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Abstract
From the perspectives of health monitoring and life extension of structural materials, this paper addresses the problem of
early detection of fatigue cracks in metallic materials (e.g., polycrystalline alloys). To this end, optical images have been
collected from an ensemble of test specimens to construct computationally efficient models of crack evolution; these images
are segmented into two major categories. The first category comprises images of (structurally) healthy specimens, while the
second category contains images of specimens with cracks, including those in early stages of crack evolution. Based on this
information, algorithms for early detection of crack formation are formulated in the setting of image classification, where
the bag-of-words (BoW) technique has been used to develop models of the sensed images from a microscope, resulting
in computationally efficient crack detection algorithms. To evaluate the performance of these crack detection algorithms,
experiments have been conducted on a special-purpose fatigue testing apparatus, equipped with a computer-controlled
and computer-instrumented confocal microscope system. The results of experimentation with multiple test specimens
show excellent crack detection capabilities when the proposed BoW-based feature extraction is combined with quadratic
support vector machine (QSVM) for pattern classification. Comparative evaluation with other classification tools establishes
superiority of the proposed BoW/QSVM technique.
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1 Introduction

Fatigue crack damage is one of the most common sources
of failures in mechanical structures, which could have
severe consequences if not adequately addressed in a timely
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manner. Consequently, fatigue crack damage has attracted
much attention of research and industrial institutions (e.g.,
[1, 20, 27, 29, 42, 43] and the references therein). Initial
defects (e.g., dislocations, voids, inclusions and slip bands)
exist in the microstructure of critical components even
before a machinery is put into service. In general, the
evolution of fatigue damage is critically dependent on
these initial defects, from which cracks start to nucleate
and eventually merge together, generating larger cracks
that could potentially lead to a structural failure [45].
These microstructural initial defects are usually randomly
distributed and produce uncertainties in the crack initiation
and propagation processes even under known deterministic
loading conditions. Therefore, evolution of fatigue crack in
mechanical structures is treated as a stochastic process.

Early detection of fatigue crack can be critical for Pareto
optimization of two competing requirements of: machinery
performance and service life. An example in aircraft applica-
tions [41] is flight scheduling with life-extending control
that could potentially reduce the structural damage with no
significant loss of performance. Another example in electric
power generation systems [26] is life-extending control of
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steam turbines, for which grid disturbances and fluctuating
output power make plant components undergo transient and
sustained stresses, which may require frequent inspection
and maintenance [8, 30]. Usually such systems have a num-
ber of critical components that characterize the effective ser-
vice life. With reliable modeling of fatigue crack evolution, a
life-extending control system could be designed to mitigate
detrimental effects of fluctuating stresses in critical compo-
nents while maintaining the performance at an acceptable
level [9, 41]. Moreover, a real-time reliable estimation of
the current state of fatigue crack could be used to opti-
mize mission planning and condition-based maintenance,
and facilitate identification of parts to be replaced/fixed
based on their estimated damage. This could significantly
reduce maintenance cost and enhance system availability.

Many of the predictive models of fatigue crack evolution,
reported in literature (e.g., [7, 23, 33, 44]) strongly depend on
the (unknown) initial defects in the structuralmaterials, which
give rise to uncertainties. As explained earlier, these uncer-
tainties may lead to a significant difference in the expected
remaining service lifer as predicted by the models. More-
over, randomly varying changes in the service conditions
(e.g., temperature, humidity, and loading dynamics) may
also significantly affect the cumulative fatigue damage and
diminish the capability of model-based methods to reli-
ably predict the remaining service life of the underlying
mechanical system.

The above discussion evinces the need for development
of data-driven methods that would model the fatigue
damage largely based on sensor measurements and the
prior knowledge of failure incidents. In this regard, various
measurement devices, such as acoustic emission [19],
ultrasonic [11, 20], and eddy current [52] sensors, have been
widely used to detect the fatigue cracks. Machining marks
and scratches, possibly due to surface finishing and cutting,
are common defects from which fatigue cracks may initiate
and propagate [17]. Therefore, there has been a considerable
interest in detecting surface cracks using images, which
can be used for probabilistic modeling of the fatigue crack
damage [2, 10, 12, 15, 34, 36, 38, 39, 50]. While manual
inspection of images is possible for simple cases, it typically
depends on the specialist’s knowledge and experience [36].
Therefore, automated inspection is generally considered to
be more feasible and desirable, especially if there are many
images to investigate or if online image classification is used
to detect surface cracks upon their occurrence.

In the above context, there have been different techniques
for automated crack detection using images. In [10, 34,
38, 50], convolution neural network (CNN) has been used
to detect cracks in civil infrastructures (e.g., concrete and
steel) using surface images. Although CNN typically yields
excellent performance in image classification [28], one
of the main issues in CNN is that it is data intensive.

