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ABSTRACT
This paper presents a dynamic data-drivenmethod for early detection of
thermoacoustic instabilities in combustors based on short-length time
series of sensor data, where the objective is near-real-time monitoring
and active control of pressure oscillations. The main idea is to use the
available data at different regimes of the combustion process to train
respective hidden-variable models using the concept of Hidden Markov
Modeling (HMM) as a statistical learning tool; here, (short-length) time-
series data of pressure oscillations are used to infer a Markov chain with
unobserved (hidden) states. The proposed HMM-based method has
been validated on experimental data collected from an electrically
heated Rijke tube apparatus for predicting onset of thermoacoustic
instabilities. The results have been compared with those of the current
state-of-the-art measurement techniques for instability growth rate and
associated computational complexity. The applicability of the proposed
method has been demonstrated with respect to anomaly detection and
regime identification with limited data requirements, making it a poten-
tial candidate for monitoring and active control of thermoacoustic
instabilities in commercial-scale combustors.
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Introduction

Thermoacoustic instabilities (TAI) in combustion systems are related to spontaneous 
excitation of one or more natural acoustic modes (Lieuwen and Yang, 2005). These 
phenomena are typically manifested by large-amplitude self-sustained pressure oscillations 
in the combustion chamber, which result from a feedback loop established between the heat 
release rate from the flame and the combustion chamber acoustics (Matveev, 2003). A 
major detrimental effect of TAI is resonance, which may occur if the frequency of pressure 
oscillations matches the natural frequency of the combustor chamber; in that case, 
sustained high-amplitude pressure and temperature oscillations would cause severe 
mechanical stresses in the structural components of the combustor, leading to 
thermomechanical fatigue damage and premature structural failures.

Another detrimental effect of TAI is generation of externally audible tones at intoler-
able levels. Hence, mitigation of TAI is a critical issue from the perspectives of both design 
and operation of combustion systems.
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One of the major reasons for application of active TAI control techniques is their potential
for adaptability to various operational regimes of the combustion process, without compro-
mising the weight requirements of an aircraft engine. A necessary precondition for such near-
real-time active control is early detection of forthcoming TAI by making use of the available
sensor time-series data. This detection problem would require system identification (e.g.,
accurate estimation of the degree of instability) from the sensor data at fast time scales for
near-real-time decision and control. The rationale is that the time scales of TAI are in
milliseconds, which mandates the requirement of system identification with short data and
low computational complexity of the underlying algorithms (Mukherjee and Ray, 2014;
Rajagopalan and Ray, 2006; Ray, 2004; Sarkar et al., 2016) for monitoring and active control.

From the perspectives of dynamical systems, the phenomena of TAI occur due to
nonlinear triggering by Hopf bifurcations. In this respect, it is a well-known practice to
characterize stable/unstable operational regimes in terms of the distance from the Hopf
bifurcation point by using system growth/damping rates. In this context, positive growth
rate of an acoustic mode implies that it is unstable with its fluctuation amplitude growing
exponentially with time. On the other hand, an acoustic mode with a negative growth rate
has perturbations decaying with time (Laera et al., 2014). The growth rate information can
be used directly to quantify the distance of the current operating point from the point of
TAI onset. An efficient method for online monitoring of the stability margin is crucial for
the decision-maker (e.g., an automated system or a human operator) to make informed
decisions about changing the operating conditions, based on the existing prior knowledge
of the stability map with respect to the system parameters. Such methods are passive in the
sense that they should not require external stimulation to be applied on the combustion
systems (Lieuwen, 2005). Several researchers have addressed this issue by developing
methods of calculating the linear growth/damping rates based on sensor data of the
acoustic signature of the combustion process (e.g., Hummel et al., 2017; Noiray and
Denisov, 2017; Rigas et al., 2016; Li et al., 2016; Lieuwen, 2005; Yi and Gutmark, 2008).

To the best of the authors’ knowledge, most of the above methods are only suitable for
offline data-intensive computations, where the execution time of the underlying algo-
rithms and their data requirements could cause large delays relative to the time scale of
TAI, if applied for online condition monitoring and active control of combustion systems.
Li et al. (2016) have chosen the total acoustic energy per unit cross-sectional area as a
measure to characterize the transient growth. They have used physics-based modeling by
modal analysis involving Galerkin decomposition. Although similar practices involving
modal analysis are widely reported in literature, specifically with respect to Rijke tubes, it
might be difficult to develop a model involving the complications of a wide range of
parameters in an actual combustion system. Furthermore, the nonlinear and non-normal
properties of such system models add to fragility (i.e., lack of robustness) of their
dynamical behavior, which imply that a stable system may become unstable with a slight
change in initial conditions and certain critical system parameters. Therefore, in practice,
it would become difficult to specify and maintain initial conditions and critical parameters
with respect to those in the modal analyses, which will complicate the calibration of these
models. From these perspectives, dynamic data-driven techniques of growth rate extrac-
tion can be very useful, as they have limited dependency on the accuracy of physics-based
models. Often the root mean square of the pressure signal (Prms) is used as a simple
measure to set a threshold for identifying the system instability. It is noted that Prms also
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refers to the square root of the average energy in the signal, which is closely related to the
total acoustic energy approach used by Li et al. (2016). However, since the threshold may
vary from one application to another, and if this concept is used for identification of
operational regimes, it might be difficult to specify thresholds for different regimes with a
wide range of signal-to-noise-ration (SNR) in the sensor data. Moreover, Prms-based
thresholds are mostly reliable only if the data are sufficiently long in order to satisfy the
requirements of statistical stationarity (Mondal et al., 2017), which deems them unsuitable
to be used as a unified framework for online TAI detection and regime identification.

Other techniques of growth rate measurement have been reported in the literature,
which are based on system identification from acoustic data. For example, Noiray and
Denisov (2017), Boujo et al. (2016), and Noiray and Schuermans (2012, 2013) have
approximated the growth dynamics of the dominant unstable mode with stochastic
differential equations (SDE) governing the amplitude and phase of a randomly forced
Van der Pol oscillator, driven by additive noise. Subsequently, analytical stationary solu-
tions to the Fokker-Plank equation associated with the SDEs have been used to describe
the stationary probability distribution of the acoustic signal envelope, which involves
coefficients to be fitted from the acoustic data to determine the growth rate of the
oscillations. However, its applicability is expected to be limited for real-time applications,
where estimation of the stationary probability distributions of the acoustic envelope would
most likely be subject to a significant data requirement. In practice, it might be difficult to
correlate the model parameters of a Van der Pol oscillator with those of a general
combustion system in terms of their physical significance.

