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Real-time decision-making (e.g., monitoring and active control of
dynamical systems) often requires feature extraction and pattern
classification from short-length time series of sensor data. An
example is thermoacoustic instabilities (TAI) in combustion sys-
tems, caused by spontaneous excitation of one or more natural
modes of acoustic waves. The TAI are typically manifested by
large-amplitude self-sustained pressure oscillations in time scales
of milliseconds, which need to be mitigated by fast actuation of
the control signals, requiring early detection of the forthcoming
TAI. This issue is addressed in this technical brief by hidden
Markov modeling (HMM) and symbolic time series analysis
(STSA) for near-real-time recognition of anomalous patterns from
short-length time series of sensor data. An STSA technique is first
proposed, which utilizes a novel HMM-based partitioning method
to symbolize the time series by using the Viterbi algorithm. Given
the observed time series and a hidden Markov model, the algo-
rithm generates a symbol string with maximum posterior proba-
bility. This symbol string is optimal in the sense of minimizing
string error rates in the HMM framework. Then, an HMM
likelihood-based detection algorithm is formulated and its per-
formance is evaluated by comparison with the proposed STSA-
based algorithm as a benchmark. The algorithms have been
validated on a laboratory-scale experimental apparatus. The fol-
lowing conclusions are drawn from the experimental results: (1)
superiority of the proposed STSA method over standard methods
in STSA for capturing the dynamical behavior of the underlying

process, based on short-length time series and (2) superiority of
the proposed HMM likelihood-based algorithm over the proposed
STSA method for different lengths of sensor time series.
[DOI: 10.1115/1.4043428]
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1 Introduction

Sensor-based automation in cyber-physical systems [1] often
requires real-time decision-making for early detection of anoma-
lous behavior in the physical process, whose relevant features are
extracted from measurement data for pattern classification. This is
also true for dynamic data driven application systems, where the
computational and instrumentation aspects of an application are
dynamically incorporated to enable reliable and fast modeling of
the characteristics and behaviors of the underlying process [2]. An
application example is monitoring and near-real-time active con-
trol of thermoacoustic instabilities (TAI) in combustion systems,
which are usually caused by spontaneous excitation of one or
more natural modes of the acoustic waves [3]. The TAI phenom-
ena are typically manifested by large-amplitude self-sustained
(possibly chaotic) pressure oscillations in the combustion chamber
[4], which may lead to damage in mechanical structures if the
pressure oscillations match one of the natural frequencies of the
system. The time scales of TAI are on the order of milliseconds,
which must be mitigated by fast actuation of control signals. This
mandates early detection of instabilities from short-length sensor
data. Along this line, Sarkar et al. [5] have used symbolic time
series analysis (STSA)-based algorithms [6,7] for online detection
of lean blowout in combustion systems. For classification of dif-
ferent operational regimes in combustion systems, Mondal et al.
[8] have proposed a hidden Markov modeling (HMM)-based algo-
rithm that relies on short-length time series.

This technical brief develops STSA and HMM-based algo-
rithms for anomaly detection using short-length sensor time series.
These algorithms are executable in real time and require training a
nominal (null) model only, which can be performed in an online
fashion. The developed algorithms have been validated on a
laboratory-scale apparatus for early detection of TAI. However,
the underlying algorithms are applicable for decision-making in
dynamical systems in general, where fast detection/decision-mak-
ing is highly desirable. In this context, major contributions of the
work, reported in this technical brief, are delineated as follows:

(a) Hidden Markov model likelihood-based algorithm for fea-
ture extraction and pattern classification: This algorithm is
built upon short-length time series to facilitate real-time
monitoring and control in cyber-physical systems [1].

(b) Hidden Markov model-based partitioning for STSA: This
partitioning method makes use of the (dynamic program-
ming-based) Viterbi algorithm [9] to convert a time series
into a symbol string with the maximum posterior probability.

(c) Validation with experimental data: The anomaly detection
algorithms are validated on a laboratory-scale experimental
apparatus for early detection of TAI in combustion systems.

