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A critical issue in design and operation of combustors in gas tur-
bine engines is mitigation of thermoacoustic instabilities, because
such instabilities may cause severe damage to the mechanical
structure of the combustor. Hence, it is important to quantitatively
assimilate the knowledge of the system conditions that would
potentially lead to these instabilities. This technical brief proposes
a dynamic data-driven technique for design of combustion systems
by taking stability of pressure oscillations into consideration.
Given appropriate experimental data at selected operating condi-
tions, the proposed design methodology determines a mapping
from a set of operating conditions to a set of quantified stability
conditions for pressure oscillations. This mapping is then used as
an extrapolation tool for predicting the system stability for other
conditions for which experiments have not been conducted.
Salient properties of the proposed design methodology are: (1) It
is dynamic in the sense that no fixed model structure needs to be
assumed, and a suboptimal model (under specified user-selected
constraints) is identified for each operating condition. An
information-theoretic measure is then used for performance com-
parison among different models of varying structures and/or
parameters and (2) It quantifies a (statistical) confidence level in
the estimate of system stability for an unobserved operating condi-
tion by using a Bayesian nonparametric technique. The proposed
design methodology has been validated with experimental data of
pressure time-series, acquired from a laboratory-scale lean-
premixed swirl-stabilized combustor. [DOI: 10.1115/1.4040210]

1 Introduction

Instabilities in combustion systems of gas turbine engines are
usually related to the spontaneous excitation of one or more

natural acoustic modes of the combustor. These phenomena are
typically manifested by large-amplitude self-sustained oscillations
in the combustion chamber, which results from a feedback loop
established between the heat release rate from the flame and the
combustion chamber acoustics [1]. The problem is aggravated
with the implementation of low emission technologies like lean-
premixed combustion, which is susceptible to thermoacoustic
instabilities [2]. The detrimental effects of such instabilities
include generation of externally audible tones at intolerable levels
and sustained high-amplitude pressure oscillations that cause
mechanical stresses in the structural components of the combus-
tor, leading to thermomechanical damage. Hence, mitigation of
thermoacoustic instabilities is a critical issue for both design and
operation of combustion systems.

The dynamics of combustion are described by coupled nonlin-
ear partial differential equations, which cause difficulties in ana-
lytically modeling these instabilities. Hence, solely model-based
design optimization strategies may not be reliable for combustion
systems that involve several input parameters [3,4]. From the per-
spectives of instrumentation and control (I&C), several active and
passive measures have been investigated by researchers (e.g.,
Ref. [5]). These measures involve additional hardware and/or soft-
ware to be integrated with the combustor system in order to
reduce instabilities.

From the design perspectives, it is necessary to identify an opti-
mum (or a near-optimum) combustor geometry, which is expected
to produce stable operation of the system. The design procedure
can be realized in several ways. One of the common methods is to
use network-based models for studying the collective response of
different components in the combustor [6], where high-fidelity
numerical simulations can be used for predicting the dynamic
behavior at different regimes of operation [7]. Such simulations
are often computationally expensive as a design tool, and the net-
worked platforms may lack the memory and accuracy require-
ments for different dynamic regimes of the combustor. Due to
these limitations, data-driven methods have been used by several
researchers, and such endeavours are well established particularly
with respect to characterization and control of combustion dynam-
ics [8,9]. However, from the viewpoint of developing a design
methodology for thermoacoustically stable operations, these tech-
nologies are rather uncommon.

This technical brief proposes a dynamic data-driven methodol-
ogy [10] for design of combustors by utilizing the domain
knowledge based on experimental observations at different oper-
ating conditions. To this end, a Bayesian nonparametric statistical
algorithm has been developed to predict the system response at
unknown operating conditions, thus enabling an informed choice
of conditions at which the combustion system can be reliably
operated.

