
LETTER Communicated by Bo Chang

State-Space Representations of Deep Neural Networks

Michael Hauser
mikebenh@gmail.com
Sean Gunn
sug375@psu.edu
Department of Mechanical Engineering, Pennsylvania State University,
University Park, PA 16802, U.S.A.

Samer Saab Jr.
sys5880@psu.edu
Department of Electrical Engineering, Pennsylvania State University,
University Park, PA 16802, U.S.A.

Asok Ray
axr2@psu.edu
Department of Mechanical Engineering, Pennsylvania State University,
University Park, PA 16802, U.S.A.

This letter deals with neural networks as dynamical systems governed
by finite difference equations. It shows that the introduction of k-many
skip connections into network architectures, such as residual networks
and additive dense networks, defines kth order dynamical equations on
the layer-wise transformations. Closed-form solutions for the state-space
representations of general kth order additive dense networks, where the
concatenation operation is replaced by addition, as well as kth order
smooth networks, are found. The developed provision endows deep neu-
ral networks with an algebraic structure. Furthermore, it is shown that
imposing kth order smoothness on network architectures with d-many
nodes per layer increases the state-space dimension by a multiple of k,
and so the effective embedding dimension of the data manifold by the
neural network is k · d-many dimensions. It follows that network archi-
tectures of these types reduce the number of parameters needed to main-
tain the same embedding dimension by a factor of k2 when compared
to an equivalent first-order, residual network. Numerical simulations
and experiments on CIFAR10, SVHN, and MNIST have been conducted
to help understand the developed theory and efficacy of the proposed
concepts.

Neural Computation 31, 538–554 (2019) © 2019 Massachusetts Institute of Technology
doi:10.1162/neco_a_01165

State-Space Representations of Deep Neural Networks 539

1 Introduction

The way in which deep learning was initially used to transform data repre-
sentations was by nested compositions of affine transformations followed
by nonlinear activations. The affine transformation can be, for example, a
fully connected weight matrix or convolution operation. Residual networks
(He, Zhang, Ren, & Sun, 2016) introduce an identity skip connection that by-
passes these transformations, thus allowing the nonlinear activation to act
as a perturbation term from the identity. Veit, Wilber, and Belongie (2016)
introduced an algebraic structure showing that residual networks can be
understood as the entire collection of all possible forward pass paths of
subnetworks, although this algebraic structure ignores the intuition that
the nonlinear activation is acting as a perturbation from identity. Lin and
Jegelka (2018) showed that a residual network with a single node per layer
and ReLU activation can act as a universal approximator, where it is learn-
ing something similar to a piecewise linear finite-mesh approximation of
the data manifold.

Recent work consistent with the original intuition of learning pertur-
bations from the identity has shown that residual networks, with their
first-order perturbation terms, can be formulated as finite difference ap-
proximations of first-order differential equations (Hauser & Ray, 2017).
This has the interesting consequence that residual networks are C1 smooth
dynamic equations through the layers of the network. In addition, one
may then define entire classes of Ck differentiable transformations over the
layers and then induce network architectures from their finite difference
approximations.

Chang, Meng, Haber, Tung, and Begert (2017) considered residual neu-
ral networks as forward-difference approximations to C1 transformations as
well. This work has been extended to develop new network architectures by
using central differencing, as opposed to forward differencing, to approx-
imate the set of coupled first-order differential equations, called the mid-
point network (Chang, Meng, Haber, Ruthotto et al., 2017). Similarly, other
researchers have used different numerical schemes to approximate the first-
order ordinary differential equations, such as the linear multistep method
to develop the linear multistep-architecture (Lu, Zhong, Li, & Dong, 2017).
This is different from previous work (Hauser & Ray, 2017), where entire
classes of finite-differencing approximations to kth order differential equa-
tions are defined. Haber and Ruthutto (2017) considered how stability tech-
niques from finite difference methods can be applied to improve first- and
second-order smooth neural networks. For example, they suggest requiring
that the real part of the eigenvalues from the Jacobian transformations be
approximately equal to zero. This ensures that little information about the
signal is lost and that the input data not diverge in progressing through the
network.

540 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

In current work set out in section 2, closed-form solutions are found for
the state-space representations for both general Ck network architectures as
well as general additive densely connected network architectures (Huang,
Liu, Weinberger, & van der Maaten, 2017), where a summation operation
replaces the concatenation operation. The reason for this is that the concate-
nation operation explicitly increases the embedding dimension, while the
summation operation implicitly increases the embedding dimension. We
then show in section 3 that the embedding dimension for a Ck network is
increased by a factor of k when compared to an equivalent C0 (standard) net-
work and C1 (residual) network, and thus the number of parameters needed
to learn is reduced by a factor of k2 to maintain transformations on the same
embedding dimension. Section 4 presents the results of experiments for val-
idation of the proposed theory, and the details are provided in the appendix.
The paper concludes in section 5, along with recommendations for future
research.