The technical approach of Lieuwen (2005) is somewhat different, where the extent of
departure of the combustion system from its stability boundary is characterized by a
decrease in the effective damping rate (ζ) of the system toward zero. The strategy is based
on estimating the damping rate by performing least-squares minimization procedure to
determine the best fit exponential curve expð�ωζtÞ for an acoustic mode with frequency
ω. Lieuwen (2005) has pointed out the limitation of this method with respect to the
dependence of the estimation procedure of ζ upon the time delays of the autocorrelation
function, and hence the length of the time series used for the estimation. The work by
Hummel et al. (2017) and Stadlmair et al. (2017) is suited in a similar framework of
estimating the damping rates through curve-fitting on the autocorrelation function
derived from high frequency screech-level pressure oscillations at operating conditions,
where the time-scale of variations in the amplitude and phase of the unstable mode are
much slower relative to the oscillatory time scale. While the method of Lieuwen (2005)
was based on the damping rate estimation in the time domain, Yi and Gutmark (2008)
based their work of computing damping ratios of the acoustic modes in the frequency
domain, starting with a similar model for the modal dynamics of the pressure oscillations
as used by Lieuwen (2005). The damping ratios were determined by fitting a smooth curve
on the frequency spectrum in the vicinity of the resonant frequency peaks using a
weighted least-mean-square algorithm, by utilizing a sample length of 10,000 with a
sampling frequency of 5 kHz. Such frequency-domain analyses using Fast Fourier trans-
form (FFT)/Discrete Fourier transform typically require considerable sample points for
efficient representations of the power spectral densities. Boujo et al. (2016) and Hummel
et al. (2017) have based the identification procedure of growth rates for linearly unstable
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cases on analytically solvable SDEs and then fitted the analytical solutions against the
measured time-domain data. These SDE-based frameworks are suitable for estimating the
growth rate from the stationary acoustic data at different operating conditions (e.g.,
different equivalence ratios); in contrast, the method developed in the current paper can
be used to obtain running estimates of the triggering of transient growths involved in
bifurcations that are essentially non-stationary in nature. Also, for almost all of the
research literature surveyed, the quantitative determination of the growth/decay rates of
combustion is not completely data-driven in the sense that they require simplified (i.e.,
linearized and the assumed additive noise) physics-based mathematical models of pressure
oscillations, which in turn makes it difficult to justify generalization of these models to
handle the problem of TAI prediction, because the underlying process is highly nonlinear
and is subjected to non-additive noise.

This paper proposes a dynamic data-driven method for early detection of TAI and
identification of operational regimes by using short-length time series of sensor data,
which is robust to the following properties:

● Variations in the length of the observed time series, used for instability prediction
and regime identification.

● Inadequacies of the underlying combustion system model if any such model is used.

The application domain of the work by Rigas et al. (2016), who have reported a growth
rate measurement technique based on linear fitting on the Hilbert envelope of the
unsteady pressure time-series data, is similar to the experimental data used in the current
paper. The data requirements of the proposed method have been compared with those of
(Rigas et al., 2016) .

Since the focal area of the reported work is early detection of instabilities, analyses have
been performed using pressure time-series data that undergo transient behavior from a
stable operation to limit-cycle oscillations. Furthermore, pressure sensing is commonly
used in many real-life combustion systems. Thus, implementation using pressure data
readily demonstrates suitability of the proposed method for practical situations. The main
idea here is to use primarily experimentally generated acoustic sensor data from different
regimes of the combustion process to train relevant hidden-variable models using the
concept of hidden Markov modeling (HMM) (Rabiner, 1989) that has been widely used as
a statistical learning tool for analysis of uncertain dynamical systems; in these applications,
the associated temporal data are used to infer a Markov chain with unobserved states. For
example, Menon et al. (2003) and Chen et al. (2011) have used the HMM concept for
online predictive monitoring and fault detection in gas turbine engines. The trained HMM
contains the latent information of the system’s dynamical characteristics at different
regimes of operation. In the testing phase, with a window of observation sequence (e.g.,
pressure time series), it is possible to find the likelihoods of the observed data sequence
with respect to the pre-trained HMM. With a sliding-window calculation of the model
likelihoods, an appropriate norm based on likelihood ratio has been chosen as the metric
for detecting instabilities, which shows a monotonically increasing trend as the time-series
signals approach limit cycle behavior through the transient mode of operation. This trend
is consistent with the increasing fluctuation amplitudes of the signal during the transients,
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and thus can be directly correlated to the overall growth rate of pressure oscillations
(Hummel et al., 2017). It is also noted that data-driven methods, which have been studied
for classification of unstable and stable modes in combustion systems, have largely focused
on the usage of (statistically weak-sense stationary) stable or unstable time-series data
(Gotoda et al., 2012; Nair and Sujith, 2014; Sarkar et al., 2016). The proposed method, in
addition, is capable of handling non-stationary data such that the embedded information
can be gainfully used for system identification. The results derived from experimental data
have shown that it is possible to achieve good accuracy of detection even with a short
window of time series (e.g., data over window sizes of about 10 ms corresponding to a
sampling frequency of 8192 Hz), which matches with the time scale of TAI evolution.
Such detection techniques are relevant for real-time monitoring and active control of TAI,
where fast and computationally efficient detection/classification can provide appropriate
lead-time to the actuators. From these perspectives, the major contributions of this paper
are delineated below:

(a) Development of data-driven, HMM-based robust algorithms to facilitate near-real-
time monitoring and active control of thermoacoustic instabilities from short-length
time series of pressure oscillations.

(b) Experimental validation of the above algorithms on an electrically heated Rijke tube
apparatus.

The laboratory apparatus and experimental procedure

The experimental data to validate the proposed concept have been generated from a
laboratory-scale electrically heated Rijke tube apparatus as shown in Figure 1. It is well
known that Rijke tubes possess some of the important characteristics of practical combus-
tion systems like gas turbine combustors (for example, acoustically compact localized heat
source). The simplicity of the experimentation and their capability of generating clean
signals have made electrically heated Rijke tubes popular for investigations on funda-
mental aspects of thermoacoustic instabilities and their control (Gelbert et al., 2012). The
apparatus comprises a 1.50 m long horizontal Rijke tube with an external cross-section of
0.1 m × 0.1 m and a wall thickness of approximately 6.35 mm. The inlet air flow is
supplied by a compressor, which is prone to pressure fluctuations and is also expected to
have moisture and other impurities. A Parker P32E series air filter-regulator is used to
suppress the pressure fluctuations and to filter the impurities. The mean air flow is then
controlled through a 0–1000 standard liters per minute (LPM) Alicat mass flow controller.
The heating element in the Rijke tube is a square weave 40 × 40 nichrome wire mesh
which is brazed to two copper strips on a machinable ceramic frame (Matveev, 2003) and
is placed at about quarter length of the tube from the air input end (i.e., x=L ¼ 0:25). The
heating element is powered by a TDK Lambda programmable (0–8 V DC, 0–400 Amps)
DC power source (Gopalakrishnan and Sujith, 2014). The horizontal arrangement of the
tube allows an independent control of the flow rate and the heater power. Two damping
chambers are provided at the two ends of the tube in order to ensure that the tube ends
are maintained at pressure nodes under open-open boundary conditions. The damping
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chambers also serve in decoupling the acoustics of the tube from those of the main air
line. The chamber dimensions are 0.45 m × 0.45 m × 1.14 m. As a safety measure against
the downstream half of the tube is insulated to reduce heat loss and to guard against any
accidental physical contact with the hot metal surface.