The work reported here is an extension of the authors’ recent
work [11], where the underlying concepts were introduced for pre-
diction of the system response with a fixed-structure data-driven
model. In this work, experimental data from a laboratory-scale
swirl-premixed combustor apparatus have been used to generate a
stability map in the parameter space with a variable-structure
dynamic data-driven model that is capable of effectively capturing
the history of process dynamics. To this end, advanced modeling
tools [12] have been used for analyzing time series of pressure
oscillations under different combinations of combustor length (l),
inlet air velocity (u), and equivalence ratio (/). A stability map is
constructed from the (limited-amount) available data, which is
then used to predict the system response by extrapolating the
aforesaid combustor parameters. By taking advantage of the infor-
mation embedded in the time series, the reported work yields
more representative features as compared to those extracted in
Ref. [11]; in addition, the performance is validated for 18 data
sets, instead of just one [11]. The designer is thus provided with a
quantitative tool of statistical estimation of system stability at new
parameters without the need for additional (and possibly expen-
sive and time-consuming) experimentation.
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2 Background and Mathematical Preliminaries

This section presents pertinent background and mathematical
preliminaries regarding construction of information-theoretic
measures and D-Markov machines that form the core concept of
the proposed design methodology; further details are reported in
Ref. [12].

2.1 Probabilistic Finite State Automaton. A probabilistic
finite state automaton (PFSA) is constructed by symbolization of
time series of measured signals [10,12], which requires partition-
ing (also known as quantization) of the data. The signal space is
thus partitioned into a finite number of cells that are labeled as
symbols, where the number of cells is identically equal to the car-
dinality jRj of the (symbol) alphabet R. If the value of a data point
at a given instant is located in a particular cell, then it is coded
with the symbol associated with that cell. As such, a symbol from
the alphabet R is assigned to each (signal) value corresponding to
the cell where it belongs; details are reported in Refs. [13] and
[14]. Thus, a (finite) array of symbols, called a symbol string (or
symbol block), is generated from the (finite-length) time series.
The following definitions, which are available in the standard lit-
erature, are recalled for the sake of completeness.

DEFINITION 2.1. A finite state automaton (FSA) G, having a
deterministic algebraic structure, is a triple R;Q; dð Þ where:

R is a (nonempty) finite alphabet with cardinality jRj.
Q is a (nonempty) finite set of states with cardinality jQj.
d : Q� R! Q is a state transition map.
DEFINITION 2.2. A symbol block, also called a word, is a finite-

length string of symbols belonging to the alphabet R, where the
length of a word w¢s1s2 � � � s‘ with si 2 R is jwj ¼ ‘, and the
length of the empty word � is j�j ¼ 0. The parameters of FSA are
extended as:

The set of all words constructed from symbols in R, including
the empty word �, is denoted as R?.
The set of all words, whose suffix (respectively, prefix) is the
word w, is denoted as R?w (respectively, wR?).
The set of all words of (finite) length ‘, where ‘> 0, is denoted
as R‘.
DEFINITION 2.3. A PFSA K is a pair (G,p), where:
The deterministic FSA G is called the underlying FSA of the
PFSA K.
The probability map p : Q� R! 0; 1½ � is called the morph
function (also known as symbol generation probability func-
tion) that satisfies the condition:

P
r2Rp q;rð Þ ¼ 1 for all

q 2 Q.
Equivalently, a PFSA is a quadruple K ¼ R;Q; d; pð Þ, where
The alphabet R of symbols is a (nonempty) finite set, i.e.,
0 < jRj <1, where jRj is the cardinality of R.
The set Q of automaton states is (nonempty) finite, i.e.,
0 < jQj <1, where jQj is the cardinality of Q.
The state transition function d : Q� R! Q.
The morph function p : Q� R! 0; 1½ �, where

P
r2Rp q; rð Þ ¼

1 for all q 2 Q. The morph function p generates the jQj � jRjð Þ
morph matrix P.

2.2 Entropy Rate. This section introduces the notion of
entropy rate that, given the current state, represents the predict-
ability of PFSA. Details are reported in Ref. [12].

