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Abstract: This paper presents and experimentally validates a concept of end-to-end imitation learning
for autonomous systems by using a composite architecture of convolutional neural network (ConvNet)
and Long Short Term Memory (LSTM) neural network. In particular, a spatio-temporal deep neural
network is developed, which learns to imitate the policy used by a human supervisor to drive
a car-like robot in a maze environment. The spatial and temporal components of the imitation
model are learned by using deep convolutional network and recurrent neural network architectures,
respectively. The imitation model learns the policy of a human supervisor as a function of laser
light detection and ranging (LIDAR) data, which is then used in real time to drive a robot in an
autonomous fashion in a laboratory setting. The performance of the proposed model for imitation
learning is compared with that of several other state-of-the-art methods, reported in the machine
learning literature, for spatial and temporal modeling. The learned policy is implemented on a
robot using a Nvidia Jetson TX2 board which, in turn, is validated on test tracks. The proposed
spatio-temporal model outperforms several other off-the-shelf machine learning techniques to learn
the policy.

Keywords: autonomous robots; neural networks; imitation learning

1. Introduction

With explosive developments in machine learning and control techniques during the past few
decades, mobile robots are taking an increasingly important role in modern society. Researchers in
robotics have put a lot of emphasis on making mobile robots intelligent, which range from autonomous
ground vehicles to smart unmanned aerial vehicles. Recently, in other domains (e.g., visual object
recognition and natural language processing), deep learning [1] has set many impressive state-of-the-art
benchmark results.

Conventionally, methods such as Simultaneous Localization and Mapping (SLAM) [2] have been
shown to solve the problems of indoor mapping and navigation. While SLAM is focused on geometry,
deep learning has been proven to be capable of handling perception problems effectively by using
a convolutional neural network (ConvNet) [3,4]. Recently, there have been several attempts to use
the tools of deep learning to complete the driving task for mobile autonomous vehicles. For example,
Bojarski et al. [5] trained a ConvNet to map raw images from a camera directly to steering commands
on a car. This system has learned how to drive on roads without lane markings and on highways
without huge training data; however, a powerful and expensive computer is required for self-driving
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the car. In another example, Giusti et al. [6] trained a ConvNet to perceive forest trails with data
collected from three-head-mounted cameras and implemented on a quadrotor aerial vehicle.

The concept of “end-to-end” learning has been recently introduced in the field of reinforcement
learning (RL) [7]. It was popularized by Google’s seminal work on deep Q-network (DQN) [7]. A DQN
agent would take raw pixel inputs from Atari video games, run it through a ConvNet and map the
raw input directly to the discrete controller output. It is considered end-to-end training, because no
human-engineered mid-level features are used throughout the learning process. DQN and its various
improvements [8] have shown at least human-level performance in these tasks. To further develop
these ideas and to use them in robotics and control applications, Zhu et al. [9] implemented deep
reinforcement learning (RL) to find a target in an indoor environment using only visual inputs.

This paper presents a deep learning scheme by combining a convolutional neural network
(ConvNet) [4] with a long short term memory (LSTM) [10] neural network for end-to-end learning,
where the objective is to control and steer a mobile robot in a maze. The underlying algorithm has
been successfully implemented on the robot for real-time inference-making and control. The concept is
experimentally validated on a compact car-like autonomous robot platform called PSUBOT. Using an
Nvidia Jetson TX2 board as the onboard computer, PSUBOT enables synchronized multi-sensor data
acquisition for deep learning.

The problem of imitation learning (also known as learning from demonstration) [11,12] is
addressed in this paper by PSUBOT that learns how to navigate autonomously through different
maze-like environments in a laboratory setting. Learning from demonstration (LfD) is a class of
machine learning algorithms, where a teacher provides examples or trajectories for the robot to
perform specified tasks [13]. In this context, an example is a sequence of observation-action pairs
that are recorded during a demonstration. The core idea in LfD is to be able to learn the policy
used by the expert supervisor directly. Unlike reinforcement learning (RL), LfD algorithms does not
usually receive any reward for performing any action; rather it attempts to infer the policy being
followed by the supervisor and using a classification or regression algorithm. In this paper, an LfD
technique is presented, where the robot is shown demonstrations by teleoperation [14] as succinctly
described below.