2 Smooth Network Architectures

This section develops a relation between skip connections in network ar-
chitectures and algebraic structures of dynamical systems of equations. The
network architecture can be thought of as a map x : M × I → Rd, where M is
the data manifold, x(0)(M) is the set of input data/initial conditions, and I is
the set I = {0, 1, 2, . . . , L − 1} for an L-layer deep neural network. We write
x(l) : M → Rd to denote the coordinate representation for the data manifold
M at layer l ∈ I. In fact, the manifold is a Riemannian manifold (M, g) as it
has the additional structure of possessing a smoothly varying metric g on its
cotangent bundle (Hauser & Ray, 2017); however for the current purpose,
we will only consider the manifold’s structure to be M.

In order to reduce notational burdens, as well as to keep the analysis as
general as possible, we will denote the lth-layer nonlinearity as the map
f (l) : x(l) �→ f (l)

(
x(l)

)
where x(l) is the output of layer l. For example, if it is a

fully connected layer with bias and sigmoid nonlinearity, then f (l)(x(l)) :=
σ
(
W (l) · x(l) + b(l)

)
, or if it is a convolution block in a residual network, then

f (l)(x(l)) := BN
(
W (l)

2 ∗ LReLU
(
BN

(
W (l)

1 ∗ x(l)))),
where the ∗ is the convolution operation, W (l)

1 and W (l)
2 are the learned fil-

ter banks, and LReLU and BN are the leaky-ReLU activation and batch-
normalization functions. The nonlinear function f (l) can be thought of as a
forcing function, from dynamical systems theory.

Astandard architecture without skip connections has the following form:

x(l+1) = f (l)(x(l)). (2.1)

State-Space Representations of Deep Neural Networks 541

Section 2.1 defines and reviews smooth C1 residual (He et al., 2016) ar-
chitectures. Section 2.2 expands on the section 2.1 to define and study the
entire class of Ck architectures (Hauser and Ray, 2017) and develop the state-
space formulation for these architectures to show that the effective embed-
ding dimension increases by a multiple of k for architectures of these types.
Similarly, section 2.3 develops the state-space formulation for densely con-
nected networks (Huang et al., 2017) and shows that for these dense net-
works with k-many layer-wise skip connections, the effective embedding
dimension again increases by a multiple of k.

2.1 Residual Networks as Dynamical Equations. The residual net-
work (He et al., 2016) has a single skip connection and is therefore simply a
C1 dynamic transformation:

x(l+1) = x(l) + f (l)(x(l))�l. (2.2)

The term �l on the right-hand side of equation 2.2 is explicitly introduced
here to remind us that this is a perturbation term. The accuracy of this as-
sumption is verified by experiment in section 4.2.

If the equation is defined over [0, d], then the partitioning of the dynam-
ical system (Hauser & Ray, 2017) takes the following form:

P = {
0 = l(0) < l(1) < l(2) < . . . < l(n) < . . . < l(L − 1) = d

}
, (2.3)

where �l(n) := l(n + 1) − l(n) can in general vary with n as the maxn �l(n)
still goes to zero as L → ∞. To reduce notation, this letter writes �l := �l(n)
for all n ∈ {0, 1, 2, . . . , L − 1}. Notations are slightly changed here by taking
l = n�l and indexing the layers by the fractional index l instead of the inte-
ger index n; however, this is inherent to switching notations between finite
difference equations and continuous differential equations.

2.2 Architectures Induced from Smooth Transformations. Following
the work of Hauser and Ray (2017), we call network architectures as being
Ck architectures depending on how many times the finite difference opera-
tors have been applied to the map x : M × I → Rd.

We define the forward and backward finite difference operators to be δ+ :
x(l) �→ x(l+1) − x(l) and δ− : x(l) �→ x(l) − x(l−1), respectively. Furthermore, to
see the various order derivatives of x at layer l, we use these finite differ-
ence operators to make the finite difference approximations for k = 1, 2 and
general k ∈ N, while explicitly writing the perturbation term in terms of �l:

δ+x(l) = x(l+1) − x(l) = f (l)(x(l))�l for k = 1, (2.4a)

δ+δ−x(l) = x(l+1) − 2x(l) + x(l−1) = f (l)(x(l))�l2 for k = 2, (2.4b)

542 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

δ+(δ−)k−1x(l) =
k∑

l′=0

[
(−1)l′

(
k
l′

)
x(l+1−l′)

]
= f (l)(x(l))�lk k ∈ N.