DEFINITION 2.4. The entropy rate of a PFSA R;Q; d; pð Þ is
defined as follows:

H RjQð Þ¢�
X
q2Q

X
r2R

P qð ÞP rjqð Þlog P rjqð Þ (1)

where P(q) is the (unconditional) probability of a PFSA state
q 2 Q, and P rjqð Þ is the (conditional) probability of a symbol r 2
R emanating from the PFSA state q 2 Q.

Next the notion of a metric is introduced to quantify the dis-
tance between two PFSA.

DEFINITION 2.5. Let K1 ¼ R;Q1; d1; p1ð Þ and K2 ¼
R;Q2; d2;p2ð Þ be two PFSA with a common alphabet R. Let

P1 Rjð Þ and P2 Rjð Þ be the steady-state probability vectors of gen-
erating words of length j from the PFSA K1 and K2, respectively,

i.e., P1 Rjð Þ¢ P wð Þ½ �w2Rj for K1 and P2 Rjð Þ¢ P wð Þ½ �w2Rj for K2.
Then, the metric as the distance between the PFSA K1 and K2 is
defined as

U K1;K2ð Þ¢ lim
n!1

Xn

j¼1

kP1 Rjð Þ � P2 Rjð Þk‘1

2jþ1
(2)

where the norm k?k‘1
indicates the sum of absolute values of the

elements in the vector ?.

2.3 D-Markov Machines. This section introduces the perti-
nent concepts and definitions that are necessary to construct a
D-Markov machine. The PFSA model of a D-Markov machine
generates symbol strings fs1s2 � � � s‘ : ‘ 2N; 8sj 2 Rg on the
underlying Markov process. The morph function p implicitly
alludes to the fact that the PFSA satisfies the Markov condition,
where generation of a symbol only depends on this state. How-
ever, from the perspectives of PFSA construction from a symbol
sequence, the states are implicit and generation of the next symbol
may depend on the complete history of the symbol sequence. In
the construction of a D-Markov machine [10], generation of the
next symbol depends only on a finite history of at most D consecu-
tive symbols, i.e., a symbol block of length not exceeding D. A
formal definition of the D-Markov machine follows.

DEFINITION 2.6. A D-Markov machine [10] is a PFSA in the
sense of Definition 2.3, and it generates symbols that solely
depend on the (most recent) history of at most D last symbols,
where the positive integer D is called the depth of the machine.
Equivalently, a D-Markov machine is a statistically stationary sto-
chastic process S ¼ � � � s�1s0s1 � � �, where the probability of
occurrence of a new symbol depends only on the last D symbols,
i.e.,

P snj � � � sn�D � � � sn�1½ � ¼ P snjsn�D � � � sn�1½ �

Consequently, for w 2 RD (see Definition 2.2), the equivalence
class R?w of all (finite-length) words, whose suffix is w, is quali-
fied to be a D-Markov state that is denoted as w.

2.3.1 State Splitting in D-Markov Machines. The process of
splitting a state q is executed by replacing the symbol block q by
its branches as described by the set frq : r 2 Rg of words. Maxi-
mum reduction of the entropy rate is the governing criterion for
selecting the state to split. In addition, the generated set of states
must satisfy the self-consistency criterion, which only permits a
unique transition to emanate from a state for a given symbol. If
d q;rð Þ is not unique for each r 2 R, then the state q is split fur-
ther. In the state splitting algorithm, a stopping rule is constructed
by specifying the threshold parameter as a maximal number of
states Nmax. The operation of state splitting is described in Ref.
[12] as Algorithm 1.

2.3.2 State Merging in D-Markov Machines. Once state split-
ting is performed, the resulting D-Markov machine is a statistical
representation of the symbol string under consideration. Depend-
ing on the choice of alphabet size jRj and depth D, the number of
states after splitting may run into hundreds. The motivation
behind the state merging is to reduce the number of states, while
preserving the D-Markov structure of the PFSA. A stopping rule
is constructed by specifying an acceptable threshold g on the dis-
tance U �; �ð Þ between the merged PFSA and the PFSA generated
from the original time series (see Eq. (2)); details are provided in
Ref. [12].