A dataset is first created by collecting the synchronized sensor information along with the steering
command, which was created by a human expert during different experiments in various track
scenarios. Then, an end-to-end policy is learned, which takes high-dimensional sensor data as the
input and maps to the output directly to control the steering of the robot. Raw sensor data are first used
to train a ConvNet, which is trained to reduce the classification error of the control inputs. The last
fully connected layer of the ConvNet is then extracted and fed to an LSTM network which learns a
temporal model for classification of the control inputs. The operation of the ConvNet can be viewed
as an automatic feature extraction, which reduces the dimension of the input data; it is noted that no
features are manually designed in this process. The next step is to incorporate memory into this system
by using LSTM to increase the performance (e.g., accuracy) of the end-to-end network. These two
networks are then combined to implement the trained model with Tensorflow [15] to perform real-time
inference tasks and steer PSUBOT in a test environment. The codes and data collected during the
experiment are being made available here. The test system with on-board computer facilities, which is
also presented here, can be used to develop and verify various learning and control algorithms for
self-driving and autonomous systems in laboratory environments.

From the above perspectives, key contributions of the work reported in this paper are
summarized below.

1. Development of a compact robotic platform for real-time implementation of a variety of
deep-neural-network-based concepts for data processing and control.

2. Implementation and demonstration of a simplified concept of end-to-end imitation learning on a
composite architecture of convolutional neural network (ConvNet) and Long Short Term Memory
(LSTM) neural network.
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The paper is organized in six sections, including the current section. Section 2 briefly introduces
the architecture for ConvNet and LSTM neural networks. Section 3 introduces the hardware and
software for PSUBOT, and discusses the problem statement. Section 4 describes the proposed algorithm
and associated technical details of the training and testing phases. Section 5 presents results of the
proposed algorithm and compares them with those of various benchmarks. Section 6 summarizes
contents of the paper and discusses a few topics of future research.

2. Background: Neural Network Architecture and Related Work

This section introduces the architectures for two major components of the proposed algorithm,
namely ConvNet [3,4] and LSTM [10]. While there are many other excellent references (e.g., [16]),
the underlying concepts of ConvNet and LSTM are very succinctly presented below for completeness
of this paper. Besides, this section also briefly discusses other related work.

2.1. Convolutional Neural Networks

Convolutional neural network (ConvNet), first proposed in [3], is a class of neural networks,
which uses convolution operations (instead of simple matrix multiplications) with the same neurons in
a layer. In deep learning neural networks, the convolution is a discrete-domain operation, denoted by

∗, which is defined as ( f ∗ g)k
4
= ∑` f` gk−`, where the first argument f is the input and the second

argument g is the kernel. It has been proven to work well with data that have a grid-like topology [17],
such as images.

Traditional neural networks, which consist of fully connected layers, do not scale well to
high-dimensional data (e.g., images), because each output unit is connected to each input unit by
matrix multiplication. In contrast, ConvNets have sparse connections where each neuron is connected
to only a local region of the input layer by the convolution operation. The dimension of the kernel g is
usually much smaller than that of the input f . Since the convolution operation is applied to the same
kernels at all positions of the input layer, the parameters needed to be stored are significantly reduced
in the neural network, which increases its storage efficiency compared to that in fully-connected layers.

A typical ConvNet architecture includes pooling layers, which are applied after the nonlinear
activation function that follows the convolutional layer. Pooling layers reduce the size of the
representation and thus reduce the number of parameters and associated computations for the neural
network. For example, the “Max Pooling” layer outputs the maximum value within a rectangular
region. As a tool for downsampling, pooling layers make the representation invariant to minute input
translations. Commonly used practical techniques (e.g., dropout [18] and batch normalization [19]) are
used to improve the training accuracy and mitigate the overfitting problem of ConvNets.

2.2. Long Short-Term Memory Networks

Long Short-Term Memory (LSTM) neural networks [10] are a class of recurrent neural networks
(RNNs) with a special architecture in the recurrent units. It is designed to overcome the long-term
dependency problem [20], which is often encountered in traditional RNNs.