(2.4c)

The notation (δ−)k−1 := δ−δ− · · · δ− is defined as k − 1-many applications
of the operator δ−, and

(k
l

)
is the binomial coefficient, read as k-choose-l. We

take one forward difference and the remaining k − 1 as backward differ-
ences so that the next layer x(l+1) (forward) is a function of the k previous
layers x(l), x(l−1), . . . , x(l−k+1) (backward).

From this formulation, depending on the order of smoothness, the net-
work is implicitly creating interior or ghost elements, borrowing language
from finite difference methods, to properly define the initial conditions. One
can view a ghost element as a pseudo-element that lies outside the domain
used to control the gradient. For example with a k = 2 architecture from
equation 2.4b, one needs the initial position and velocity in order to be able
to define x(2) as a function of x(0) and x(1). In the section 2.3, we show that
the dense network (Huang et al., 2017) can be interpreted as the interior or
ghost elements needed to initialize the dynamical equation.

To see the equivalent state-space formulation of the kth order equation
defined by equation 2.4c, first we define the states as the various-order finite
differencing of the transformation x at l:

q(l)
1 := x(l), (2.5a)

q(l)
2 := δ−x(l), (2.5b)

q(l)
n := (δ−)n−1x(l) ∀n = 1, 2, . . . , k. (2.5c)

We then have the recursive relation q(l+1)
n+1 = q(l+1)

n − q(l)
n , initialized at

the n = k base case q(l+1)
k − q(l)

k = f (l)
(
q(l)

1

)
�lk from equation 2.4c, as the

means to find the closed-form solution by induction. Assuming q(l+1)
n+1 =∑k

l′=n+1

[
q(l)

l′
] + f

(
q(l)

1

)
�lk, we have the following:

q(l+1)
n = q(l)

n + q(l+1)
n+1 = q(l)

n +
k∑

l′=n+1

[
q(l)

l′
] + f

(
q(l)

1

)
�lk

=
k∑

l′=n

[
q(l)

l′
] + f

(
q(l)

1

)
�lk. (2.6)

The first equality follows from the recursive relation and the second from
the base case. This shows that the state-space formulation of the Ck neural
network is given:

State-Space Representations of Deep Neural Networks 543

q(l+1)
n =

k∑
l′=n

[
q(l)

l′
] + f

(
q(l)

1

)
�lk ∀n = 1, 2, . . . , k. (2.7)

In matrix form, the state-space formulation is as follows:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(l+1)
1

q(l+1)
2

q(l+1)
3

...

q(l+1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 · · · 1

0 1 1 · · · 1

0 0 1
. . .

...

...
...

. . .
. . . 1

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(l)
1

q(l)
2

q(l)
3

...

q(l)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1
. . .

...

...
...

. . .
. . . 0

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (l)
(
q(l)

1

)
f (l)

(
q(l)

1

)
f (l)

(
q(l)

1

)
...

f (l)
(
q(l)

1

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�lk. (2.8)

We use the notation where 1 is the d × d identity matrix and 0 is the d × d
matrix of all zeros. From equation 2.7 and, equivalently, equation 2.8, it is
understood that if there are d-many nodes at layer l (i.e., x(l) maps to Rd),
then a kth-order smooth neural network can be represented in the state-
space form as q(l) := [

q(l)
1 ; q(l)

1 ; · · · ; q(l)
k

]
, which maps to Rk·d. Furthermore, it

is seen that the k-many state variables are transformed by the shared activa-
tion function f (l), which has a (d × d)-parameter matrix, as opposed to a full
(k · d × k · d)-parameter matrix, thus reducing the number of parameters by
a factor of k2.

The schematic of the C2 architecture, with its equivalent first-order state-
space representation, is given in Figure 1. The C2 architecture is given by
equation 2.4b, which can be conveniently rewritten as x(l+1) = x(l) + (

x(l) −
x(l−1)

) + f (l)(x(l))�l2. Setting q(l)
1 = x(l) and q(l)

2 = x(l) − x(l−1), the state-space
model is updated as q(l+1)

1 = q(l)
1 + q(l)

2 + f (l)
(
q(l)

1

)
and q(l+1)

2 = q(l)
2 + f (l)

(
q(l)

1

)
.