Without feeding the network with a large number and
variety of images for training, CNN is expected to suffer
from the overfitting problem [48]. Cubero-Fernandez et al.
[12] reported a decision tree heuristic algorithm to classify
images for 88% successful detection of cracks and 80%
successful identification of the crack type while the false
alarm rates were within a permissible bound. Zhong et al.
[39] developed an improved percolation model for robust
detection of cracks in noise-contaminated images. They
used the characteristic of brightness and the feature of crack
length to remove the noisy regions and detect cracks with
reduced iterations and computation time.

The current paper investigates the performance of a nat-
ural language–based machine learning technique, called
bag-of-words (BoW) [49, 51], which is flexible with a vari-
ety of options to use different classification techniques.
The BoW method has been used in this paper for learn-
ing and detecting the behavior of crack evolution from
(noise-contaminated) surface images from a microscope,
in conjunction with the analytical tool of support vector
machines (SVM) in the pattern classification stage [37]. The
proposed BoW algorithm has been experimentally validated
on a laboratory apparatus that is built upon an MTS 831.10
Elastometer fatigue test system, equipped with a computer-
controlled and computer-instrumented Alicona confocal
microscope system. Polycrystalline alloy specimens, sub-
jected to externally applied cyclic loading, are tested on
this apparatus, where images are taken from the micro-
scope at the notch surface of the test specimen over many
load cycles until the specimen breaks. The results of experi-
mentation (i.e., pattern classification of noise-contaminated
surface images from the microscope for crack damage
estimation) have been used to develop decision models
for crack detection. For the purpose of comparative per-
formance evaluation, 21 different classification techniques
have been tested within the BoW framework; among these
classifiers, the quadratic support vector machine (QSVM)
showed the best performance in terms of the classification
accuracy and the area under the curve (AUC) of receiver
operating characteristics1 (ROC) for crack detection in the
images.

Contributions of the paper The major contributions of the
current paper are succinctly summarized below:

– Nondestructive test and evaluation: A statistical-analysis-
based method of nondestructive test and evaluation is
developed and validated with experimental data. The

1The receiver operating characteristic (ROC) curve for a binary classi-
fier is a plot of the True Positive Rate (TPR) versus False Positive Rate
(FPR) achieved by the classifier as the decision threshold is varied.
Area under this curve (AUC) is a measure of the classifier perfor-
mance; higher AUC scores are better, and the maximum achievable
AUC score is 1 [37].
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Fig. 1 Images of fatigue crack
evolution at increasing load
cycles

underlying algorithms are built upon the concepts of bag-
of-words (BoW) and quadratic support vector machine
(QSVM) to train data-driven models that can be used for
early detection of evolving fatigue cracks from surface
images.

– Validation with microscope images: The results, pre-
dicted by the proposed BoW/QVSMmethod, have been
validated with the data collected from an experimental
apparatus.

Organization of the paper The paper is organized in
five sections, including the present one, and two appen-
dices. Section 2 presents a description of the main chal-
lenges in detecting cracks from the noise-contaminated
microscope images and how such detection could be
useful for early detection and estimation of evolving fatigue
damage Section 3 provides some preliminary materials from
machine learning theory as required for understanding the
proposed algorithm for crack detection using microscope
images. Section 4 briefly introduces the theory of bag-of-
words (BoW) and its implementation for damage estima-
tion, based on the crack detection from the images. Section 5
presents experimental validation of the proposed method.
Section 6 summarizes and concludes the paper along with
recommendations for future research. Appendix 1 briefly
outlines the relative merits and demerits of various classifi-
cation methods that are used in the performance evaluation
of the proposed BoW-based method. Appendix 2 succinctly
describes the theory of support vector machines (SVM) that
serve as pattern classifiers in the proposed method.

2 Problem description

Fatigue crack evolution is a stochastic process that can be
estimated using surface images at the locations where the
structure is likely to start developing cracks, such as riveted
joints, sharp corner and notches. The following paragraph
explains the challenges of crack detection from such images
and how this detection could be useful for estimation of
fatigue crack evolution at an early stage.

The images in Fig. 1 were taken from a typical specimen
under an external cyclic load of 3 kN amplitude applied
on the specimen for the entire experiment at an average
frequency of 50 Hz. For each image, the corresponding

cracks

Fig. 2 Early fatigue cracks at 27.5 kilocycles
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number of load cycles is shown under the image. As shown
in the enlarged image in Fig. 2, visible cracks start appearing
around ∼ 27.5 kilocycles, where two cracks are barely
visible in the image. As seen in the image in Fig. 2, cracks
are not the only dark lines in the image and other dark lines
could be due to material surface finishing and scratches.
Distinguishing cracks from such types of dark lines in an
automated manner is a challenge in this regard. Moreover,
cracks may not occur in similar shapes as they propagate
in a random fashion, yielding very different crack shapes
and sizes. This makes the objective of learning the statistics
of cracks from the image even more challenging; on the
other hand, cracks could be due to an earlier phase of the
fatigue damage process. For example, the specimen whose
sample images are shown in Fig. 1 broke after 45 kilocycles.
However, the cracks shown in Fig. 2 are corresponding to
27.5 kilocycles, which is an early stage of the specimen
life, and the detection of such early fatigue cracks would
be useful for maintenance scheduling and mission planning
in order to mitigate the probability of an unanticipated
failure.

