values of β at which phase
transition occurs are sensitive to the initial conditions.

We used 24 specimens and obtained 24 ultrasonic signals (including the
16 signals in Figure 10). Each signal, consisting of 10,000 samples, is seg-
mented into 10 disjoint time series, each with 1000 points. The nominal time
series is the first one (for which the specimen has minimum damage). Time
series that occur before the estimated phase transition time are labeled class
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Figure 10: Ultrasonic signals for sample specimens.

0, and those that occur after that time are labeled class 1. Class 0 thus rep-
resents all the time series observed before the crack reaches a critical length
(which can be visually observed), and class 1 represents all the time series
after criticality.12 Then all the time series are corrupted by additive noise.13

We proceeded in a similar way as in the previous section to get the ROC
performance (averaged over specimens) for LOGPE, K-means, and MEP.
The results are shown in Figure 11. It is clear from the figure that LOGPE
achieves good performance and better than K-means and MEP when the ad-
ditive noise variance is one-tenth of the maximum amplitude of the signal
(AUC = 0.97137). When the noise variance is increased to seven-tenths of
the maximum amplitude of the signal, LOGPE achieves an AUC of 0.89232,
still better than K-means and MEP.

The actual phase transition of fatigue damage in metals occurs before the
received ultrasonic signal gets attenuated. The phase transition starts in the

12
The signals shown in Figure 10 are in fact obtained after downsampling the original

signals, which consist of millions of sample points.
13

This is additional noise. The original signal is already corrupted by measurement
noise as shown in Figure 10.
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Figure 11: Average ROC performance for noisy ultrasonic signals from 24
specimens.

microscale in the metal’s structure (Suresh, 2004). However, the phase tran-
sition at this early stage does cause a slight change in the behavior of the
signal. The detection of such behavior is highly desirable in health monitor-
ing and fatigue failure prediction of mechanical structures (Singh, Gupta, &
Ray, 2009). In this experiment, we consider one of the above steel-aluminum
alloy specimens, attempting to indicate early detection based on the ultra-
sonic signal. Unlike section 3.3, which considered a signal taken at a sam-
pling rate of about 1.4 Hz, we consider the signal taken at a much higher
rate—about 218 Hz. This signal, with 1,572,279 sample points, is shown in
Figure 12a. We applied MEP, Hirata et al. (2004), and LOGPE, with the lat-
ter two initialized by MEP. The purpose is to evaluate whether Hirata et al.
(2004) or LOGPE can achieve earlier detection of the fatigue damage phase
transition than MEP. We divided the ultrasonic time series into 22 disjoint
chunks, with each chunk about 71,467 sample points. The nominal time-
series chunk is the first one (for which the specimen has minimum damage).
Then MEP, Hirata et al. (2004), and LOGPE were learned on this chunk, with
the resulting models used to symbolize all the subsequent chunks. After
that, for each resulting symbol sequence, a D-Markov machine with D = 2
is constructed, and each D-Markov machine gives a (steady-state) probabil-
ity vector of the machine’s states. Then the anomaly measure for each time-
series chunk is defined as the Euclidean distance between the probability
vector of that time series and the probability vector of the nominal (refer-
ence) one. The results are shown in Figure 12b. As a physical fact, under
a constant amplitude cyclic load, the damage in the microstructure grows
slowly in its early stages, until cracks propagate and reach critical lengths,
where a phase transition occurs and the damage rate rapidly increases,
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Figure 12: Anomaly detection for fatigue damage modeling.

resulting in a complete specimen failure (Suresh, 2004). Figure 12b shows
that both MEP and LOGPE capture this behavior much better than Hirata
et al. (2004) do. Furthermore, the figure shows that, in contrast to the curve
given by Hirata et al. (2004), the curves given by MEP and LOGPE are in
good agreement with the results available from the literature (Bogdanoff
& Kozin, 1985; Jin, Gupta, Mukherjee, & Ray, 2011; Rege & Pavlou, 2017;
Aeran et al., 2017). In fact, the curve given by Hirata et al. (2004) keeps
increasing even after the 13.3 ∗ 105th time step, where only noise signal is
left. Moreover, the Hirata et al. (2004) curve lags both MEP and LOGPE.
On the other hand, LOGPE’s curve leads the MEP curve. While we do not
have ground truth on when the failure onset truly occurs, since the signal
changes should only be due to fatigue damage, we expect that earlier de-
tection is better than later detection. From the figure, MEP predicts fatigue
failure at the 7.861 ∗ 105th sample point, where the damage rate (given by
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the slope of the curve) starts a significant increase, while LOGPE predicts it
at the 6.432 ∗ 105th sample point—142,900 sample points earlier than MEP.
In terms of execution time for this big data experiment, Hirata et al. (2004)
required 714 seconds while LOGPE required 11,861 seconds. The reason for
this large difference is that Hirata et al. (2004) performs only one sweep in
symbolizing a chunk, while for LOGPE, iterative sweeps were performed
until convergence for each chunk (this can, of course, be reduced by using
a stopping criterion or a fixed computational allowance). The gain for this
increased execution time is much earlier (and presumably more accurate)
detection of fatigue failure.

4 Conclusion and Future Work

The partition algorithm proposed in this letter addresses the issue of esti-
mating a generating partition, from an observed time series, that is optimal
in the sense of reconstructing the time series from the symbol sequence. The
underlying concept has been validated and successfully applied to sym-
bolization of time series generated by chaotic maps and to anomaly detec-
tion, achieving improvements over popular methods used in the literature.
While the proposed algorithm ensures locally optimal solutions, simulated
annealing or an extension of deterministic annealing (Rose, Gurewitz, &
Fox, 1992) may find better solutions, albeit at the cost of increased com-
putational complexity. A validation approach (e.g., applied to a (held-out)
second half of the time series), or a cross-validation approach, could also
be used to best choose the hyperparameters m, l, and |A| for symbolizing
chaotic maps. Moreover, as a more theoretical direction, one could aim to
achieve almost certain convergence results (as the length of the time series
grows) for our LOGPE algorithm akin to those that have been obtained for
K-means clustering (Pollard, 1981).14

We also note that the approach here does not build a generative stochas-
tic model. Such a model would be appropriate, for example, for nonlinear
dynamical systems observed in additive noise. LOGPE is in fact closely
related to (generative) hidden Markov models that involve high-order

14
One concern with the result in Pollard (1981), however, is that it assumes that the

clustering algorithm finds the globally optimal solution, given a random data sample of a
given size. Even for K-means, this assumption does not hold in practice. K-means is only
guaranteed to find a locally optimal solution, even though it is based on two steps that are
each globally optimal given the other held fixed: the centroid step, given the partition held
fixed, and the nearest-neighbor partition step, given the centroids held fixed. LOGPE does
not even have a globally optimal partition step. Such a step is computationally intractable,
as discussed earlier in the letter. Thus, LOGPE uses a cyclical symbol assignment step
that is guaranteed to descend in the clustering objective, but only to find locally optimal
symbol assignments, given fixed centroids. Thus, we expect that LOGPE may be even less
likely, in practice, to find globally optimal solution than K-means.
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state transitions (depending on l + m + 1 states) and with gaussian state-
conditional densities. However, it does not appear to be trivial to realize this
generative extension of LOGPE since l may be positive, with the resulting
model noncausal. By contrast, HMMs have a causal data generation mecha-
nism. Developing a suitable stochastic model generalization of LOGPE, one
that is valid for positive l, should be a good subject for a future study.
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