For an LSTM with an input xt, an output ht and a cell state Ct, the “memory” is recorded in
Ct and it is a key component of the LSTM. Often used in the LSTM cells are the sigmoid function

σ(z)
4
= 1

1+exp(−z) having a range of 0 to 1, and the hyperbolic tangent function tanh(z)
4
=

exp(z)−exp(−z)
exp(z)+exp(−z)

having a range of −1 to 1.
The cell state C̃t, its weightings it, and the forget gate [21] activations ft are computed as follows:

it = σ
(
Wixt + Uiht−1 + bi

)
, (1)

C̃t = tanh
(
Wcxt + Ucht−1 + bc

)
, (2)

ft = σ
(
W f xt + U f ht−1 + b f

)
(3)
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where W’s and U’s are input and output weighting matrices, respectively, and the b’s represent the
bias terms. With the operation ◦ defined to be elementwise multiplication, the update rule for cell state
Ct is computed as:

Ct = it ◦ C̃t + ft ◦ Ct−1 (4)

and the output ht is obtained as a weighted version of a nonlinear function of the cell state:

ot = σ(Woxt + Uoht−1 + bo), (5)

ht = ot ◦ tanh(Ct) (6)

Since Equations (1)–(3) and (5) depend only on xt, ht and ht−1, they can be efficiently computed
in parallel with a graphics processing unit (GPU).

2.3. Related Work

Imitation learning trains a policy to make decisions from demonstrations. Main approaches for
imitation learning are:

1. Behavioral Cloning: It simply reduces the learning task to a supervised learning problem, and this
technique was initially popularized by its application on helicopter acrobatics [22].

2. Policy Learning with Iterative Demonstration: In practice, this sequential prediction problem
of behavioral cloning sometimes leads to poor performance, and the DAgger (Dataset
Aggregation) [11] algorithm is designed to improve the performance in an online iterative
setting by training a stationary deterministic policy.

3. Inverse reinforcement learning: The system attempts to learn a reward function given the
demonstrations, and then use this reward function under the reinforcement learning framework
to learn a policy. This approach was initially used in some simpler cases with given models [23],
later extended to game-theoretic Inverse RL [24], maximum entropy Inverse RL [25] and more
recently Deep Inverse RL [26] and Generative Adversarial Imitation Learning [27].

The proposed end-to-end learning method belongs to the first kind, i.e., behavioral cloning.
Imitation learning has also seen applications in many other fields, such as speech animation [28],

improving over the teacher [29], structured prediction [30], safe learning for autonomous driving [31],
learning with multiple objectives [32], one shot learning and meta learning [33,34], multi-agent
learning [35,36], multi-modal learning [37], and hierarchical learning [38].

A combination of ConvNet and LSTM have been used in end-to-end learning for control
of autonomous vehicles; however, existing methods may not be easily applicable to small-scale
laboratory robots for real-time applications. For example, Chi et al. [39] proposed a network with
Feature-Extracting Sub-network and Steering-Predicting Sub-network. In the first sub-network,
a spatio-temporal convolution operator is used instead of matrix multiplications in standard LSTMs.
It also introduces skip-connections into the architecture and employs a multi-task objective function.
This method is computationally expensive, because a private cluster with 11 computing nodes has been
used with 6 Titan X GPUs, which may not be feasible on actual autonomous vehicles. Another example
is the work reported by Eraqi et al. [40] who also proposed a ConvNet-LSTM structure with a
pre-trained ConvNet from Imagenet dataset; however, this concept have not been implemented
on a real robot. Pan et al. [41] reported an imitation learning scheme by using an algorithmic expert
with Model-Predictive Control and a simple ConvNet to learn the control policy. There have been
some other work that combines ConvNet and LSTM for non-robotic applications. Examples include
modeling cognitive events from electroencephalogram [42] and in sentiment analysis [43].

3. Platform Description

This section introduces the hardware and software used in the mobile robot platform, as well as
the dataset for the subsequent learning and control applications.
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3.1. Hardware Setup

Figure 1 shows a picture of the robot PSUBOT used in the experimental validation, which is a
1/10 scale autonomous car platform built on a Tamiya RC TT02 Chassis with a set of components
installed. Nvidia Jetson TX2 embedded computer is installed on the chassis of the robot as the main
processor. The robot platform (ROS codes for the robot downloaded at https://goo.gl/EFcwxC) runs
on an open-source software, called Robot Operating System (ROS) [44].