The next task is to decide which states have to be merged.
States that behave similarly (i.e., have similar morph probabil-
ities) have a higher priority for merging. The similarity of two
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states, q; q0 2 Q, is measured in terms of morph functions (i.e.,
conditional probabilities) of future symbol generation as the dis-
tance between the two rows of the estimated morph function p̂
corresponding to the states q and q0. The ‘1-norm (i.e., the sum of
absolute values of the vector components) has been adopted to be
the distance function as seen below:

M q; q0ð Þ¢kp̂ q; �ð Þ � p̂ q0; �ð Þk‘1
¼
P

r2R jp̂ q;rð Þ � p̂ q0; rð Þj
(3)

A small value ofM q; q0ð Þ indicates that the two states have close
probabilities of generating each symbol. Note that this measure is
bounded above as M q; q0ð Þ � 2 8q; q0 2 Q, because 0 �P

r2Rp̂ q; �ð Þ � 1 and 0 �
P

r2Rp̂ q0; �ð Þ � 1. Now the procedure

of state merging is briefly described below.
First, the two closest states (i.e., the pair of states q; q0 2 Q

having the smallest value of M q; q0ð Þ) are merged [12]. Subse-
quently, distance U �; �ð Þ (see Eq. (2)) of the merged PFSA from
the initial symbol string is evaluated. If U< g, where g is a speci-
fied threshold, then, the machine structure is retained, and the
states next on the priority list are merged. On the other hand, if
U> g, then, the process of merging the given pair of states is
aborted, and another pair of states with the next smallest value of
M q; q0ð Þ is selected for merging. This procedure is terminated if
no such pair of states exist, for which U< g. The state merging
procedure is described in Ref. [12] as Algorithm 4.

2.4 Gaussian Process Regression. Gaussian process (GP)
regression [15] is a nonparametric tool that can model a wide
range of relations between an operating condition and its system
response without making any other specific assumptions on the
relation. To this end, a Gaussian process is modeled as a finite lin-
ear combination of random variables with multivariate jointly
Gaussian distributions. In particular, a collection of random varia-
bles fn tð Þ : t 2 Tg, where T is an index set, is said to be generated
from a Gaussian process with mean function m(�) and covariance
function k(�, �) if, for any finite set of elements t1; ::; tl 2 T, the
corresponding random variables n t1ð Þ; ::; n tlð Þ have multivariate
jointly Gaussian distribution as

n t1ð Þ
::

n tlð Þ

2
4

3
5 � N

mm t1ð Þ
::

m tlð Þ

2
4

3
5;

kk t1; t1ð Þ…k t1; tlð Þ
::

k tl; t1ð Þ…k tl; tlð Þ

2
4

3
5

0
@

1
A (4)

where m tð Þ¢E n tð Þ½ � is the mean function, and k t; t0ð Þ
¢E n tð Þ � m tð Þð Þ n t0ð Þ � m t0ð Þ

� �� �
is the covariance function.

Let X ¼ fxig and Y ¼ fyig; i ¼ 1;…; n, be the training data
set, where X denotes a set of operating conditions, and Y denotes
the corresponding set of system responses. In the GP regression
algorithm, it is assumed that y ¼ n xð Þ þ e, where e is independent

and identically distributed (iid) additive noise, N 0; r2
� �

. Then, a
zero-mean Gaussian process prior GP(0, K) is assumed for the
function n. By concatenating the training and testing sets of oper-
ating conditions as X;Xtest½ �, the marginal distribution of the

respective responses n Xð Þ; n Xtestð Þ
� �

is also multivariate jointly
Gaussian

Y
Ytest

� �
� N 0;

K X;Xð Þ þ r2I K X;Xtestð Þ
K Xtest;Xð Þ K Xtest;Xtestð Þ þ r2I

� �� 	
(5)

This leads to: YtestjY � N ltest;Rtest
� �

where

ltest ¼ K Xtest;X
� �

K X;Xð Þ þ r2I
� ��1

Y (6)

Rtest ¼ K Xtest;Xtest
� �

þ r2I

�K Xtest;X
� �

K X;Xð Þ þ r2I
� ��1

K X;Xtest
� �

(7)

Thus, the algorithm predicts the mean and variance of the system
response for every test condition. Instead of a zero-mean prior
(i.e., E n xð Þ½ � ¼ 0), a mean function m(x) could also be incorpo-
rated into the prior.