2 Background Information

This section provides the background information on HMM [9]
and STSA [6,7] for anomaly detection in dynamical systems.2

2.1 Hidden Markov Modeling. Hidden Markov modeling
has found its applications in diverse fields [8,10]. While the theory
of HMM is presented in detail in Refs. [9] and [10], the key
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2An anomaly is a deviation of the behavior of a physical process from its nominal
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essential for enhancing the system performance as well as for mitigation of potential
catastrophic failures.
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concepts are very succinctly outlined below for the sake of
completeness.

Consider a time series X ¼ fx1; x2;…; xTg; xn 2 RN . In HMM
framework, X is considered as a realization of a hidden Markov
chain Z ¼ fz1; z2;…; zTg, where zt is one of the finitely many
states Q¢fq1;…; qMg at time t. In this setting, the HMM is a tri-
ple k¼ {A, B, p}, where A ¼ ½aij� 2 RM�M with aij ¼ pðztþ1 ¼
qjjzt ¼ qiÞ; B ¼ ½bjðxÞ� with bjðxÞ ¼ pðxjz ¼ qjÞ; and p ¼ ½pi� 2
R1�M with pi¼ p(z1¼ qi) at the initial time t¼ 1. It is noted that
each row of A and the row vector p are probability mass functions
(i.e., all elements of p are non-negative and sum to 1 and each
row in A has non-negative elements and sums to 1), while each
element of B is a state-conditional probability density function
defined for any observation x.

Given an observed data string X of length T, there are MT possi-
ble hidden state paths (of length T) that could generate X; let Z be
the set of all such hidden state paths. To compute the joint likeli-
hood of X given an HMM k, it is necessary to marginalize over all
these hidden state paths

pðXjkÞ ¼
X

Z2Z
pðX; ZjkÞ (1)

To mitigate this computational complexity, the forward variable a
is introduced as

anðiÞ¢pðx1 x2…xn; zn ¼ qijkÞ (2)

This variable is recursively computed by using the forward proce-
dure [10], and the observation likelihood pðXjkÞ is evaluated as

pðXjkÞ ¼
XM

i¼1

aTðiÞ (3)

The Baum–Welch algorithm [10] is a standard (expectation
maximization) tool for training HMMs; it finds a triple k*¼ {A,
B, p} that locally maximizes the total observation likelihood

k� ¼ argmax
k
fpðXjkÞg ¼ argmax

k

X

Z2Z
pðX;ZjkÞ (4)

Also, the most probable hidden state path for a given data string
X is computed as

Z�ðXÞ ¼ argmax
Z2Z

½pðZjX; k�Þ� (5)

by using the (dynamic programming-based) Viterbi algorithm
[10]. Both Eqs. (3) and (5) are used here to define anomaly detec-
tion algorithms.

2.2 Symbolic Time Series Analysis. Symbolic time series
analysis [11,12] has found its applications in anomaly detection
and pattern recognition [6,7,13]. A crucial part in STSA is to con-
vert a time series X ¼ fx1;…; xTg; xt 2 RN , into a symbol string
S ¼ fs1;…; sTg; si 2 A; A a (finite cardinality) alphabet of
symbols.3 This conversion is commonly performed by partitioning
the state space RN into jAj disjoint regions, with each region
assigned a distinct symbol from A. Then each point xt in the time
series is converted into the symbol associated with the region that
contains xt. Examples of symbolization using state space partition-
ing are uniform partitioning [15], maximum entropy partitioning
(MEP) [15,16], and K-means [17]. In uniform partitioning, the
state space is partitioned into regions with equal Lebesgue meas-
ures, while in MEP the state space is partitioned into regions such
that the entropy is maximized. In K-means, the state space is parti-
tioned into K Voronoi cells such that a distortion measure-based