Hokuyo LIDAR 

9-DOF IMU 

7-Port USB HUB 

NVIDIA Jetson TX2 

19V Battery Pack 

Arduino Uno 

7.5V Battery Pack 

Motion Capture Marker 

Figure 1. Picture of the PSUBOT platform.

The TX2 platform has a built-in USB 3.0 port that receives data from multiple onboard sensors
through a seven-port USB hub. The USB hub is connected with four individual components: two
laser light detection and ranging (LIDAR) sensors, one inertial measurement unit 9-DOF-IMU, and an
Arduino Uno. Figure 2 shows the connection diagram of these components to the platform Nvidia
TX2 that has an onboard RGB camera that can also be used as a sensor in many tasks. A 19 V battery is
used to supply power to the TX2 board, while a different 7.2 V battery pack is used as a power supply
for the wheels.

Two Hokuyo URG-04LX LIDAR sensors are installed on the top layer of the robot, facing both
front and back. Each LIDAR sensor has a 180◦ scanning angle although they can have a maximum of
240◦ measuring area. Therefore, the LIDAR sensors have a 360 degree view for target detection in the
surrounding environment.

The Sparkfun 9-DOF-IMU consists of three sensors: accelerometer, gyroscope, and magnetometer.
With all these three sensors, the IMU is able to measure and record the car motion, such as linear
acceleration, angular rotation velocity, and magnetic field vector.

In order for TX2 to operate the car platform, an Arduino Uno is implemented onboard as a lower
level microcontroller. The Arduino is used to connect the TX2 with the motor and the steering servo.
It receives commands from the TX2 and sends corresponding Pulse-Width-Modulation (PWM) signals
to the corresponding actuators. The proportional-integral-derivative (PID) control logic is applied
to Arduino for speed control, where two optical detectors are installed inside the rear wheels as
speedometers. The Arduino receives speed information transmitted from the optical detectors through
an analog-to-digital converter (ADC) circuit mounted on top of the Arduino. This information is

https://goo.gl/EFcwxC
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processed as sampled speed feedback for the PID controller. The TX2 has a built-in WIFI module that
can communicate with a host computer to receive location information from a VICON indoor motion
capture system.

Embedded Processor
(NVIDIA Jetson TX2)

Battery Pack
(19V 23000mAh)

USB Hub
(7-Port USB 

3.0)

Front LIDAR

Rear LIDAR

9 DOF IMU

Arduino Uno

Battery Pack
(7.2V 5000 mAh)

IR Speed 
Encoder

(Optical Detector)

A/D Converter
(Comparator Op-amp circuit)

Electric Speed 
Controller

Steering Servo

Brushed DC 
Motor

Figure 2. Component interconnection diagram of PSUBOT.

3.2. Description of Data Sets

Using PSUBOT, data were collected from 9 different tracks that were set up in an approximately
5 m × 5 m indoor environment. Figure 3 shows configurations of all tracks. For each of these nine
tracks, 10 runs are performed with the steering controlled by a human expert. The human expert
operates a racing wheel which is connected to the same host system as in Section 3.1. The host system
then maps the human expert’s steering command directly to PSUBOT’s Arduino and controls the
steering servo of the mobile robot in real-time.

Starting Point
Finishing Point

Possible Trajectory

Track 1 Track 2 Track 3

Track 4 Track 5 Track 6

Track 7 Track 8 Track 9

Figure 3. Schematics of the nine different tracks from which synchronized data have been collected.
Dotted lines illustrate a typical robot trajectory.
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Synchronized data have been collected and converted to JSON format for easy read and write,
and these data are provided with this paper (The dataset downloaded at https://goo.gl/YTLemL).
The data are synchronized at 10 Hz, which is the LIDAR’s scan frequency and also the lowest frequency
of all sensors. The controller is also set to operate at 10 Hz to match the sensor inputs. In the
experiments, the controller was set on the robot to output a discrete control command from seven
possible values, with the lowest value meaning steering all the way to the left and highest value
meaning steering all the way to the right. There are three different steering angles for both turning left
and turning right, and one command for going straight.