Thus, given x(l) maps to Rd, q(l) = [
q(l)

1 ; q(l)
2

]
will map to R2d.

2.3 Additive Dense Network for General k ∈ N. The additive dense
network, which is inspired by the dense network (Huang et al., 2017), is
defined for general k by the following system of equations:

544 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

Figure 1: The block diagram of the C2 architecture (left), derived from x(l+1) −
2x(l) + x(l−1) = f (l)(x(l)), and its equivalent first-order state-space model (right),
where q(l)

1 = x(l) and q(l)
2 = x(l) − x(l−1). It is seen that if the second-order model

has d-many nodes (i.e., x(l) maps to Rd), then its state-space representation is
q(l) = [q(l)

1 ; q(l)
2] maps to R2d. The state-space model is updated as q(l+1)

1 = q(l)
1 +

q(l)
2 + f (l)(q(l)

1) and q(l+1)
2 = q(l)

2 + f (l)(q(l)
1).

x(l+1−n) =
k−1∑
l′=n

[
f (l−l′)(x(l−l′))�l

] + x(l+1−k) ∀n = 0, 1, . . . , k − 1. (2.9)

To put this into a state-space form, we need to transform this into a sys-
tem of finite difference equations. The general nth-order difference equa-
tion, with one forward difference and all of the remaining backward is used
because from a dense network perspective, the value at l + 1 (forward) is a
function of l, l − 1, . . . , l − n + 1 (backward):

δ+(δ−)n−1x(l) =
n∑

l′=0

[
(−1)l′

(
n
l′

)
x(l+1−l′)

]
∀n = 1, 2, . . . , k. (2.10)

Substituting equation 2.9 into equation 2.10 yields the following:

δ+(δ−)n−1x(l) =
n∑

l′=0

[
(−1)l′

(
n
l′

) (
k−1∑
l′′=l′

[
f (l−l′′)

(
x(l−l′)

)
�l

])]

∀n = 1, 2, . . . , k. (2.11)

Notice that we used
∑n

l′=0

[
(−1)l′

(n
l′
)
x(l+1−k)

] = ∑n
l′=0

[
(−1)l′

(n
l′
)]

x(l+1−k) =
0. Equation 2.11 is equivalent to the additive dense network formulation

State-Space Representations of Deep Neural Networks 545

from equation 2.9, but reformulated to a form that lends itself to interpre-
tation using finite differencing. We then define the network states as the
various-order finite differences across layers:

q(l)
n := (δ−)n−1x(l) ∀n = 1, 2, . . . , k. (2.12)

We still need to find the representations of the x(l−n)’s in terms of the
states q(l)

1 , q(l)
2 , . . . , q(l)

k . To do this, we use the property of binomial inversions
of sequences (Proctinger, 1993):

q(l)
n =

n−1∑
l′=0

(−1)l′
(

n − 1

l′

)
x(l−l′) ⇒ x(l−n) =

n−1∑
l′=0

(−1)l′
(

n − 1

l′

)
q(l)

n .

(2.13)

The left-hand side of equation 2.13 is the definition of states from equa-
tion 2.12 written explicitly as the n − 1th backward difference of a sequence
x(l), and the implication arrow ⇒ is the binomial inversion of sequences.
This is the representation of the x(l−n)’s in terms of the states q(l)

1 , q(l)
2 , . . . ,

q(l)
k .

It is now straightforward to find the state-space representation of the
general kth-order dense network:

q(l+1)
n = q(l)

n +
n∑

l′=0

[
(−1)l′

(
n

l′

)(
k−1∑
l′′=l′

[
f (l−l′′)

(
l′−1∑
l′′′=0

(−1)l′′′
(

l′ − 1

l′′′

)
q(l)

l′

)
�l

])]
.

(2.14)

Equation 2.14 is true ∀n = 1, 2, . . . , k, and so it may be clearer when writ-
ten as a matrix equation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(l+1)
1

q(l+1)
2

q(l+1)
3

...

q(l+1)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

0 1 0 · · · 0

0 0 1
. . .

...

...
...

. . .
. . . 0

0 0 · · · 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

q(l)
1

q(l)
2

q(l)
3

...

q(l)
k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

546 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0

1 −1 0 · · · 0

1 −21 1 · · · ...

...
...