Eight PCB-116B03 pressure sensors and fifteen K-type Omega thermocouple probes
have been used for acquiring the acoustic and temperature data from the experiments.
The first and the eighth pressure sensors are placed at a distance of 125 mm from the
tube ends, while the distance between two consecutive sensors is approximately
180 mm. The sensors are powered through an 8-channel unity gain signal conditioner.
The pressure sensors have a high sensitivity of 6 pC/psi and are coupled with in-line
charge converters having an amplification of 100 mV/pC. The 13 out of the 15
thermocouple probes are placed downstream of the heater with an intermediate
spacing of 90 mm, while the remaining two are placed upstream starting with a
distance of approximately 63 mm from the upstream tube end. The thermocouple
probes are capable of measurements up to 1360°C. All sensors are flush-mounted with
the inner walls of the Rijke tube to reduce friction in air flow path. The sensor data
acquisition and the voltage input to the programmable power supply unit are auto-
mated using DAQ devices from National Instruments (NI) in conjunction with NI
LabVIEW 2016. The pressure sensor data is acquired through an NI-9205 (C Series
Voltage Input Module) and the thermocouple data through an NI-9213 (C Series
Temperature Input Module). The DC voltage supply is controlled through an NI-
9264 (C Series Voltage Output Module).

The pressure sensor data are sampled at a rate of 8192 Hz and the acquired data are
filtered with a 20th order Butterworth high-pass filter having a cutoff frequency of
40 Hz in order to eliminate low-frequency noises and acoustics from the damping
chambers along with other environmental effects. To find the stability map of the
system, steady state runs are performed after the tube is subjected to a warming up
phase. After each experiment, a cool-off settling period is maintained to ensure similar
steady-state initial temperature fields in the tube for each experiment. Maintaining
similar initial temperatures ensure that the mean velocity of the sound waves in the air

Figure 1. The Rijke tube experimental apparatus.
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remain approximately constant for each experiment, which in turn ensures that the
fundamental frequency of the tube is kept constant.

Experiments have been conducted by varying the heater power input (Ein) and air
flow rate (Q). For each operating condition, 10 s of sensor data have been recorded
and the results are summarized in Figure 2, where unstable conditions are indicated by
“×” and stable conditions by “o”, the shaded boxes correspond to the unstable
conditions with the higher dominant frequency in the vicinity of 131 Hz, and the
emboldened box margins indicate operating conditions for which the pressure signa-
ture is depicted in Figure 3.

Two sets of initial temperatures have been explored in order to demonstrate the
effect of changing the mean temperature on the stability characteristics. Two different
regimes of instability have been observed based on the initial temperature profiles.
When a lower initial mean temperature of around 27°C was maintained, a lower
frequency mode of instability (~114 Hz) was observed to be excited for a range of
flow rates marked with “×” in unshaded boxes in Figure 2. The shaded boxes indicate
the conditions when the higher frequency unstable mode (~131 Hz) and its harmonics
are excited with a higher initial mean temperature of about 75°C. These observations
can be attributed to the increase in the speed of sound with the elevated mean
temperature which changes the fundamental frequency from an analytically calculated
value of 115 Hz to 127 Hz for an open-open tube, tallying closely with the experi-
mentally procured peak frequencies. Figure 3 shows the representative plots of the
fluctuating pressure amplitudes and their respective FFT for three different operating
conditions marked as boldfaced boxes in Figure 2. The 131 Hz fundamental mode and
its harmonics are excited with the power input of 1400 W at a flow rate of 162 LPM,
which corresponds to a higher initial temperature profile, as discussed in the previous
paragraph. The 114 Hz mode is excited at a lower power of 600 W and a flow rate of
112 LPM, with a lower initial temperature profile. The case with Ein = 1400 W,
Q = 228 LPM has a stable behavior without any excited mode of limit cycle instability,
which is also reflected in the significantly lower peak-to-peak amplitude of the fluctu-
ating acoustic signal.

Figure 2. Stability map of the system based on power input and air flow rate variations, where unstable
conditions are indicated by “×” and stable conditions by “o”. Shaded boxes correspond to the unstable
conditions with the higher dominant frequency in the vicinity of 131 Hz. Emboldened box margins
indicate operating conditions for which the pressure signature is depicted in Figure 3.
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Mathematical background: hidden Markov modeling

This section briefly introduces the essential concepts of HMM, which form the building
block for analyzing combustion dynamics as presented in this paper. Further details are
available in Rabiner (1989), Murphy (2012), Bishop (2007), and Hajek (2015).

The concept of HMM has been widely used for representation of long-range dependen-
cies between observations, where the underlying models are assumed to be probabilistic
functions of the hidden states (Murphy, 2012). Considering a discrete-time representation of
a sequence Y ¼ y1; y2; . . . ; yTf g of T continuous (i.e., real-valued) observations, and assum-
ing a first-order Markov property (Bishop, 2007) over the observations, the joint probability
density function of Y is obtained as:

pðYÞ ¼ pðy1Þ
YT�1

t¼1

pðytþ1jytÞ (1)

Although the above assumption has been widely used in practice, it may not be valid in
many applications because of long-range correlations among the observations (Bishop,
2007; Murphy, 2012).

The HMM belongs to a class of doubly embedded stochastic processes, with a latent
stochastic process of hidden state evolution. Although this evolution is not directly
observed, it can be inferred by observing another stochastic process that produces the
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Figure 3. Representative plots of fluctuating pressure amplitudes (left) and their respective power
spectral densities (right) at different operating conditions. (a) and (b): Ein = 1400 W, Q = 162 LPM. (c)
and (d): Ein = 600 W, Q = 112 LPM. (e) and (f): Ein = 1400 W, Q = 228 LPM.
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sequence of observations (Rabiner and Juang, 1993), which captures the long-range
dependencies among observations and enables the usage of HMMs as black-box density
models on observation sequences. The major difference between the HMM and the
standard Markov model is that the HMM does not assume the Markov property (i.e.,
conditionally dependence on the states and being independent of each other) for the
observations themselves. Instead, the hidden state sequence Z ¼ z1; z2; . . . ; zTf g are
assumed to follow Markovian dynamics, i.e., given the current state zt, the future state
ztþ1 is independent of all the states prior to time instant t. Figure 4 illustrates the idea with
a Bayesian network model of a simple HMM. Following the convention of directed
graphical models in the left hand plate of Figure 4, a shaded node zi denotes a hidden
variable, an unshaded (i.e., clear) node yi denotes an observed variable and an arrow
denotes conditional dependence. In the right hand plate of Figure 4, the arrows denote the
transitions from state Zi to Zj with probability aij, where the states belong to a finite and
discrete set Q and the cardinality Qj j ¼ K is a positive integer.

To formalize the mathematical structure, let a string of observations y1; ::::; yTf g be
assumed to be generated by a hidden state sequence z1; ::::; zTf g. An HMM is then
constructed as a triplet λ ¼ A;B; πf g (Rabiner, 1989), where:

(a) A ¼Δ ½aij� is the K � K state-transition probability matrix:

aij ¼ pðztþ1 ¼ qjjzt ¼ qiÞ : qi; qj 2 Q

where
P

j aij ¼ 1"i.