objective function is minimized [17]. In state space partitioning,
the symbol at each time t is chosen based on the point xt only.
This may be suboptimal for (possibly nonautonomous) dynamical
systems, where the same point in the state space may recur multi-
ple times; yet, for each such occurrence the point may be part of a
quite distinct temporal pattern. Using state space partitioning, the
time series must be assigned the same symbol at these
“recurrence” times, with the symbol sequence at time t, st, only
providing information about xt. Therefore, despite the conven-
ience of state space partitioning for symbolizing time series, it
could lead to a symbol string that may not accurately represent the
dynamical properties of the underlying process. In this regard,
Ghalyan et al. [18] reported a symbolization algorithm that mini-
mizes a clustering objective function to jointly convert the time
series into a symbol sequence without partitioning the state space.
Although this approach is optimal in the sense of estimating a
generating partition for the observed time series [18], it is gener-
ally suboptimal in the HMM framework [10].

The D-Markov machine [6,7] provides an efficient tool to
model the stationary dynamics of the resulting symbol string for
pattern recognition, where the Markov depth D is a positive inte-
ger. The concept of D-Markov machine relies on an algebraic
structure, called the (irreducible) probabilistic finite state automa-
ton (PFSA) K ¼ ðA;Q; d;MÞ, where A is a finite cardinality
alphabet as defined earlier, Q is a finite set of states, d : Q�A !
Q is a state transition map, and M : Q�A ! ½0; 1� generates
the individual entries of the emission (also called morph) matrix
[7]. The parameters d and M are used to construct the ðjQj �
jQjÞ state transition probability matrix which, in turn, generates
the state probability vector P as the (sum-normalized) left
eigenvector corresponding to the unique eigenvalue 1 [7]. The
D-Markov machine is a PFSA corresponding to a stochastic sym-
bolic stationary process for which the probability of the current
symbol depends only on the previous (at most) D consecutive
symbols.

In summary, for anomaly detection using STSA [13], a time
series X of sensor data is first converted into a symbol string.
Then, PFSAs are constructed from the symbol strings, which in
turn generate low-dimensional feature vectors [15] that are used
for detection of anomalous patterns. The procedure is executed in
the following steps:

(1) Select a block of a time series, called the nominal block, for
which the system is in a healthy condition.

(2) Construct a partition for the nominal block and convert it
into a symbol string to construct the nominal PFSA model.
The emission matrix of the PFSA model is computed by
frequency counting [7]. This learned nominal model gener-
ates a (quasi-)stationary probability vector Pnom that repre-
sents the nominal pattern.

(3) Select a new block of the time series up to the current time
t and convert it into a symbol string using the learned nomi-
nal partition. This yields a new PFSA with a new (quasi-
)stationary probability vector Pt that represents the feature
vector of the system at time t.

(4) Compute the anomaly at time t as the divergence between
the nominal feature and current feature vectors

lðtÞ ¼ dðPnom;PtÞ (6)

where d(�, �) is the Kullback–Leibler divergence [17].

3 Technical Approach

This section first presents a novel partitioning method that sym-
bolizes the time series in an optimal fashion without partitioning
the state space. In particular, the time series X is considered as a
realization of a stochastic process that is represented by an
HMM, k, with the alphabet A of hidden states, and the HMM

3It is noted that the alphabet size jAj should be much smaller than the time series
length T [14].
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parameters are estimated by using the expectation maximization
(Baum–Welch) method. Then, out of jAjT possible symbol
strings, the algorithm identifies the one with maximum posterior
probability, i.e., S� ¼ argmaxS PðSjX; kÞ, by using the Viterbi
algorithm. This string is optimal in the sense of minimizing the
string error rate in the HMM framework [10]. The string is also
expected to extract more information from X about the underlying
dynamical system and to have more power to capture sequential
patterns in X than MEP and K-means. Unlike standard state space
partitions, the proposed partitioning jointly symbolizes the entire
time series, with st at each time t providing some information
about the entire time series.

The proposed partitioning has been used to develop an STSA
technique for anomaly detection. This method is denoted as
HMMD, as an abbreviation for HMM D-Markov machine, whose
pseudocode is given in Algorithm 1, where the parameter s is a
user-specified threshold, set to achieve a specified false positive
rate.4

Algorithm 1 HMM D-Markov (HMMD) method

INPUT: Threshold s and a data block xt:tþL.
OUTPUT: The decision on whether the system is nominal or
anomalous.