...
. . . 0(

k

0

)
1 −

(
k
1

)
1

(
k
2

)
1 · · · (−1)k

(
k
k

)
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

·

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f (l)
(
q(l)

1

)
f (l−1)

(
q(l)

1 − q(l)
2

)
f (l−2)

(
q(l)

1 − 2q(l)
2 + q(l)

3

)
...

f (l−k+1)

(
k−1∑
n=0

(−1)n
(

k − 1
n

)
q(l)

k

)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

�l. (2.15)

Remember that if there are d-many nodes per layer, then each q(l)
n maps

to Rd, and so these matrices are block matrices. For example, the entry
(n

l

)
1

is the d × d matrix with the number
(n

l

)
along all of the diagonals, for n =

1, 2, . . . , k and l = 1, 2, . . . , n. Similarly, the matrix 0 is the d × d matrix of
all zeros.

Equation 2.14 and, equivalently, equation 2.15, is the state-space repre-
sentation of the additive dense network for general k. The schematic of the
k = 2 additively dense network architecture, with its equivalent state-space
representation, is given in Figure 2. By introducing k-many lags into the
dense network, the dimension of the state space increases by a multiple of
k for an equivalent first-order system, since we are concatenating all of the
q(l)

n ’s to define the complete state of the system as q(l) := [
q(l)

1 ; q(l)
2 ; · · · ; q(l)

k

]
,

which maps to Rk·d.
When we use the notation from dynamical systems and control theory,

this can also be represented succinctly:

q(l+1)
n = 1 · q(l)

n + Bn,k · u(l)
n,k

(
q(l)

1 , q(l)
2 , . . . , q(l)

n

) ∀n = 1, 2, . . . , k, (2.16)

where Bn,k is defined as the nth row of the second block matrix of equation
2.15. It is seen that the neural network activations u(l)

n,k

(
q(l)

1 , q(l)
2 , . . . , q(l)

n
)

for
all n = 1, 2, . . . , k acts as the controller of this system as the system moves
forward in layers (analogous to time). In this sense, the gradient descent

State-Space Representations of Deep Neural Networks 547

Figure 2: The block diagram of the k = 2 additive dense network architecture
architecture (top) and its equivalent state-space model (bottom), where q(l)

1 = x(l)

and q(l)
2 = x(l) − x(l−1). It is seen that if the k = 2 model has d-many nodes at each

layer l (i.e. x(l) maps to Rd), then its state-space representation q(l) := [q(l)
1 ; q(l)

2]
maps to R2d. Note that the concatenation block in the standard dense network
has been replaced with a summation block, although in the state-space form,
it is seen that using a summation block still leads to the states being implicitly
concatenated.

training process is learning a controller that maps the data from input to
target.

Notice that in the state-space formulation in equation 2.15, it is immedi-
ate that the additive dense network, when k = 1, collapses to the residual
network of equation 2.2. Also notice from equation 2.14 that additive dense
networks have the form δ+(δ−)nx(l) = (δ−)n f (l)�l for n = 1, 2, . . . , k − 1.

3 Network Capacity and Skip Connections

The objective of this section is to partially explain why imposing high-order
skip connections on the network architecture is likely to be beneficial. A
first-order system has one state variable (e.g., position), while a second-
order system has two state variables, (e.g., position and velocity). In gen-
eral, a kth order system has k-many state variables, for k ∈ N.

Recall that when x(l) maps to Rd, the equivalent first-order system q(l) =[
q(l)

1 ; q(l)
2 ; . . . ; q(l)

k

]
maps to Rk·d, for a kth-order system. This holds since each

of the k-many functions x(l) mapping to Rd operates independent of each

548 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

other through their independently learned weight matrices, and so their
concatenation spans Rk·d.

This immediately implies that the weight matrix for transforming the kth
order system is (d × d), while the weight matrix for transforming the equiv-
alent first-order system is (k · d × k · d). Therefore, by imposing k-many skip
connections on the network architecture, from a dynamical systems per-
spective, we only need to learn up to 1

k2 as many parameters to maintain
the same embedding dimension when compared to the equivalent zeroth
or first-order system. Also notice that the (k · d × k · d) weight matrix for
transforming the x(l−n+1)’s to the state vectors q(l)

n ’s is a lower block diag-
onal matrix, and so it is full rank, and so state variables defined by this
transformation matrix do not introduce degeneracies.

4 Numerical Experiments

This section describes experiments designed to understand and validate the
proposed theory. The simulations were run in tensorflow (Abadi et al., 2015)
and trained via error backpropagation (Rumelhart, Hinton, & Williams,
1985) with gradients estimated by the Adam optimizer (Kingma & Ba,
2014).