(b) B ¼Δ ½bjðytÞ� is the probability density of the observation given the state:

bjðytÞ ¼ pðytjzt ¼ qjÞ

(c) π ¼Δ ½πi� is the probability distribution of the initial state z1: πi ¼ pðz1 ¼ qiÞ, where π
is a 1 × K vector with

P
i
πi ¼ 1.

Following the above model λ, the corresponding joint probability distribution of states
and observations has the form:

Figure 4. Left hand plate: Bayesian network model of an HMM showing conditional dependence of
observations with hidden Markov states. Right hand plate: state transitions in a 4-state HMM (i.e., K ¼ 4) .
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pðY;ZÞ ¼ pðz1:TÞpðy1:T jz1:TÞ ¼ pðz1Þ
YT�1

t¼1

pðztþ1jztÞ
" # YT

t¼1

pðytjztÞ
" #

(2)

Here the HMM is assumed to have a continuous real-valued observation model, where the
observations y1; ::::; yTf g are one-dimensional and their emission probability follows a
Gaussian mixture model:

pðytjzt ¼ qj; λÞ ¼
XM
,¼1

cj, Nðyt; μj,; Σj,Þ (3)

where
PM

,¼1 cj, ¼ 1, "j 2 1; . . . ;Kf g; M is the number of Gaussian mixture components;
and Nðyt; μj,; Σj,Þ represents Gaussian density function of yt with mean μj, and covar-

iance Σj, associated with state qj and mixture component ,.
Two main model parameters are, therefore, the number of hidden states ðKÞ and the

number of mixture components ðMÞ, which need to be optimally selected in the
context of HMMs (Celeux and Durand, 2008; Rydén, 1995); and AIC/BIC based
techniques (Akaike, 1974; Schwarz, 1978) are most commonly used to select the
optimal model parameters that maximize the likelihood of the data and minimize the
model complexity, thereby balancing the goodness of fit against model complexity to
alleviate data overfitting. This paper has adopted the BIC model selection function for
choosing the parameters K and M. Thus, the model learning problem is to find the
optimal set of parameters for λ ¼ A;B; πf g in order to maximize PðYjλÞ. It is achieved
through a commonly used iterative procedure called Baum-Welch Algorithm which is
an application of Expectation-Maximization method for inferring HMM parameters
(Rabiner, 1989).

Now, given an observation sequence Y ¼ y1; y2; . . . ; yTf g and an HMM model λ, the
problem at hand is to find the probability of the entire observation sequence so that it can
be associated with the most likely model from a bank of pre-trained HMM models. This is
expressed as:

pðYjλÞ ¼
X
Z

pðYjZ; λÞpðZjλÞ ¼
X

z1;z2;;zT

πz1bz1ðy1Þaz1z2bz2ðy2Þ . . . azT�1zT bzT ðyTÞ (4)

The calculation of pðYjλÞ according to the direct definition as in Eq. (4) has computational
complexity in the order of ð2TKTÞ which may become intractable for even small values of
K and T. For numerical efficiency, the well-known Forward Procedure is used, which
reduces computational complexity to the order of ðK2TÞ. The relevant algorithms are
briefly discussed in the following subsections.

A. The forward procedure

The forward variable αtðiÞ, defined as αtðiÞ ¼Δ pðy1; y2; . . . ; yt; zt ¼ qijλÞ is the probability
that, provided the model λ is being followed, the partial observation sequence
y1; y2; . . . ; ytf g; 1 � t<T until time t ends with the state of the system being qi at time

t. This can be solved inductively as follows:
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1: Initialization step : α1ðiÞ ¼ πibiðy1Þ; 1 � i � K (5)

2: Induction step : αtþ1ðjÞ ¼
XK
i¼1

αtðiÞaij
" #

bjðytþ1Þ; 1 � t � T� 1; 1 � j � K (6)

3:Termination step : pðYjλÞ ¼
XK
i¼1

αTðiÞ (7)

where the parameters T and K are the same as defined earlier.

B. The backward procedure

The backward variable βtðiÞ, defined as βtðiÞ ¼Δ pðytþ1; ytþ2; . . . ; yT jzt ¼ qi; λÞ, is the prob-
ability of the partial observation sequence ytþ1; ytþ2; . . . ; yTf g from t + 1 till the end,
provided that the state at time t is qi and the model followed is λ. This can be solved
inductively as follows:

1: Initialization step : βTðiÞ ¼ 1; 1 � i � K (8)

2: Induction step : βtðiÞ ¼
XK
j¼1

aijbjðytþ1Þβtþ1ðjÞ
" #

; t ¼ T� 1;T� 2; . . . ; 1;

1 � i � K

(9)

where the parameters T and K are the same as defined earlier.

C. Model learning: Baum-Welch algorithm

The model learning problem requires the estimation of the model parameters λ ¼
A;B; πf g so as to maximize the likelihood pðYjλÞ. Baum-Welch algorithm is a recursive

estimation procedure of the HMM parameters. Given the model and the observation
sequence, the intermediate variables � and γ are defined, for 1 � i � K, 1 � j � K and
1 � t � T, as:

�tði; jÞ ¼Δ Pðzt ¼ qi; ztþ1 ¼ qjjY; λÞ (10)

γtðiÞ ¼Δ pðzt ¼ qijY; λÞ (11)

The variables γt and �tði; jÞ are expressed in terms of the forward and backward variables
αt and βt , defined earlier as:

γtðiÞ ¼
αtðiÞβtðiÞ
pðYjλÞ ¼ αtðiÞβtðiÞPK

i¼1 αtðiÞβtðiÞ
;

�tði; jÞ ¼
αtðiÞaijbjðytþ1Þβtþ1ðjÞPK

i¼1

PK
j¼1 αtðiÞaijbjðytþ1Þβtþ1ðjÞ

(12)
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Using the above relations, and the fact that γtðiÞ ¼
PK

j¼1 �tði; jÞ, it is possible to estimate
A;B; πf g as:

π̂i ¼ γ1ðiÞ (13)

âij ¼
PT�1

t¼1 �tði; jÞPT�1
t¼1 γtðiÞ

(14)

ĉjk ¼
PT

t¼1 ~γtðj; kÞPT
t¼1

PM
k¼1 ~γtðj; kÞ

(15)

μ̂jk ¼
PT

t¼1 ~γtðj; kÞ:ytPT
t¼1 ~γtðj; kÞ

(16)

Σ̂jk ¼
PT

t¼1 ~γtðj; kÞ:ðyt � μjkÞ2PT
t¼1 ~γtðj; kÞ

(17)

where ~γtðj; kÞ is the probability of being in state qj at time t with the kth mixture
component. That is,

~γtðj; kÞ ¼
αtðjÞβtðjÞPN
j¼1 αtðjÞβtðjÞ

" #
cjkNðyt; μjk;ΣjkÞPM
k¼1 cjkNðyt; μjk;ΣjkÞ

" #
(18)

It is noted that the term ~γtðj; kÞ generalizes to γtðjÞ in case of a single-component Gaussian
density (i.e., M ¼ 1) or a (discrete) probability mass function.