The collected sensor data consisted of 3D angular velocity, linear acceleration and orientation
with IMU. Front and rear LIDAR records the range information in meters of 180◦ to the front and rear
of the robot with an array of shape 512× 1 each. The resolution of the LIDAR sensor is approximately
180◦
512 ≈ 0.36◦. The absolute location of the robot with respect to the global coordinate system of

the VICON motion capture system is also recorded in this dataset, which provides the trajectory
of PSUBOT.

4. Control Objectives and Proposed Algorithm

This section outlines the control objectives and presents the proposed architecture of the neural
network for the task of steering PSUBOT given sensor data inputs only. The detailed architecture for
the proposed neural network structure is illustrated in Figure 4.3.33.25.8…2.72.8InputLayer,512×1 FullyConnected,Output 7×132 Conv Filtersof Size 3 +Max Pooling ofSize 4, Stride 4 Dropout 50%+ BN+ ReLU 64 Conv Filtersof Size 3 +Max Pooling ofSize 4, Stride 4 Dropout 50%+  BN+  ReLU 128 Conv Filtersof Size 3 +Max Pooling ofSize 4, Stride 4 Dropout 50%+  BN+  ReLU FullyConnected+ ReLU,Output 64×1 SoftmaxClassifier(a) ConvNetLSTM Layer+ Dropout 50% LSTM Layer+ Dropout 50% Fully Connected,Output 7×1 SoftmaxClassifier Output ControlCommand(b) LSTM

Figure 4. Proposed deep neural network architecture: (a) ConvNet includes three convolutional layers,
each followed by a max pooling layer with 20% dropout during training and batch normalization (BN).
After flattening the final convolutional layer, a fully connected layer that produces 64× 1 features is
then connected to the output layer, which generate one out of seven classes. The 64× 1 features are
fed into (b) LSTM: 2 layers of LSTM are stacked together with 50% dropout and 200 hidden states
each, and then the output is directly mapped to the steering of the robot. Training is performed in two
stages: firstly the ConvNet is trained; then parameters for this ConvNet are saved and frozen so that
they consistently produce 64× 1 features to be fed into the LSTM; then only the LSTM parameters are
updated in next stages of training.

4.1. Control Objectives

The purpose of the task is to make a robot navigate in an indoor environment until it reaches
the objective without any collisions. Correspondingly, the control objective for the machine learning
algorithm, which drives this autonomous robot, can be set as minimizing the mean squared error

https://goo.gl/YTLemL
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(MSE) between the trajectory of the actual robot and the trajectories generated by human experts.
If the autonomous robot can learn from the demonstrations of human experts and make decisions
accordingly, it should be able to achieve similar levels of competence in this environment.

4.2. Algorithm Development

A deep neural network architecture is proposed to learn how to steer the mobile robot with
the front LIDAR data as the only input, which is formulated as a supervised learning problem.
As described in Section 3, the LIDAR sensor data is a 512× 1 array at each scan with a frequency
of 10 Hz. A ConvNet is first used to perform feature extraction and dimension reduction for the
input data. As shown in Figure 4a, the input layer is followed by a convolution layer of 32 filters of
kernel size 3. With this convolution operation on 32 kernels, the data dimension is now 512× 1× 32.
The convolution layer is followed by a 1D max pooling layer of pooling size 4 and stride 4, where the
dimension of the data is reduced from 512× 1× 32 to 128× 1× 32. This is a 1D pooling layer instead
of the often used 2D pooling layers in many applications of images, because the second dimension of
the input data is 1. A 20% dropout is repeated, where batch normalization has been used before the

(nonlinear) activation function ReLU (i.e., f (x)
4
= max(x, 0)). The process is repeated for two more

times with 64 and 128 convolution filters. Then, this structure is followed by a fully connected layer
with 64× 1 output feature shape. The final output layer is of size 7× 1 because, in this case, there are 7
possible control commands for steering PSUBOT.