1: Initiate the algorithm using a nominal block of data x�t0 :t0þL to find the
nominal model:

k� ¼ argmax
k
fpðx�t0:t0þLjkÞg

2: Use Viterbi algorithm to find the hidden state path:

z�t0 :t0þL ¼ argmax
zt0 :t0þL

fpðzt0:t0þLjx�t0:t0þL; k
�Þg

3: Using D-Markov machine, construct a PFSA based on z�t0 :t0þL as the
symbol string to obtain the nominal pattern (i.e., steady-state proba-
bility vector) P*.

4: Apply Steps 2 and 3, with x�t0 :t0þL replaced by xt:tþL, to find the pattern
(i.e., state probability vector) Pt.

5: Compute the anomaly statistic lðtÞ  dðPt;P
�Þ

6: if l(t)> s then

7: declare the system as anomalous
8: else

9: declare the system as nominal
10: end if

The HMMD method outperforms other STSA methods as demon-
strated in Sec. 4. However, HMMD makes use of the most proba-
ble hidden state path only and ignores all other possible paths.
This is a common drawback in STSA which uses a hard symbol
assignment to convert the time series into a symbol string, reject-
ing all other possible symbol strings. Some of these rejected sym-
bol strings may involve useful information about the underlying
dynamical system, which is not captured by the selected symbol
string.

Alternatively, another HMM-based detection algorithm is pro-
posed, which retains all possible hidden state paths. In particular,
an HMM null model k* is trained by using data from the nominal
condition and, for each subsequent block xt:tþL, the anomaly mea-
sure is given by the negative log-likelihood

lðtÞ¢� log ½pðxt:tþLjk�Þ� (7)

where Eq. (7) is obtained by summing over all hidden state paths,
as given in Eq. (1). In the sequel, this method is called HMML as

an abbreviation for HMM likelihood. A pseudocode of HMML is
presented in Algorithm 2. The intuition behind Eq. (7) is as fol-
lows. Since the HMM is trained using observations generated in
the nominal regime, the likelihood of the time series measure-
ments (after occurrence of an anomaly) conditioned on the nomi-
nal HMM should decrease. Based on a properly chosen threshold,
one can decide whether change has occurred within the block or
not using such likelihoods.

Algorithm 2 HMM likelihood (HMML) method

INPUT: Threshold s and a data block xt:tþL.
OUTPUT: Decision on whether the system is nominal or anomalous.

1: Initiate the algorithm using a nominal block of data x�t0 :t0þL to find the
nominal HMM:

k� ¼ argmax
k
fpðx�t0:t0þLjkÞg

2: lðtÞ  �log ½pðxt:tþLjk�Þ�
3: if l(t)> s then

4: declare the system as anomalous
5: else

6: declare the system as nominal
7: end if

Remark 3.1. The method HMML effectively considers all possible
hidden state paths if the Forward algorithm is used [10]. As dem-
onstrated experimentally in Sec. 4, this method is considered
richer than HMMD in the sense that the information associated
with all possible symbol strings is retained and utilized to extract
relevant features from the time series X.

4 Experimental Validation

This section validates the proposed algorithms, namely HMML

and HMMD, on data generated from a laboratory-scale experimen-
tal apparatus [8]. The first objective of the experimental validation
is to evaluate the performance of the proposed STSA method,
HMMD, compared to K-means and MEP-based STSA methods,
for early detection of TAI in combustion systems, based on short-
length sensor time series and low-dimensional feature vectors.5

The second objective of the experimental validation is to demon-
strate the efficacy of HMML, compared to the best STSA method,
which is in fact HMMD.