The model λ̂ ¼ Â; B̂; π̂
� �

can be recursively estimated until it converges to a local
maxima of the likelihood function pðYjλ�Þ, where λ� is the maximum likelihood estimate
of the HMM. More details on the Baum-Welch algorithm and forward-backward algo-
rithm are available in (Hajek, 2015; Rabiner, 1989).

Technical approach

This section presents the technical approach for autonomous detection of thermoacoustic
instabilities (TAI) based on time series of pressure oscillations, where regime identification
is an important and challenging task. In this context, Rigas et al. (2016) have demon-
strated on a Rijke tube apparatus, similar to the apparatus described earlier, that a
transition can be made from a stable fixed point to a limit-cycle mode of operation if
the heater power is increased beyond the Hopf bifurcation point (Thompson and Stewart,
1986). Since thermoacoustic instabilities are understood to be an outcome of subcritical
Hopf bifurcations, it is imperative to devise efficient detection methodologies that can
identify the shift in operational regime during an early transient period, before it reaches a
limit-cycle behavior. This is the rationale for having a rich source of data that will be
capable of demonstrating the transient behavior of the pressure time series as the
combustion system passes through the bifurcation point. The following procedure, similar
to the one demonstrated by Rigas et al. (2016), has been adopted in this paper:
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(a) The experimental apparatus is heated to a steady state with the primary heater
power input (Ein) � 200 W.

(b) Then, the power input is abruptly increased to a higher value that showed limit
cycle behavior as depicted in the stability chart in Figure 2.

(c) For each experiment, the air flow rate (Q) has been set at a constant value, and a
series of experiments have been conducted with Q ranging from 130 LPM to 250
LPM at increments of 20 LPM.

(d) Pressure data have been recorded using the acoustic sensors over a 30-s window at
a sampling rate of 8192 Hz.

During each experiment, within the aforesaid 30-s window, the transition data from the stable
regime to an unstable (limit-cycle) regime (which occurs through the bifurcation point) have
been collected from the pressure sensors. The ensemble of collected data contains unsteady
pressure signals for several experimental conditions having respective responses with different
amplitudes of limit-cycle oscillations. This dataset provides a rich source of information for the
three regimes, namely, stable, transient, and unstable (limit-cycle), which is used for learning
generative statistical models of these three operational regimes. It is noted that the SNRmay vary
with individual sensors, as seen in the typical profiles of pressure signals in Figure 5. For the data
profile of a pressure sensor (immediately downstream of the heater) in Figure 5(a), the power
input is abruptly increased to 1800W at time ~17 s from the initial 200 W preheated condition
and the air flow rate is kept constant at 210 LPM; Figure 5(b) shows qualitatively similar
responses from another pressure sensor (further downstream of the heater), where the power
input has been abruptly increased to 2000 W at time ~17 s from the initial 200 W preheated
condition and the air flow rate is kept constant at 250 LPM. The SNR in the data collected from
these two sensors is also different due to their proximities from the heater, as seen in the textures
of the time series in Figure 5(a) as compared to those in Figure 5(b).

Having the domain knowledge of stable, transient and the limit-cycle operational
regimes, the task at hand is to train three HMMs: λi; for i 2 1; 2; 3f g, where λ1 corre-
sponds to the stable regime of operation, λ2 corresponds to the transient growth regime,
and λ3 corresponds to the unstable (limit-cycle) regime. This task accomplishes a gen-
erative modeling of the system dynamics based on the domain knowledge procured by the
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Figure 5. Unsteady pressure signals showing the transience from stable fixed point to limit cycle
through bifurcation. (a) Ein abruptly increased to 1800 W with Q ¼ 210 LPM .(b) Ein abruptly increased
to 2000 W keeping Q ¼ 250 LPM.
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experiments. It is noted that although the experiments have been conducted to encompass
a wide range of operating conditions and power input profiles to the heating unit, it is
infeasible to conduct experiments under all different operational conditions that a real-life
combustor may undergo. Nevertheless, the HMMs are intended to learn the trend in the
data that are used for training the models. So, with a sufficiently rich set of training data
procured from different regimes, HMMs can be used to encapsulate the dynamics of the
behavioral characteristics of the combustion system in different regimes. Such a “context-
based” learning makes sense in this respect because, for example, the signature of the
pressure signals in the unstable (limit-cycle) regime is expected to have a deterministic
periodic nature, which is much different from the noisy or chaotic nature generally
exhibited in the stable regime. Learning generative models based on ensembles of data
from these three operational regimes ensures that the underlying model is robust to
uncertainties such as variations in operational conditions and sensor noise even for a
single operational regime.

Test data of pressure time series have been used with the pre-trained models for early
detection of thermoacoustic instabilities (TAI). Given a window of time series y1; ::::; yTf g,
the log-likelihood Lk and the log-likelihood ratio (LLR) ½Lk � L1� are obtained as:

ðLk ¼Δ log pðy1:TÞjλkÞ for k ¼ 1; 2; 3Þ
) ð½Lk � L1� ¼ log

ðpðy1:TÞjλkÞ
ðpðy1:TÞjλ1Þ

� �
for k ¼ 2; 3Þ (19)

where ðpðy1:TÞjλkÞ denotes the probability that the observed pressure time series is
generated by the HMM λk, for k 2 1; 2; 3f g. The rationale here is that as the system
deviates from the stable regime and the transient growth tends toward limit-cycle
instabilities, the signature of pressure oscillations would have a higher probability to be
generated from either λ2 or λ3 than from λ1, which is reflected from the LLR ½Lk � L1� in
Eq. (19) being positive for k ¼ 2; 3.

Focusing on short-length windows of time series in this paper to address real-time
monitoring and active control, early detection of TAI would provide appropriate lead-time
for the actuators to implement the control action. The procedure involved in the analysis
is described as follows:

(a) The window size is chosen for a time scale of ~10–100 ms, because the bifurcation
mode of instability evolution occurs in the time scale of milliseconds. Hence, online
detection of TAI with such a length of time window should be able to provide
appropriate lead-time to the actuators to implement the control actions for sup-
pressing the pressure oscillation.

(b) Time-series data in subsequent batches of the chosen window length is used to
calculate ðpðy1:TÞjλkÞ, for k = 1, 2 and 3.

(c) The LLR in Eq. (19) is chosen as the norm for detecting instability onset. The ratio
is calculated for each batch of data being analyzed and condition monitoring is
performed based on the evolution of the norm over batches of time-series samples.
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Results and discussions

This section presents the results of experimental validation of the proposed HMM-based
method on the Rijke tube apparatus and compares these results with the results of similar
data-driven techniques on the same data sets for estimating the growth rates of thermo-
acoustically unstable systems.