The training of ConvNet is followed by the training of the LSTM as shown in Figure 4b. The input
to the LSTM is the 64× 1 feature extracted before the final output layer of the ConvNet. Two LSTM
layers are stacked together with the number of hidden states (i.e. the dimension of ht in Section 2.2) set
to be 200. Then, these stacked LSTM layers are connected to a fully connected layer that outputs the
7× 1 control command. This control command is then directly mapped to the robot steering.

Justifications for the proposed deep learning neural network architecture, as a combination of
ConvNet and LSTM, are delineated as follows:

1. ConvNets are proven to be successful in many fields, including robotic imitation learning as
described in Section 1. The properties of input sensor data in this application are similar to
those of ConvNet; for example, the underlying data are high-dimensional and are arranged with
spatial relationships.

2. LSTM is capable of handling sequential data. Unlike many ConvNet applications (e.g., image
classification) that make the assumption that the data are independent and identically distributed
(iid), robotic sensor data are not. Therefore, LSTM takes the role of preserving past information
(i.e., having memory), thus making this system more intelligent with enhanced accuracy.

3. LSTM alone may not be very good for handling high-dimensional sensor data. To alleviate
this difficulty, ConvNet is used here as a feature extraction tool to reduce data dimension as in
Figure 4. By taking the layer just before the output layer in ConvNet and feeding it to the LSTM,
this architecture takes advantage of the strengths of both ConvNet and LSTM. The procedure is
used first to feed the raw data through the ConvNet and then to extract the features and feed
them through the LSTM to obtain the output control command; this procedure is implemented
on the robot for real-time inferencing and control.

The details of training and hyperparameter identification, used in the implementation,
are presented in Section 5.

5. Results and Discussion

This section describes in detail the training and testing procedures with acquired data. In the
experimental validation, the results of the proposed concept are compared with those of various
standard machine learning tools.
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5.1. Data Preprocessing and Hyperparameter Setting

Preprocessing is required before feeding the data into the neural network. The LIDAR sensor
data may contain “NULL” entries when the laser does not reflect back, and this will cause problems to
the numerical calculations in the neural network. Therefore, all “Null” entries in the input data are
replaced with a numerical value of 10 (indicating that the range is 10 m at that angle, which is more
than the range of the LIDAR and should be enough for this indoor environment.

Although the problem of online time series prediction with missing data have been traditionally
addressed by model-based techniques (e.g., Kalman filtering (KF) and maximum likelihood (ML)),
they are not apparently suitable for data preprocessing in this case, because of the following reasons:

1. The plant dynamic model and measurement model for Kalman filtering are not available.
2. The statistical assumptions on the error terms such as independence and Gaussian distribution

for ML methods may not be satisfied.

It is argued in [45] that an online learning approach based on autoregressive (AR) models
without these assumptions on the models generating the time series is more robust and works better.
Neural networks have also been used to perform time series prediction without creating an underlying
data generation model [46], and it has been shown to work better than AR models. Furthermore,
unlike those reported in the literature, where the time series data are often one-dimensional,
the input data in this experiment are high-dimensional with spatial relationships among adjacent
data dimensions. Therefore, it is not computationally efficient to develop a data prediction model to
handle the rare cases of missing data. Since the reason for “Null” data is clear here (due to sensor data
being out of range), one may justify replacing the missing data with a numerical value. Besides this
preprocessing, the control commands are remapped to 0∼7, with 0 being the leftmost steering angle,
7 being rightmost steering angle and the rest in between. This procedure is adopted to generate the
output in the network training, and is implemented as follows: The input x here is the front LIDAR
range information in meters as a 512× 1 vector, and the label y is the control commands a 7× 1 vector
corresponding to the steering actions provided by the human expert.

During the ConvNet training phase, hyperparameters are set as follows: batch size = 256,
number of epochs = 200, and number of batches per epoch = 100. The Adam optimizer [47] with a
learning rate = 0.001 is used as the gradient descent algorithm.

For training the LSTM, hyperparameters are chosen such that number of time steps is 10
(i.e., inputs xt, xt−1, · · · , xt−9 into the LSTM), batch size = 400 and number of epochs = 200.
The gradient descent optimizer Adam is used again here, but with a small modification—gradient
clipping [48] with a value of 5 added to the optimizer to prevent exploding of the gradients in the
recurrent neural network. In the test phase, dropout probabilities are set to 0.