4.1 Visualizing Implicit Dimensions. An experiment was conducted
to visualize and understand these implicit dimensions induced from
the higher-order dynamical system. The one-dimensional data were con-
structed such that 50% of the data are the red class and the other 50% are
the blue class, and the blue data are separated with half to the left of the red
data and half to the right. It might seem that there is no sequence of single-
neuron transformations that would put these data into a form that can be
linearly separated by hyperplane, and at best one could achieve an accuracy
of 75%. This is the case with the standard C1 residual network (see Figure
3a). The C1 architecture has only one state variable, position, and therefore
cannot place a hyperplane to linearly separate the data along the positional
dimension.

In contrast, the C2 architecture has two state variables, position q(l)
1 := x(l)

and velocity q(l)
2 := x(l) − x(l−1), and therefore its equivalent first-order sys-

tem is two-dimensional. When visualizing both state variables, one sees that
the data in fact get shaped such that a hyperplane only along the positional
dimension can correctly separate the data with 100% accuracy. If one were
looking only at the positional state variable, that is, the output of the sin-
gle node, it would seem as if the red and blue curves were passing through
each other; however, in the entire two-dimensional space, we see that is not
the case. Although this network has only a single node per layer and the
weight matrices are just single scalars, the equivalent first-order dynamical
system has two dimensions and therefore the one-dimensional data can be

State-Space Representations of Deep Neural Networks 549

Figure 3: Experiments comparing how single-node per layer architectures lin-
early separate one-dimensional data. The x-axis is position q(l)

1 = x(l) (i.e., the
value of the single node at layer l), while the y-axis is the velocity q(l)

2 = x(l) −
x(l−1); at l = 0, the velocity is set equal to zero. The C1 architecture has only one
state variable, position, and is therefore unable to properly separate the data. In
comparison, the C2 architecture, while still having only a single node per layer,
has two state-space variables, position and velocity, and is therefore able to use
both of these to correctly separate the data in the positional dimension of the
single-node-per-layer architecture.

twisted in this two-dimensional phase space into a form such that it is lin-
early separable in only the one positional dimension.

4.2 Estimating the Magnitude of the Perturbations. This section seeks
to quantify the magnitude of the perturbation, and therefore validate
the perturbation approximations being made. In order for x(l+1) = x(l) +
f (l)(x(l))�l + O(�l2) to be a valid perturbation expansion from the trans-
formation ẋ(l) = f (l)(x(l)), we require || f (l)(x(l))�l||2 << ||x(l)||2. This implies

that the magnitude of �l should be such that || f (l) (x(l))�l||2
||x(l)||2 =<< 1. In ad-

dition, assuming the image is traveling a constant distance d from input
to output, one would expect the average size of the perturbation to be
roughly �l ≈ d

L . That is, as one increases the number of layers, the aver-
age size of each partition region (mesh size) should get smaller as ∼ 1

L .
Experiments were conducted on MNIST, measuring the size of the pertur-
bation term for a C1 network with two sections of residual blocks of sizes
28 × 28 × 32 and 14 × 14 × 64, with the number of blocks in each section
being L = 2, 4, 6, . . . , 50. The results are shown in Figure 4. Details of this
experiment are given in the appendix. Several conclusions are drawn from
this experiment:

• The magnitude of the perturbation term, for sufficiently large L, is
in fact much less than one. At least in this setting, this experimentally

550 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

Figure 4: Experiments on MNIST measuring the size of the perturbation term
for a C1 (residual) network. The same basic network structure was used with two
sections of feature maps of sizes 28 × 28 and 14 × 14. The magnitude of the per-
turbation term is measured against the number of blocks per section, with the
number of blocks per section L = 2, 4, 6, . . . , 50. With a total computational dis-
tance d, each image travels through the network; the average mesh size should
go as �l ≈ d

L . The depth-invariant computational distance d was fit by linear
regression, yielding d = 14.7 for the first block and d = 7.21 for the second.

validates the intuition that residual networks are learning perturbations
from the identity function.
• With increasing the number of layers L, the magnitude of the pertur-

bation goes as �l ≈ d
L , suggesting that there exists a total distance the im-

age travels as it passes through the network. This implies that the image
can be interpreted as moving along a trajectory from input to output, in
which case the C1 network is a finite difference approximation to the dif-
ferential equation governing this trajectory. Performing a linear regression
on {(L, 1

d · L)} yields that the image travels a ”computational distance” of
d1 = 14.7 through the first section and d2 = 7.21 through the second sec-
tion. This may suggest that the first section is more important when pro-
cessing the image than the second section. If taken literally, it would imply
that the average MNIST image is traveling a total ”computational distance”
of dtotal = 21.9 from the low-level input representation to the high-level ab-
stract output representation. This measure is a depth-invariant computa-
tional distance the data travel through the network.
• This analytical approach suggests a systematic way of determining

the depth of a network when designing new network architectures. If one

State-Space Representations of Deep Neural Networks 551

Table 1: Test Errors for Our Implementations of the Various Types of Architec-
tures on CIFAR10 and SVHN.