A. Detection of early onset of instabilities

This subsection presents the results for detecting instabilities during the transient regime.
The dataset used for this purpose comprises an ensemble of 145 sets of pressure time
series with 30-s duration similar to those depicted in Figure 5. This entire dataset has been
randomly divided into training and testing sets in the ratio 80:20. The training data are
first used to train the three HMMs, λ1; λ2 and λ3. The test data for detection of TAI are
chosen to be truncated just before the onset of unstable (limit-cycle) regime, and the
performance of the classifier for instability detection is based on successful detection of the
onset of short-duration transients even before the limit cycle begins. This requirement
poses a stringent condition on the classifier to perform early detection of instability
evolution with dynamic sensor data. The idea here is that the underlying algorithm should
be able to detect a divergence from the stable regime (i.e., nominal operation) well within
the transient regime sufficiently before the unstable (limit-cycle) regime begins; this is
necessary because a major failure can be triggered by structural resonance in the unstable
regime when it might be too late to exercise control actions. The testing phase involves
calculating the LLR in Eq. (19)) for classifying each data window. In the framework of
Bayesian binary hypothesis testing, the proposed algorithm classifies each pressure time-
series window into either stable (Class A) or unstable (Class B) based on the following LLR
test (see also Eq. (19)):

½Lk � L1� ¼ log
ðpðy1:TÞjλkÞ
ðpðy1:TÞjλ1Þ

� �
¼ log½ðpðy1:TÞλkÞ� � log½ðpðy1:TÞjλ1Þ�_

H

G
τ for k ¼ 2 or 3 (20)

where τ is a user-specified threshold (Poor, 2013). A commonly used criterion to choose τ is the
receiver operating characteristic (ROC) curve that is obtained by varying τ to provide a trade-off

between the probability of successful detection ðpD ¼Δ p½DecidedClass ¼ HjTrueClass ¼ H�Þ
and the probability of false alarms ðpF ¼Δ p½DecidedClass ¼ HjTrueClass ¼ G�Þ.

Figure 6 shows a family of ROC curves for the proposed HMM-based detection
algorithm using different window sizes of data, with the likelihood ratio chosen as

log ðpðy1:TÞjλ2Þ
ðpðy1:TÞjλ1Þ
h i

(i.e., the probability that each observed sequence belongs to the transient

class as compared with the probability of belonging to the stable class), abbreviated as
½L2 � L1� henceforth. Similar ROC curves are obtained when the likelihood is compared

with respect to the unstable and stable classes, i.e., log ðpðy1:TÞjλ3Þ
ðpðy1:TÞjλ1Þ
h i

(abbreviated as ½L3 � L1�)
is used as the LLR. Due to the fact that data textures in the transient and unstable (limit-
cycle) regimes are significantly different from those in the stable regime, LLRs generated
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by these two methods may be largely similar . Therefore, either ½L2 � L1� or ½L3 � L1� can
be used as the classifier.

Window sizes of 50, 100, 500 and 1000 have been chosen for the plots in Figure 6,
which corresponds to time scales in the order of milliseconds considering the sampling
frequency of 8192 Hz. For example, a window size of 50 corresponds to a classifier
decision taken after approximately every 6 ms. A commonly used method for compar-
ing the performance of different classifiers is comparison of the area under the curve
(AUC) of ROC for each classifier (Fawcett, 2006). Higher AUC is generally associated
with a better overall performance of a classifier. As depicted in Figure 6, the AUC
increases from 0.9541 to 0.9864 as the window size is increased from 50 to 1000, with
progressively higher detection rates at specified false alarm rates. The rationale is that
the classifier is expected to perform better with respect to larger lengths of observation
sequences. It is worth reiterating that the anomalous class detected by the classifier in
Figure 6 belongs to the transient phase of pressure time series, and hence, the high
classification accuracy even with approximately 6–60 ms long data makes the proposed
HMM-based classification scheme a promising candidate for TAI detection in an early
part of the transient regime.

The trend in the variations of the LLR is now investigated as the time series passes
through the transient regime. For demonstration purposes, the pressure signature
recorded by the downstream sensor nearest to the heater has been chosen for the

Figure 6. ROC curves for the proposed method with different window sizes of sensor time series.
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experimental condition of increasing the heater power input abruptly to 2000 W while
maintaining the flow rate at 250 LPM (see Figure 5(b)).

The testing data are analyzed according to batches of a chosen window length of 100
samples. Since the objective is early detection of TAI, the batches are continually analyzed
for the entire time series until the limit-cycle instability is reached. Figure 7 shows the
evolution of the LLR ½L2 � L1� (plotted with squares on solid line) as the sensor data are
analyzed in batches of data length 100. The pressure time-series data are plotted by
downsampling the actual time-series data by 100, because each successive log-likelihood
calculation involves 100 pressure observation data. The vertical dashed line in Figure 7
indicates the separation between the stable and transient regimes. The onset of instabilities
occurs after about 1700th sample, which corresponds to ~20 s in the actual time scale. It is
noted that the associated LLR also changes abruptly from approximately zero value before
the 1700th time sample to a very high positive value in the order of ~104, showing a very
high sensitivity to the divergence of the pressure profile characteristics from the stable
regime to the transient regime. In addition, the monotonicity in the increase of LLR is
correlated to the degree of instability of pressure oscillations, which justifies its potential
use as an index for measure of instabilities. This shows that the pre-trained HMMs are
able to promptly distinguish the onset of transient growth from the stable regime early in
the transient regime. The high sensitivity of the proposed detection method is attributed
to the non-deterministic algebraic structure of HMMs along with its trained observation
emission distribution, which results in a very good discriminative performance even with
short lengths of observation.
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B. Regime detection

More insight is obtained from Figure 7 by analyzing the variations of the likelihoods with
respect to λ1; λ2 and λ3 in Timeframe A (1400–1600 samples) in the stable regime and
Timeframe B (1600–1800 samples) in an early part of the transient regime. This is
reflected in Figure 8 from the highest relative likelihood L1 of the data corresponding to
λ1 (downfacing solid triangles), as compared with likelihoods L2 and L3 with respect to λ2
(solid squares) and λ3 (hollow circles), respectively. λ3 has the lowest likelihood among the
three, which can be traced back to the fact that λ3 has been trained with data belonging to
the unstable (limit-cycle) regime, the deterministic and periodic nature of which is quite
different from the chaotic nature of stable regime data.

Figure 9 shows the evolution of the three likelihoods in Timeframe B of Figure 7 which
spans from 1600 to 1800 time samples – the region of early transience from stable to
unstable behavior. It is seen that the likelihood of the data belonging to the stable model
λ1 sharply drops as soon as the transience sets in, and this results in the sharp increase in
the value of the LLR ½L2 � L1� as depicted in Figure 7. The respective variations in L2 and
L3 are conspicuously observed in the inset of Figure 9. It is seen that L2 dominates L3 for
the bulk of the Timeframe B, except at the very end when limit cycle behavior sets in,
which causes L3 to dominate L2. Although both L3 and L2 should be able to distinguish the
occurrence of anomalous behavior from L1, the LLR ½L2 � L1� is expected to be more
discriminative than the LLR ½L3 � L1� for transient regime detection.