3 Description of the Experimental Apparatus

This section describes the laboratory-scale experimental appa-
ratus, which is a swirl-stabilized, lean-premixed combustor that
has been used for collection of time series data to validate the pro-
posed design methodology. Figure 1 depicts a schematic diagram
of the variable-length combustor apparatus [11,16], consisting of
an inlet section, an injector, a combustion chamber, and an
exhaust section. There is an optically accessible quartz section fol-
lowed by a variable-length steel section. This laboratory-scale
combustor has been used to generate the experimental data. Tests
were conducted at a nominal combustor pressure of 1 atm over a
range of operating conditions, as listed in Table 1. In each test,
pressure dynamics in the combustion chamber were measured to
study the mechanisms of combustion instability. The measure-
ments were collected at a sampling rate of 8192 Hz, and the data
were collected for 8 s. The results were classified as unstable
when limit cycle oscillations set in. On the other hand, stable
cases were characterized by irregular fluctuations, caused by tur-
bulence in the combustor. These irregular fluctuations, which
have traditionally been referred to as combustion noise, have
recently been shown to be high-dimensional deterministic chaos
[17].

4 Technical Approach

This section describes the technical details of the proposed
combustor design methodology. It starts with the pertinent steps
for construction of the design methodology as an extension of the
work reported in Ref. [11] that also provides a block diagram of
the design concept. The underlying algorithm has been developed
in the following two steps:

Step 1. Feature extraction from pressure time series: the fea-
tures characterize the combustion dynamics.

Step 2. GP regression to identify the relation between the oper-
ating condition and the corresponding system response as a func-
tion of the features extracted in step 1. This inferred relation is
then used for predicting response for each unobserved operating
condition.

For specified values of inlet air velocity (u) and equivalence
ratio (/)), the problem under consideration is to determine a map-
ping from combustor length (l) to the degree of stability of the
combustion system; similar exercises can be carried out with
respect to other design variables as well. To achieve this goal, the
entire dataset has been divided into 18 subsets of constant u and
/. The data in each subset thus consist of a set of combustor

Fig. 1 Schematic diagram of the combustion apparatus

Table 1 Operating conditions of the combustion apparatus

Parameters Values

Equivalence ratio (/) 0.525; 0.55; 0.60; 0.65
Inlet velocity (u) 25–50 m/s in 5 m/s increments
Combustor length (l) 25–59 in in 1 in increments
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lengths (l) and the corresponding pressure time series. There is a
single time series for each operating condition (i.e., each value
of l). The data in each subset are first randomly divided into train-
ing and testing sets in the proportion of 80% and 20%, respec-
tively. The root-mean-square (rms) value, Prms, of pressure is then
calculated for each time series. The combustor length in the train-
ing set with the lowest Prms is taken to be the one representing the
nominal state of the combustion system for the given values of u
and /.

The next step involves symbolization of each time series to
obtain a symbol string. In this paper, maximum entropy partition-
ing [13] has been adopted to discretize the range space of the time
series. The state-splitting and merging algorithms, are then
applied on the symbol string to determine the D-Markov structure
best describing the given time series. This requires finding the
number and identity of states that provides a good model for the
given time series under the chosen values of the following param-
eters: alphabet size (jRj), threshold (g) for the upper bound on the
distance between merged PFSA and the symbol string, and maxi-
mum number (Nmax) of states after state splitting (see Sec. 2).
Here, jRj represents the resolution of (time series) data partition-
ing, g determines accuracy of the PFSA state representation, and
Nmax reflects the importance given by the user to computational
complexity.