Figure 1 depicts the experimental apparatus that simulates ther-
moacoustic instabilities in a laboratory environment. It is an elec-
trically heated Rijke tube, an apparatus that has been commonly
used by researchers for studying TAI, because it is easy to operate
in the laboratory environment and can simulate the salient features
of TAI in real-life combustors [20,21]. It consists of an 1.5 m long
horizontal tube with an external cross section of 4� 400 with a
wall thickness of 0.2500. It is equipped with an air-flow controller
that regulates the flow of air (Q) at atmospheric pressure through
the tube. It has a heating element placed at quarter length of the
tube from the air-input end. A programmable direct current power
supply controls the power input (Ein) to the heater. The experi-
ments have been conducted in the following manner:

(1) For every run, the air flow rate (Q) has been set at a con-
stant value. Different runs have been performed with flow
rates ranging from 130 LPM to 250 LPM at intervals of
20 LPM.

(2) First the system has been heated to a steady-state with a pri-
mary heater power input (Ein) of �200 W.

(3) Then the power input has been abruptly increased to a
higher value that showed limit cycle behavior as depicted
in the stability chart in Mondal et al. [8].

4The receiver operating characteristic (ROC) curves have been used in the current
paper for assessing the detection performance by varying the parameter s from –1
to 1 [19], where each point in the ROC curve corresponds to a specific value of s.
Therefore, the threshold can be determined from the ROC curve by specifying a
maximum allowable false positive rate, which may depend on the application. If the
cost of a positive false alarm is low, the maximum FPR could be increased. On the
other hand, for applications where the cost for a positive false alarm is high, a small
value for the maximum FPR should be selected.

5The feature vector is selected to be the state probability vector P. Given an
alphabet A and a Markov depth D, the cardinality jQj of the state set is bounded
between jAj and jAjD [7]. Therefore, for a given D, the dimension of the feature
vector can be reduced by choosing a small alphabet size (e.g., jAj ¼ 2).
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At different air-flow rates and heat inputs, bifurcating transition
from stable to unstable behavior in the acoustic response of the
chamber occurs. Fifteen experiments have been conducted on the
Rijke tube apparatus, where the process starts with the nominal or
stable behavior, and gradually becomes anomalous (or unstable).
A time series of pressure oscillations has been collected over 30 s
for each experiment, sampled at 8192 Hz, and filtered to attenuate
the effects of low-frequency environmental acoustics; typical pro-
files of the pressure time series are presented in Fig. 2. Further
details regarding the apparatus and stability maps at different
operating conditions can be found in Mondal et al. [8].

The performance of HMMD is evaluated by comparison with
other STSA techniques that use MEP [16,18] and K-means [17]
for partitioning. Then the performance of HMML is compared
with that of the best STSA method.6 In each experiment, the entire
time series of sensor data is segmented into small disjoint blocks.
Based on the ground truth, each block in the experiment is labeled
as:

Class 0 if it belongs to the nominal state;
Class 1 if it belongs to an anomalous state.

For each algorithm, an area under the curve (AUC) of the
respective ROC [19] is obtained by summing results over all
experiments, which reflects the respective (anomaly detection)
performance. For HMM methods, hidden state set of cardinality

Fig. 1 The electrically heated Rijke tube apparatus

Fig. 2 Unsteady pressure signals showing the transience from stable (nominal) to unstable limit cycle (anoma-
lous) behavior: (a) Ein abruptly increased to 1800 W with Q 5 210 LPM and (b) Ein abruptly increased to 2000 W
with Q 5 250 LPM

Fig. 3 ROC curves for combustion instability detection having
jAj5 2, D 5 2, and L 5 200

6The procedure in Algorithm 1 is followed in MEP and K-means-based
algorithms with the symbolization step being replaced by MEP or K-means.
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two (i.e., Q ¼ fq1; q2g) and Gaussian mixtures for the state-
conditional density function bjðxÞ ¼ pðxjz ¼ qjÞ have been used.
The number of mixture components is found based on the
Bayesian information criterion [17]. The detection methods have
been tested for quantification of the extent of instability in the set-
ting of transient growth of acoustic oscillations by using short-
length blocks of time series.