From the perspective of regime classification, the HMMs exhibit a potential to dis-
criminate between the transient and unstable (limit-cycle) data with respect to the
pressure time-series signals. Figure 10 shows the evolution of L2 and L3 as the time series
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passes from transient to unstable (limit-cycle) regime. It is seen that L3 starts dominating
L2 as the unstable (limit-cycle) regime is approached, showing that the models have
satisfactorily captured the dynamics of the system during the different regimes. So, for
regime detection purposes, the information from the ROC curves (Figure 6) can be used
to choose a particular threshold τ corresponding to the trade-off between the detection
rate required by the user and the allowable false alarm in detection. The problem of
regime detection is challenging because the classifier has to decide which of the three pre-
trained regimes does a short data history belong to. Table 1 presents the regime detection
accuracies, where the threshold τ has been chosen using the ROC of a classifier with ½L3 �
L1� as the LLR with window size = 100; here τ has been chosen to correspond to about
92% detection rate with 10% allowable false alarm from the ROC curve.

The test data samples consist of 1000 random samples from each of the three
regimes, which were classified using the chosen threshold of ½L3 � L1�. The limit
cycle unstable regime was distinguished from the transient growth regime by employ-
ing the LLR ½L3 � L2�. It is interesting to note that the classifier designed for detecting
instabilities in the transient regime is able to detect the unstable (limit-cycle) regime
with 100% accuracy, implying that the detection algorithm is almost always sure to
distinguish limit cycle data from the other two regimes. The superior performance in
detecting unstable (limit-cycle) data is possibly due to its deterministic periodic nature.
However, the presence of transience in the data makes its detection even more difficult
and the method discussed in this paper can serve as a unified framework for this
purpose.
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C. Comparison with growth rate measurement techniques

Information about the growth rates of linearly unstable systems has been shown to be useful
for the design of robust controllers (Noiray and Schuermans, 2012). In fact, for real-time
monitoring and active control of thermoacoustic instabilities, the growth rate information can
be used to detect the onset of unstable modes. However, it is difficult to characterize the
growth rate from an experimental point of view, as discussed by Moeck et al. (2007). An
unstable combustion system generally exhibits an abrupt change from a stable regime to an
unstable (limit-cycle) regime through a bifurcation, thereby posing serious challenges for
data-driven growth rate extraction techniques to detect the growing trend in the data in that
short period. Recently, Rigas et al. (2016) and Jamieson et al. (2017) have reported growth and
decay rate measurements using transient acoustic time-series data from an electrically heated
Rijke tube, similar to the apparatus used in the current paper . Their method is based on
extracting clean regions of linear growth and decay from the Hilbert envelope of the time-
series signal, and measuring the growth rate by a linear fit in the identified region. The
application of this method to the current data is first reported and then certain issues are
discussed related to the data length requirements.

The extraction of growth rate is based on the assumption that the combustion dynamics are
governed by a single thermoacoustic mode, which is the dominant frequency of the self-excited
oscillations (Lieuwen, 2003). Under this single mode approximation, the calculated growth rate
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Table 1. Classification accuracy of the three regimes.
Stable regime Transient regime Unstable regime

90% 91% 100%
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is essentially that of the dominant mode (ω) of the system (Boujo et al., 2016), which is around
130 Hz for the data analyzed in this section. To implement this concept, the time-series data
from the Rijke tube apparatus have been filtered using a 20th order bandpass Butterworth IIR
filter with lower 3-dB frequency of 120 Hz and higher 3-dB frequency of 140 Hz, in conjunction
with a phase equalizing filter for preventing phase distortion in the filtered signal. This helps in
reducing the noise and extracting clean regions of linear growth, which can then be identified by
thresholding on the Hilbert amplitude to separate the approximately linear region between the
noise floor and the nonlinearly dominated regions.

Figure 11 shows the evolution of the Hilbert envelope as a function of data length for the
case when the heater power was increased abruptly to 1400 W with the air flow rate kept
constant at 170 LPM. It can be seen in Figure 11(b) that it is possible to define upper and
lower thresholds on the Hilbert amplitude to formulate a linear fit for extracting the linear
growth rate as σr ¼ dðlogðAmplitudeÞÞ

dt when the Hilbert transform is performed on the complete
data, as reported by Rigas et al. (2016). In Figure 11(c) the time-series data have been
truncated to choose 1000 samples from the 18.5-s mark around which the system starts
exhibiting transient growth. Since this sample window contains data from the transient
regime, it should be associated with a positive linear growth rate of the dominant mode.
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The Hilbert envelope evolution in Figure 11(d) does not involve a similar linearly growing
region from which the growth rate can be extracted. This is possibly because the envelope
evolves slowly, and hence it requires more data. As seen in Figure 11(f), even when the data
length was increased to 5000 samples from the 18.5-s mark, the Hilbert envelope does not
show a conspicuous region of growth that can be described by a linear fit. Hence, although
this technique can be used as an offline method to calculate the growth rate for different
operating conditions, it is limited in its applicability as an online detection tool for extracting
the growth rate of a dynamically evolving unstable thermoacoustic system. Moreover, the
amplitude thresholds for the regions of noise floor and nonlinearity are expected to vary
across different time samples, and would most likely be a strong function of the operating
conditions and varying SNR of the sensors from which the samples are generated.

With the LLRs of the HMMs, one may classify short-length time windows in the transient
regime, as was discussed earlier. For the time series with 1000 samples in Figure 11(c), ½L2 �
L1� ¼ 1:4303� 104 (see Eq. (19)), and for the one with 5000 samples (Figure 11(e)),
½L2 � L1� ¼ 44:814� 104. Both the values are well above 0, implying that the data samples
are far from the stable regime. If a sample size of 1000 can be afforded, a windowed likelihood
calculation can be performed to find the trend in variation of the likelihood ratio, which would
reflect the rate of growth in the time sample. Figure 12 shows the comparison between LLR
variations using 1000 samples and the growth rate calculation using the complete dataset. Two
cases have been investigated, Case 1 in which the power input has been increased to 1400 W
keeping the flow rate constant at 170 LPM, and Case 2 in which the power input has been
increased to 2000 W with the flow rate kept fixed at 230 LPM. Figure 12(a) shows the growth
rates calculated using the complete time series of 30 s, with solid line representing Case 1 and
dotted line representing Case 2 that has a higher growth rate of 4.4 s−1 as compared to 3.8 s−1

in Case 1. This is reflected in the likelihood ratio plot in Figure 12(b), where ½L2 � L1� has been
calculated using a window size of 100 samples on a time-series sample of 1000 data points
chosen from the inception of transient growth in both the cases. Case 2 (dotted line with
triangles) in Figure 12(b) shows a progressively increasing rate of higher relative likelihood of
λ2 with respect to λ1, which is consistent with the information obtained from the growth rate
calculations. Since the likelihood ratio can be used to conclude the higher rate of growth using
a much shorter time series from the early transient period, it can potentially be applicable to
early detection of the rate of transient growth in the unstable regime.