C1 C2 C3 C4 add-dense2 add-dense3 add-dense4

CIFAR10 9.65% 9.59% 9.46% 13.08% 12.01% 12.59% 12.01%
SVHN 2.77% 2.66% 2.90% 6.64% 3.63% 3.66% 3.53%

Notes: All networks had three sections where the data are transformed to sizes 32 × 32 ×
16, 16 × 16 × 32 and 8 × 8 × 64 (denoted by height × width × number of channels), and
each section having five residual blocks. Training procedures were kept constant for all
experiments; only the skip connections were changed. The numbers in bold highlight the
lowest test errors achieved per data set among the different architectures being compared.
The C3 network achieves the lowest test error of 9.46% on the CIFARIO detaset, and the
C2 network achieves the lowest test error of 2.66% on the SVHN data set.

requires a certain minimum mesh size, after estimating the di’s, one can then
calculate the minimum number of layers required to achieve a mesh of this
size. For example, on this MNIST experiment, if one requires a minimum
average mesh size of �l = 0.2, then the first section should have about 74
layers while the second needs only 36 layers.

4.3 Comparison of Various Order Network Architectures. This section
experimentally compares the classification performance of various order ar-
chitectures that are described in this letter. The architectures that are tested
are the Ck networks for k = 1, 2, 3, 4, as well as the additive dense network
for k = 2, 3, 4; note that the k = 1 additive dense network is the same as the
C1 network. In all of the experiments, first the C1 ResNet architecture was
designed to work well; then, using these exact conditions, the described
skip connections were introduced, changing nothing else. Further details
of the experiments are in the appendix.

It is seen in Table 1 that in both CIFAR10 and SVHN, the C1, C2, and C3

architectures all perform similarly well, the C4 architecture performs much
more poorly, and the three additive dense networks perform fairly well.
On CIFAR10, the C3 architecture achieved the lowest test error, while on
SVHN, this was achieved by the C2 architecture. A likely reason that the C4

architecture is performing significantly worse than the rest could be that
this architecture imposes significant restrictions on how data flow through
the network. Thus, the network does not have sufficient flexibility in how
it can process the data.

5 Conclusion and Future Work

This letter has developed a theory of skip connections in neural networks
in the state-space setting of dynamical systems with appropriate algebraic
structures. This theory was then applied to find closed-form solutions for

552 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

the state-space representations of both Ck networks as well as dense net-
works. This immediately shows that these kth-order network architectures
are equivalent, from a dynamical systems perspective, to defining k-many
first-order systems. In the Ck design, this reduces the number of parame-
ters needed to learn by a factor of k2 while retaining the same state-space
embedding dimension for the equivalent C0 and C1 networks.

Three experiments were conducted to validate and understand the pro-
posed theory. The first had a carefully designed data set such that restricted
to a certain number of nodes, the neural network is able to properly sepa-
rate the classes only by using the implicit state variables in addition to its
position, such as velocity. The second experiment on MNIST was used to
measure the magnitude of the perturbation term with varying levels of lay-
ers, resulting in a depth-invariant computational distance the data travel,
from low-level input representation to high-level output representation.
The third experiment compared various-order architectures on benchmark
image classification tasks. This letter explains in part why skip connections
have been so successful and motivates the development of architectures of
these types.

While there are many possible directions for further theoretical and ex-
perimental research, we suggest the following topics of future work:

• Rigorous design of network architectures from the algebraic proper-
ties of the space-space model, as opposed to engineering intuitions.

• Analysis of the topologies of data manifolds to determine relation-
ships between data manifolds and minimum embedding dimension,
in a similar manner to the Whitney embedding theorems.

• Investigations of the computational distance for different and more
complex data sets. This invariant measure could be potentially used
to systematically define the depth of the network, as well as to char-
acterize the complexity of the data.