Figure 3 shows7 the AUC performance and the ROC curves of
these methods using Markov depth D¼ 2, alphabet size jAj ¼ 2,
and data block length L¼ 200. As seen in this figure, HMMD

shows an improvement in the AUC performance over K-means
and MEP, with HMML showing a better performance compared to
HMMD, scoring an excellent AUC¼ 0.99229. The same methods
are tested again after reduction of the data block length to L¼ 50,
which can be considered as very short. The corresponding ROC
curves are presented in Figs. 4–6 for D¼ 2, 3, and 4, respectively.
Table 1 shows the mean and standard deviation of the execution
time (for both learning and inference) of these methods over the
15 experiments conducted for D¼ 2, 3, and 4 with L¼ 50. It is
seen in Figs. 4–6 and Table 1 that HMML (which does not depend

on the parameter D) is generally faster8 and has a much better per-
formance compared to the other methods9 for all of these values
of D, with AUC¼ 0.9805. Furthermore, it is seen in Figs. 4–6 that
the performance of HMML is significantly superior to that of
HMMD, which has the best detection performance among STSA
techniques. This is consistent with what has been explained earlier
in Sec. 3, because HMML considers all hidden state paths of the
learned HMM in contrast to HMMD, which considers only the
most likely hidden state path by discarding all other possible paths
of the learned HMM.

5 Summary, Conclusions, and Future Work

This technical brief has proposed a HMM-based pattern recog-
nition tool, called HMM-Likelihood (HMML), for early detection
of anomalous behavior (e.g., TAI in combustion systems). It has
also proposed an STSA method, called HMM-based D-Markov
(HMMD), which uses an HMM-based partitioning method that
converts a time series into a symbol string with maximum poste-
rior probability using dynamic programming (Viterbi algorithm)
[9]. Unlike many other partitioning methods (e.g., uniform, K-
means, and MEP [7,15]), the proposed HMM-based partitioning
considers sequential patterns in the time series so that, even with a
small alphabet size (e.g., jAj ¼ 2), the dynamical behavior of the
time series is effectively captured. These algorithms have been
validated with data collected from a laboratory-scale experimental
apparatus [8]. The results show a significant improvement using
HMMD over K-means and MEP in the STSA setting. Moreover,
the results of the HMML algorithm have been compared with the
best STSA technique (HMMD) to show HMML’s consistently

Fig. 4 ROC curves for combustion instability detection having
jAj5 2, D 5 2, and L 5 50

Fig. 6 ROC curves for combustion instability detection having
jAj5 2, D 5 4, and L 5 50

Table 1 Execution time (ms) for TAI detection (L 5 50)

K-means MEP HMMD HMML

D Mean Std Mean Std Mean Std Mean Std

2 3.3 0.095 1.700 0.037 4.600 0.8755 2.200 0.325
3 4.80 0.101 3.250 0.073 6.1715 0.507 2.200 0.325
4 8.15 0.137 6.659 0.029 9.4160 0.544 2.200 0.325

Note: Std: standard deviation.

Fig. 5 ROC curves for combustion instability detection having
jAj5 2, D 5 3, and L 5 50

7The codes for implementing the HMM and STSA-based algorithms and the
combustion dataset used in this paper are available at https://github.com/nfjasim/
HMM-codes-for-anomaly-detection

8The algorithms in this paper were executed on a DELL PRECISION T3400,
with an Intel

VR

CoreTM2 Quad CPU Q9550 at 2.83 GHz, with 8 GB RAM, and
running under Windows 7.

9Increasing the depth D too much will degrade the STSA techniques’
performance due to the generated large number of PFSA states for which there is not
enough data points (only 50 points in this case) for training [7] (some of these states
may not be even visited with this small number of data points).
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superior performance for different values of Markov depth D and
time series length L.

This technical brief has considered first-order HMMs that are
trained by using the Baum–Welch algorithm. Examples of topics
of future research include: (i) higher-order HMMs and (ii) differ-
ent types of training algorithms (e.g., Gibbs sampling and stochas-
tic variational inference [17]).
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