After the suboptimal D-Markov structure is determined, its
morph matrix (see Definition 2.3) is calculated. The above proce-
dure yields a D-Markov model for each time series, which might
be different in the number and identity of states. Higher the num-
ber of states in the PFSA of a D-Markov machine, lower is the
predictability of the symbol sequence, as expected. Hence, in
order to compare between two PFSAs with different number of
states, the unnormalized entropy rate (see Definition 2.4) would
not be an adequate measure; the rationale is that PFSA with a
higher number of states would always have a higher entropy rate.
If instead, the entropy rate is divided by the maximum entropy
rate for that D-Markov model (which is a function of the number
of states in the PFSA), the measure would be a reflection of the
proportion of the system behavior, which can be explained by the
best model under the chosen complexity; the measure would
always lie between 0 and 1. Higher values would mean that the
best model at that complexity is not able to encode the dynamics
of the sequence properly. The PFSAs are chosen as the features
here. The difference in normalized entropy rates of two PFSAs,
has been used as the divergence measure Fdiv, for comparison of
two PFSAs.

The feature, corresponding to the nominal combustor length, is
chosen to be the nominal feature for the particular subset of u and
/. For every combustor length in the training set, the divergence

of its corresponding feature from the nominal feature Fdiv is calcu-
lated. Hence, the system response in the proposed approach is
taken to be the feature divergence. The inputs to the GP regression
algorithm thus consist of the pair, namely, combustor length l and
feature divergence Fdiv, where the objective is to predict Fdiv for
different values of l. For the GP regression algorithm [15], a vari-
ety of mean and covariance functions can be used. The following
mean and covariance functions are compared to determine the
best combination for a dataset.

(1) Mean function: (i) constant m(x)¼ c, (ii) linear m xð Þ
¼
PJ

i¼1 aixi, and (iii) sum of the constant and linear terms
yields: m xð Þ ¼ cþ

PJ
i¼1 aixi, where J is the dimension of

the input space.
(2) Covariance function: (i) linear k xp; xqð Þ ¼ xp � xqð Þ0, where
� is the operation of matrix multiplication and (ii) squared
exponential automatic relevance determination k xp; xqð Þ
¼ sf 2 � expð� xp � xqð Þ0 �P�1 � xp � xqð Þ=2Þ, where the
matrix P is diagonal with automatic relevance determina-
tion parameters ‘2

1;…; ‘2
J , and sf2 is the signal variance.

The loglikelihood of training data has been compared under all
combinations of mean and covariance functions. The combination
of constant mean function and squared exponential automatic rele-
vance determination covariance function is observed to yield
highest likelihood for the selected dataset; hence, the analysis has
been performed under this combination. In addition, by virtue of
GP regression being a Bayesian algorithm, it is not necessary to
know the optimal values of the hyper-parameters (i.e., c, f‘2

i g and
sf2) in the mean and covariance function a priori. The algorithm
itself identifies optimal values of these hyper-parameters, which
lead to highest log likelihood of the training data. For each subset
of constant inlet velocity (u) and equivalence ratio (/), a GP
regression algorithm is used to determine the mapping from the
combustor length l to the system response. Using this mapping,
the algorithm thus predicts the mean l and variance r2 of the dis-
tribution of Fdiv for each combustor length in the testing set.

One of the major reasons for using GP regression for combustor
design is its ability to quantify the uncertainty in the estimate of
the system response for unobserved combustor lengths. The pro-
posed design methodology estimates the most likely system
response (i.e., mean) together with possible variations about the
mean, which may result from different sources of uncertainties
(e.g., measurement noise and insufficient training data, and the
assumptions of GP not holding strictly because of usage of the
estimated parameters).