Appendix: Description of Numerical Experiments

For the experiment of section 4.2, no data augmentation was used and a
constant batch size of 256 was used. In the network, each block has the
form x(l+1) = x(l) + W (l)

2 ∗ LReLU
(
BN

(
W (l)

1 ∗ x(l)
))

, where the ∗ is the convo-
lution operation, W (l)

1 and W (l)
2 are the learned filters, and LReLU and BN

are the leaky-ReLU activation and batch-normalization functions. For spec-
ifying image sizes, we use the notation num_pixels_Y × num_pixels_X ×
num_channels. The first section of the network of constant feature map
size operates on 28 × 28 × 32 images, and a stride of 2 is then applied and
mapped to 14 × 14 × 64. After section 4.2, global average pooling was per-
formed to reduce the size to 64 length vectors and fed into a fully connected
layer for softmax classification.

State-Space Representations of Deep Neural Networks 553

For section 4.3, the batch size was updated automatically from 32, 64,

. . . , 1024, when a trailing window of the validation error stopped decreas-
ing. In CIFAR10, 5000 of the 60,000 training samples were used for valida-
tion, while in SVHN, a random collection of 80% of the training and extra
data was used for training, while the remaining 20% was used for valida-
tion. The only data augmentation used during training was that the images
were flipped left-right and padded with four zeros and randomly cropped
to 32 × 32 × 3.

In the networks of section 4.3, each section of constant feature map size
contained five residual blocks, all having forcing functions:

f (l)(x(l)) := BN
(
W (l)

2 ∗ LReLU
(
BN

(
W (l)

1 ∗ x(l)))).
The first, second, and third sections operate on images of sizes 32 × 32 × 16,
16 × 16 × 32, and 8 × 8 × 64, respectively, with downsampling by convolu-
tion strides of two, and increasing the number of channels by using filter
banks of size 1 × 1 × 16 × 32 and 1 × 1 × 32 × 64. Global average pooling
was then performed on the last k layers to reduce the size to k-many 64-
length vectors, and with each of the k vectors then fed into a fully connected
layer of size 200, leaky-ReLu applied and then fully connected for softmax
classification.

Acknowledgments

S. S. has been supported by the Walker Fellowship from the Applied Re-
search Laboratory at the Pennsylvania State University. The work reported
here has been supported in part by the U.S. Air Force Office of Scientific
Research under grants FA9550-15-1-0400 and FA9550-18-1-0135 in the area
of dynamic data-driven application systems. Any opinions, findings, and
conclusions or recommendations expressed in this letter are our own and
do not necessarily reflect the views of the sponsoring agencies.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng,
X. (2015). TensorFlow: Large-scale machine learning on heterogeneous systems.
tensorflow.org.

Chang, B., Meng, L., Haber, E., Ruthotto, L., Begert, D., & Holtham, E. (2017). Re-
versible architectures for arbitrarily deep residual neural networks. arXiv:1709.03698.

Chang, B., Meng, L., Haber, E., Tung, F., & Begert, D. (2017). Multi-level residual net-
works from dynamical systems view. arXiv:1710.10348.

Haber, E., & Ruthotto, L. (2017). Stable architectures for deep neural networks. In-
verse Problems, 34(1), 014004.

Hauser, M., & Ray, A. (2017). Principles of Riemannian geometry in neural networks.
In L. Guyon, U. V. Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan,

554 M. Hauser, S. Gunn, S. Saab Jr., and A. Ray

& R. Garnett (Eds.), Advances in neural information processing systems, (pp. 2804–
2813). Red Hook, NY: Curran.

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recog-
nition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition (pp. 770–778). Piscataway, NJ: IEEE.

Huang, G., Liu, Z., Weinberger, K. Q., & van der Maaten, L. (2017). Densely con-
nected convolutional networks. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (vol. 1, p. 3). Piscataway, NJ: IEEE.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv:1412.6980.

Lin, H., & Jegelka, S. (2018). Resnet with one-neuron hidden layers is a universal approx-
imator. arXiv:1806.10909.

Lu, Y., Zhong, A., Li, Q., & Dong, B. (2017). Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. arXiv:1710.10121.

Proctinger, H. (1993). Some information about the binomial transform. CiteSeerX.
Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1985). Learning internal representa-

tions by error propagation (Technical Report). San Diego: University of California
San Diego, La Jolla Institute for Cognitive Science.

Veit, A., Wilber, M. J., & Belongie, S. (2016). Residual networks behave like ensem-
bles of relatively shallow networks. In D. D. Lee, M. Sugiyama, U. V. Luxburg, I.
Guyon, & R. Garnett (Eds.), Advances in neural information processing systems, (pp.
550–558). Red Hook, NY: Curran.

Received June 10, 2018; accepted October 28, 2018.