D. Comparison of computational complexity with other data-driven techniques

To the best of the authors’ knowledge, the current paper is the first reported work that aims to
detect the growth of instabilities from non-stationary time-series data using a real-time data-
driven approach. Most of the research reported in the combustion literature have proposed
different data-driven tools for predicting precursors to instabilities from stationary time-series
data, for example, steady-state pressure time series obtained as a function of equivalence ratio.
Sarkar et al. (2016) have reported computational complexity of different data-driven methods
for prediction of thermoacoustic instabilities using stationary time-series data. Nair and Sujith
(2014) have correlated loss of multifractality with the onset of instability in the acoustic
fluctuations by computing generalized Hurst exponents. Gotoda et al. (2012) have studied
variations in the minimum of normalized permutation entropy as a function of equivalence
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ratio to measure the degree of complexity in the dynamic nature of the acoustic fluctuations
with the onset of instability. Sarkar et al. (2016) proposed a data-driven technique of
monitoring the state complexity of D-Markov machines which starts dropping as the com-
bustion system tends to become unstable. This is consistent with the observations (Gotoda
et al., 2012) with regard to variations in the complexity of the pressure data. Sarkar et al. (2016)
also proposed a method of detecting instabilities by appropriately thresholding on the varia-
tion of the � D-Markov entropy rates from heterogeneous sensors, namely, pressure and
chemiluminescence data.

These methods have been applied for predictions of instability with respect to
steady state response at different operating conditions, and they are, in a way, different
from the method proposed in this paper which attempts to detect the growth of
instabilities as a result of bifurcation resulting in the triggering of transient growth
to limit cycles. However, it is still worth comparing the computational complexity of
all these methods because they can be posed as potential competitors in their

Figure 12. Comparison of growth rates with log-likelihood evolution. (a) Growth rate calculation using
Hilbert envelope. (b) Variation of LLR ½L2 � L1� (see Eq. (19)) in an early growth period of the two cases.
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applications to predicting the degree of instability in the steady state response of the
combustion system. For example, with respect to the Rijke tube apparatus described in
this paper, the steady state response of the system after a set point of power input is
reached can be recorded and studied with two HMMs corresponding to stable and
unstable modes of operation. With this domain knowledge incorporated in the training
phase, LLR-based methods can be used to calculate the relative likelihoods of the
steady state acoustic signature as a function of power inputs to study the degree of
instability in the acoustic behavior. Table 2 compares the average online processing
times of the techniques mentioned above with the time complexity of the LLR ½L2 �
L1� calculation. The comparison is carried out in the MATLAB-2014 environment on a
computation platform of Dell Precision T3400 PC with Intel(R) Core(TM) 2 Quad
CPU Q9550 @ 2.83GHz and 2.83 GHz. As discussed earlier, the calculation of the

likelihood pðYjλÞ using Forward Algorithm has a complexity of ,jQj2T. This is
reflected in the almost linear increment of the processing time with respect to the
data length for calculating the likelihood ratio ½L2 � L1� (dashed line with circles). The
likelihood ratio computation time fares better than that of the minimum permutation
entropy method, although the time complexities for the computation of both the Hurst
Exponent and � D-Markov entropy rate are lesser. However, it is worth mentioning
here that HMMs are a class of more complex non-deterministic models representing
the probabilistic behavior of temporal data and it can be used directly to solve the
problem of regime detection with relatively short-length data, for which direct applic-
ability of other methods have not been reported. Moreover, the HMM framework, in
principle, can be trained with other classes of instabilities like lean blowout or screech
with data generated from simulations/experiments, and hence can be extended for
detection of various undesirable regimes of operation, subject to sufficient training
experience. Also, the focal area of this paper is to portray the applicability of the
HMM-LLR method for data lengths less than 1000 samples (~120 ms, with sampling
frequency, Fs = 8192 Hz). Such short data lengths have not been used previously in the
other aforementioned techniques for instability detection in stationary data. Table 3
lists the processing times for the online calculation of LLR using the different window
lengths as described in Figure 6. Hence, the competitive time complexity of the HMM
LLR along with its performance robustness even at very short data lengths makes it a

Table 2. Time complexity of different methods for detection of combustion instabilities.

Data length (s)

Processing times of different data-driven methods (s)

Hurst exponent xD-Markov entropy rate Minimum pemutation entropy Log-likelihood ratio

0.2 0.019 0.056 0.095 0.035
0.4 0.025 0.059 0.135 0.068
0.6 0.031 0.062 0.174 0.011
0.8 0.035 0.065 0.213 0.132
1.0 0.041 0.068 0.252 0.164

Table 3. Time complexity of LLR calculation in the online phase.
Number of samples (Fs = 8192 Hz) 50 100 500 1000
Data length (ms) 6 12 60 120
Processing time (ms) 4 6 12 23
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potentially suitable method for regime detection and instability classification, which is
a key element for real-time detection and active control of combustion instabilities.

Summary, conclusions, and future work

This paper has developed and validated a non-deterministic statistical modeling tool for
early detection of thermoacoustic instabilities and identification of operational regimes in
combustion systems. The analysis is based on learning HMM to represent the typical
behavior of the combustion system with data from different regimes, and using the models
for predicting the most likely regime from a short test sequence of acoustic pressure
recordings. This method focuses on real-time applications with short windows of pressure
time series without compromising the accuracy of prediction of thermoacoustic instabil-
ities and identification of the associated operational regimes. The proposed HMM-based
method has been validated on experimental data from an electrically heated Rijke tube
apparatus for predicting the onset of thermoacoustic instabilities. The results of the
proposed method have been compared with those of similar data-driven techniques on
the same data sets for estimating growth rates of thermoacoustically unstable systems (e.g.,
linear fitting from Hilbert envelope of the pressure time series). The proposed HMM-
based method yielded consistent observations on the growth rate detection, albeit requir-
ing significantly lower data history for its efficient implementation and applicability. While
the proposed method is found to be robust with respect to spurious process and measure-
ment noise, the response of the detection algorithm is sensitive to small changes in the
regime characteristics, which makes it very suitable for detection of texture changes in the
temporal signature of the acoustic data.

The proposed method is suitable for real-time anomaly detection and regime identifi-
cation based on short-length time series of pressure oscillations. Since real-time active
control of thermoacoustic instabilities (TAI) is a problem of major concern in the
development of reliable combustion systems, the technique presented in this paper can
serve as a computationally efficient tool for real-time detection of operational regimes
from online measurements with parsimonious data requirements, making it a potentially
effective for real-time active control of TAI.

While there are many areas of theoretical and experimental research to enhance the
work reported in this paper, the authors suggest the following topics for future research:

(a) Development of a unified detection framework addressing other modes of instabil-
ities (e.g., lean blowouts).

(b) Extension of the proposed HMM-based method for detection of instabilities in
combustion systems operating under different kinds of protocols.

(c) Extension of the probabilistic approach in the reported work to state estimation for
forecasting of future states for prediction of the temporal behavior.

(d) Implementation of the HMM-based method for (closed-loop) active control of the
laboratory-scale apparatus with actuators for controlling instabilities.

(e) Enhancement of computational efficiency of the HMM-based method further by
using variational inference-based learning of the probabilistic models (Murphy, 2012).
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