5.2. Implementation

Figure 4 shows how the proposed architecture of deep neural network is implemented with
Tensorflow, trained, and tested. The hyperparameters are set as those stated in Section 5.1.
The implementation is performed on two different training set/test set split for comparison with
various other machine learning algorithms [49] as seen in Table 1 that presents the results of the
proposed deep neural network model versus various benchmark machine learning methods, using all
10 runs 8 tracks as the training set, and 1 track as the test set. Two different kinds of metrics are used to
evaluate the results on both training set and test set, i.e., accuracy and root mean squared error (RMSE).
Since the class label y is categorical and ranges from 0 to 7, it can be evaluated either as a classification
problem with accuracy being a metric, or as a regression problem with RMSE being a metric.

For the ConvNet only method, the results are evaluated by using part (a) of the neural network in
Figure 4. For LSTM only method, instead of feeding the ConvNet features into the LSTM as shown in
Figure 4b, the 512× 1 raw data are directly fed into the LSTM layers. For the K-nearest-neighbor (KNN)
algorithm implementation, a value of K = 5 is used. For the support vector machine (SVM) algorithm,
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a grid search of parameters is performed and the best parameters are the following: kernel of radial
basis function with parameters γ = 0.001 and C = 1. For AdaBoost algorithm, 10 decision trees of
maximum depth = 5 and a learning rate of 0.2 are used. For Gaussian process [50], a Matern kernel
with parameter µ = 2.5 is used. The Gaussian process model is trained on 1000 samples randomly
drawn from the training set, instead of the entire training set which will take too long to compute.

Table 1. Results of using all ten runs from 8 tracks as training set, and all ten runs from the other 1 track
as test set. Proposed method (ConvNet + LSTM) are compared with various machine learning methods
using accuracy and root mean square error (RMSE0 as metrics respectively; the performance is deemed
better for higher accuracy and lower lower RMSE.

Metrics
Training Set Test Set

Accuracy RMSE Accuracy RMSE

Proposed Method 82.44% 0.7290 71.90% 1.2538
ConvNet Only 82.13% 0.8213 56.85% 1.9686

LSTM Only 65.06% 1.6753 49.64% 2.7885
KNN 81.42% 0.9470 59.62% 1.7454
SVM 69.29% 1.3648 63.69% 1.9417

Decision Tree 61.26% 1.8906 58.20% 1.7970
AdaBoost 69.50% 1.4305 58.70% 2.1268

Gaussian Process 91.90% 0.4472 66.33% 1.6396

Table 2 presents the results on a different training set/test set split, with 8 out of 10 runs recorded
in all 9 tracks as the training set and the rest 2 runs in all 9 tracks as test set. For the other machine
learning benchmarks, we use the same set of parameters as described above.

Table 2. Test results for using 8 runs in all 9 tracks as training set, and the other 2 runs in all 9 tracks as
test set. Results of the proposed method (i.e., ConvNet + LSTM)) are compared with those of other
machine learning methods using accuracy and RMSE as metrics respectively; higher accuracy and
lower RMSE are desirable.

Metrics
Training Set Test Set

Accuracy RMSE Accuracy RMSE

Proposed Method 81.21% 0.5628 71.09% 0.8626
ConvNet Only 82.81% 0.4627 68.81% 1.1724

LSTM Only 61.60% 1.8553 62.70% 1.7786
KNN 81.39% 0.9852 67.01% 1.3037
SVM 69.31% 1.3589 66.15% 1.4095

Decision Tree 63.80% 1.7226 61.44% 1.7557
AdaBoost 69.53% 1.4070 62.60% 1.6112

Gaussian Process 90.20% 0.5089 64.31% 1.7685

It is concluded from Tables 1 and 2 that the proposed proposed method outperforms several
existing machine learning methods. The results from Table 1 also indicate that the proposed method
is much better at adapting to a new environment than other methods, while the results from Table 2
show that the proposed method is also better at learning the control strategy of a human expert in a
known environment. Many of the other algorithms result in severe overfitting, which is quite common
in imitation learning-type problems. Thus, the proposed method is superior to sole usage of ConvNet,
because ConvNet is not capable of handling memory. Every decision made by ConvNet depends on
only the current input, and the results show that although the data fit the training set well but they
fail at the test set. The proposed method is also superior to to sole usage of LSTM, because it does not
handle the high-dimensional input well. By combining the two neural networks (e.g., Covnet and
LSTM) and using ConvNet as a feature extraction tool for LSTM, the proposed method performs much
better than single usage of any one of them. For most other non-deep learning methods, they do not
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perform as well in this robotic learning scenario. The training can be done on PSUBOT itself with
its powerful yet low-cost and low-power consumption Nvidia TX2 embedded system, although the
authors did use another desktop with dedicated GPU to train the deep neural network.