Fig. 2 Mean error in prediction over 20 runs Fig. 3 Mean uncertainty in estimation over 20 runs
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5 Results and Discussion

Given the 18 subsets of constant inlet velocity (u) and equiva-
lence ratio (/), this section analyzes the effects of jRj, Nmax, and g
(see Sec. 2) on the performance of the proposed stability map pre-
diction with the following values:

(1) jRj ¼ 3 and 5.
(2) Nmax¼ 10, 20, and 30.
(3) g¼ 0.02, 0.05, and 0.1.

The underlying algorithm has been executed for different com-
binations of the following parameters: jRj, g, and Nmax. Figures 2
and 3, respectively, show the mean error in prediction and mean
predicted uncertainty in estimation (i.e., square root of the pre-
dicted variance which is calculated by Eq. (7)). These results have
been obtained by averaging over 20 runs (i.e., random combina-
tions of training and testing sets, by randomly dividing each sub-
set in the ratio of 80% and 20%, respectively) for different values
of g while keeping the other parameters fixed at jRj ¼ 5 and
Nmax¼ 20. The entire procedure of system response prediction
has been repeated for all 18 subsets, and the results are reported
here. It is observed that, for a majority of the subsets, both mean
error in the prediction and uncertainty in the estimate increase as

g is increased. Figures 4 and 5, respectively, show the standard
deviations of the mean error and predicted uncertainty over 20
runs for different values of g’s while keeping the other parameters
fixed, for each of the 18 subsets. Again, as g is increased, the gen-
eralization ability of the algorithm worsens. Thus, for a majority
of the subsets, the performance of the design methodology
improves as g is decreased. This suggests that larger values of D
are necessary to construct the D-Markov models that encode the
process dynamics, implying the need for more memory in Markov
models of the combustion process, which is in agreement with the
recent findings of Sarkar et al. [8]. The rationale is that a high
value of g might result in dissimilar states being merged, leading
to inadequacy of the extracted feature which ultimately results in
poor prediction of instabilities. Similar behavior has also been
observed for other combinations of jRj and Nmax. For the best case
(i.e., g¼ 0.02), the average error in prediction over all 18 subsets
is 0.0037, and the average uncertainty in the prediction over all
subsets is 0.0013, where the system response (i.e., the difference
in normalized entropy rate Fdiv) can vary between 0 and 1.

The system behavior has also been analyzed at stable and unsta-
ble conditions of combustion. It is observed that the entropy rate
is consistently lower for unstable conditions as compared to stable
conditions. Figures 6 and 7, respectively, show the profiles of Prms

and entropy rate for one out of the 18 subsets. A reasonable inter-
pretation for this physical phenomenon, is that the system
becomes less chaotic as limit cycle oscillations set in, i.e., at the
onset of instability. It has also been observed that, even for a set
of operating conditions that yield D-Markov models with the
same number of states, the entropy rate for the unstable conditions
is always lower than that for the stable conditions.

5.1 Feature Extraction: Comparison of D 5 1 and D 	
1. The profile of Prms, observed on the experimental apparatus
(see Fig. 1) over a sufficiently long time window, has been found
to be good indicator of combustion stability, where the system is
found to be unstable for Prms 	 0:07 psi. Based on this knowl-
edge, the design algorithm for D 	 1 is now compared with that
for D¼ 1 as explained below.

Reiterating again, there are 18 subsets of constant inlet velocity
and equivalence ratio. In each subset, for each 8 s time series asso-
ciated with a unique combustor length, the corresponding Prms is
computed. The combustor length associated with the lowest Prms

value (Pstable
rms ) is designated as the most stable operating condition

(CLstable). For each combustor length, the divergence of Prms from

the lowest value (i.e., Prms � Pstable
rms ) is computed. Then, from each

time series in the subset, features are extracted using symbolic
time series analysis, with D¼ 1 and jRj ¼ 8 (see Ref. [11]). The
feature associated with CLstable is designated as the nominal fea-
ture, and the divergence of all other features from the nominal