It is noted that the accuracy metric may not reflect the real capabilities of the proposed method due
to the nature of the robotics application. Unlike many image classification tasks, where a misclassified
label is considered wrong, here a misclassified label may not necessarily lead to a failure (e.g., crash).
A possible scenario is that the human expert was steering at yhuman(t) = 7, but the proposed method
generates an output of yrobot(t) = 6. Accordingly, the robot will be turning at a smaller angle but it will
still be able to navigate through the environment. In another scenario, the robot could have calculated
a delayed control command; for example, if the outputs become yrobot(t) = yhuman(t + 1), then it may
still complete the task but the accuracy will suffer.

After loading the Tensorflow inference graph and resetting the learned deep neural network
parameters, PSUBOT is capable of making inferences for the robot motion in real time, where the actual
time spent is insignificant in the time scale of the controller operating at 10 Hz. For implementation
on a commercial-scale robot, a real-valued steering angle is calculated by taking expected values of
the steering angles represented by respective classes. These expectations are calculated using the
probability distribution before execution of the Softmax classifier in the LSTM output layer as seen
in Figure 4. For example, if the probability distribution before executing the Softmax classifier is
[0.01, 0.01, 0.18, 0.7, 0.08, 0.01, 0.01], and the corresponding steering angles for the respective classes
are [−30◦,−20◦,−10◦, 0◦, 10◦, 20◦, 30◦], the output steering angle would be the weighted average of
−1◦ instead of exactly the steering angle of the output class 0◦. Unlike image classification, where the
desired output belongs to exactly one class, taking the expectation of the probability distribution
makes sense in this robotic application, because of the specific way the output is mapped to a physical
steering angle.

The learned controller has been implemented on PSUBOT and tested in a laboratory setting.
The code for implementing the real-time deep neural network controller is also included in the ROS
package provided in Section 3. A video illustrating the learning results is provided with this paper
(The video can be viewed at https://youtu.be/e5d34q0XCS4) to show how PSUBOT successfully
makes a turn without the human expert providing it with a control command, instead the proposed
deep neural network is taking the real-time sensor inputs and making control decisions.

6. Conclusions

This paper has developed a deep learning technique that combines the theories of ConvNet and
LSTM for steering a mobile robot with LIDAR sensor inputs. The data are collected on the PSUBOT

mobile robot platform, and the trained deep neural network controller has been implemented in a
simplified and unambiguous manner on PSUBOT for real-time decision and control. The proposed
technique has been compared with several other state-of-the-art learning techniques and is shown to
outperform all of them. The dataset for training and testing is also provided.

Although the proposed method is promising for intelligent and autonomous robots,
much theoretical and experimental research is necessary before its real-life applications. The authors
propose the following topics for future research.

1. Implementing DAgger algorithm [11] on the current platform to enable interactive and iterative
policy learning, and to reduce covariate shift and to make control policies robust.

2. Inverse reinforcement learning for generating proper reward functions from observed agent
behaviors. This should provide a better metric for evaluating the experimental results.

3. Performance enhancement of deep learning-based inference-making in combination with traditional
(e.g., model predictive) control techniques.

4. Development of data preprocessing techniques for high-dimensional sensor time series with missing
data. This machine learning technique is also applicable to problems of missing video data,
and an efficient prediction algorithm has good potential for use in related fields.

https://youtu.be/e5d34q0XCS4
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5. Quantitative performance evaluation in statistical settings. An example is quantitative performance
evaluation using receiver operating characteristics for a trade-off between probability of successful
task completion and probability of false alarms [51]. This will require extensive experimental
work to create a large data base.
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