Fig. 4 Standard deviation of mean error over 20 runs

Fig. 5 Standard deviation of uncertainty over 20 runs Fig. 6 Profile of Prms plot for a typical subset
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feature is computed. In the second scenario, features are extracted
from each time series in the subset by using symbolic time series
analysis with D 	 1 (see Sec. 4) for two combinations: (i) jRj ¼ 3,
Nmax¼ 20, g¼ 0.02 and (ii) jRj ¼ 5, Nmax¼ 20, g¼ 0.02. Since
g¼ 0.02 results in the best performance, this g value was chosen
for the comparison. The rationale behind choosing Nmax¼ 20 for
this comparison, is that they represent a reasonable computational
complexity, and sufficient flexibility given to the algorithm to find
a good model fitting the data. Again, the feature associated with
CLstable is designated as the nominal feature, and the divergence
of all other features from the nominal feature is calculated. Thus,
for each subset, a set of Prms divergence is calculated, along with
the corresponding feature divergences for both D¼ 1 and D 	 1.
These divergence sets are individually normalized (i.e., divided
by the maximum value in the set and thus making [0,1] the range
of the divergence). Next, the correlations are computed between
the Prms divergence, and the feature divergence for D¼ 1, where
the correlation coefficient of two random variables is a measure of
their linear dependence. Similarly, the correlations between Prms

divergence and the feature divergence for D 	 1 are computed.
The entire procedure is repeated for all 18 subsets.

Figure 8 shows the correlations of Prms divergence with those
of feature divergences for D¼ 1 and D 	 1 with jRj ¼ 3,
Nmax¼ 20, g¼ 0.02. The correlation of D¼ 1 feature divergence
is consistently lower than that of D 	 1 for 15 out of the 18 sub-
sets. For the remaining three subsets, the correlation value is
almost the same for D¼ 1 and D 	 1; the rationale for this behav-
ior is that, for these three subsets, the simplest model (i.e., with
D¼ 1) is possibly the best fitting model even after state splitting

and state merging, and it is also possible that the simplest model
is much less prone to data overfitting.

To investigate the effects of the alphabet size jRj, which is the
most critical design constraint, Fig. 9 shows a similar comparison
with jRj ¼ 5, while Nmax¼ 20 and g¼ 0.02 are unchanged. The
results are clearly in favor of D 	 1 for 16 out of 18 subsets. In
the remaining two subsets, D¼ 1 appears to perform slightly bet-
ter than D 	 1 possibly due to the effects of data overfitting.
Another possible reason for the seemigly better performance of
D¼ 1 is that the frequency counting estimation of probability
parameters is better due to lesser number of states (i.e., more visits
per state and hence more accurate estimation), because of the
finite data length [12].

6 Summary, Conclusions, and Future Work

This technical brief has proposed and validated a dynamic data-
driven methodology, based on the Bayesian nonparametric theory,
as a tool of combustor design for gas turbine engines. The underly-
ing concept is dynamic, because no fixed structure has been
assumed for the model that captures the information embedded in
the time series. Instead, a suboptimal variable structure of the
model is identified for every time series, corresponding to a specific
operating condition, under user-selected constraints of complexity
and accuracy. An information-theoretic measure is then used for
comparative evaluation of different D-Markov model structures.
Using experimental data from a laboratory-scale combustion appa-
ratus, it is observed that the proposed design algorithm yields, on
the average, more accurate estimates of the system response with
high confidence. In addition, the results have been validated with
18 sets in contrast to only one set [11], which confirms the general-
ization ability of the proposed design algorithm.

The advantages of using higher depth D-Markov models (i.e.,
D 	 1 instead of D¼ 1) have been investigated. By making the
choice of D 	 1, the proposed algorithm is shown to yield fea-
tures consistently more correlated with Prms, which is used as a
good indicator of system stability, as compared to the recently
reported work [11] with D¼ 1.

While there are many areas of research that could be pursued,
the authors suggest two topics of future research as delineated
below:

(1) Theoretical research on integrating dynamic data-driven
methods with the current state-of-the-art tools of model-
based combustor design.

(2) Evaluating the proposed design methodology on combus-
tors of different geometries and input parameters.
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