Next, a nondestructive evaluation method is proposed,
which makes use of a computer vision method, called bag-
of-words (BoW) [49, 51], to detect fatigue cracks from
surface images. It is reiterated that early detection of fatigue
cracks, predicted by this method, is potentially applicable
to life-extending control [9, 26]. However, before delving
into details of the BoW-based fatigue crack detection,
the following section summarizes preliminary notions and
concepts of machine learning and computer vision that will
be needed in developing the proposed detection technique.

3 Preliminaries

Classification and clustering are two commonly used
machine learning techniques for interpreting data sets and
developing models that are capable of predicting pertinent
information. In this setting, classification is considered to
be a supervised learning process, where input data and their
corresponding labels are used to develop models that are
capable of predicting labels, as accurately as possible, when
these models are provided with new data. In contrast, clus-
tering is considered to be an unsupervised learning process,
where models are developed to interpret unlabeled input
data and understand the hidden relationships among the ele-
ments of the given data set without regard to their labels. In the
following subsections, both topics of classification and clus-
tering are summarized, with a focus on image classification,
for realization of BoW-based fatigue crack detection.

3.1 Classification

There are several techniques (e.g., support vector machines
(SVM) and Bayesian methods) [37] available for classifica-
tion of feature vectors. Given a data set {(x1, y1), . . . ,
(xn, yn)}, where xi is the input vector and yi is the label of
the input vector, (i = 1, . . . , n), let L be the total number of
classes, or categories, to which the labels yi belong. Then,
classification can be defined as the process of employing
the given data set to develop L models that can realize the
following mapping:

yj (xi) =
{
1, if xi ∈ class j, where j = 1, · · · , L

0, otherwise,
(1)

The relationship in Eq. (1) is the general setting of clas-
sification for inputs that might necessitate pre-processing,
especially for high-dimensional input vectors. For exam-
ple, in image classification, inputs are images and if they
are used without pre-processing, then the classification pro-
cess would have inputs as pixels of given images that are
high-dimensional, possibly rendering the task of image clas-
sification unrealizable. Thus, for successful realization of
an image classification task, reasonably low-dimensional
feature vectors are extracted out of a given set of images.
This is accomplished by feature extraction that converts
each image into a feature vector of lower dimension [37].
Feature extraction of images can be realized by myriad
of techniques, such as speeded up robust features (SURF)
[4] and scale-invariant feature transform (SIFT) [31]. The
extracted feature vectors are used to develop models for the
classification process.

3.2 Clustering

The main objective of clustering is to partition a given
data set {x1, . . . , xn} into a number of subsets, where the
elements of each subset share a common attribute, such as
a threshold for a distance metric to the center of the subset,
and possibly other attributes. Such a partitioning process
is called clustering and it is performed without the need
for labeling of the given data set; that is why it is called
an unsupervised learning process. Multiple techniques can
be employed for clustering of a data set; examples include
Gaussian mixtures model [25], hierarchial clustering [16],
and fuzzy c-means [24]. However, one of the most efficient
clustering techniques is K-means, in which the given data
set is grouped into K clusters with K ≤ n. The K-means
clustering is achieved by minimizing the following objective
functional:
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J =
K∑

i=1

∑
x∈Ci

d(ci, x)2 (2)

where Ci is the ith cluster, d(x, y) is the Euclidean distance
between the data points x and y, and ci is the centroid of the
cluster Ci obtained as:

ci �
1

|Ci |
∑
x∈Ci

x, (3)

with |Ci | being the number of points in the ith cluster Ci .
Minimization of the objective functional in Eq. (2) using
K-means is implemented as follows:

– Initialize a set of K centroids {c1, . . . , cK}.
– Assign each xi to the cluster with the nearest centroid.

Use Eq. (3) to update the values of centroids.
– Implement the cluster assignment and centroid steps

iteratively until there are no changes in the cluster
assignments and values of centroids.

4 Fatigue crack detection using
the bag-of-words technique

The proposed methodology for fatigue crack detection is
formulated as an image classification problem, where the
underlying model is triggered as soon as a crack is identified
in the image. The following three subsections present details
of the detection procedure, starting with a brief description
of the bag-of-words (BoW) technique [49, 51].

4.1 Bag-of-words technique

The BoW technique is embodied by three main stages:
feature extraction, quantization, and classification, as
described below [18].

– Feature extraction: The first stage of BoW is feature
extraction which consists of two main steps.

1. In the first step, the points of interest in the images
are identified by using detection tools such as scale-
invariant feature transform (SIFT) (see [3, 46] for
further details on detection schemes).

2. The second step estimates the descriptor in the
vicinity of the points of interest, detected in the
first step. Multiple schemes can be employed for
estimation of descriptors, such as histogram of
oriented gradients (HOG) and wavelets (see, for
example, [13, 35, 46]). Therefore, the input to this
stage is an image, and the output of this stage is
a set of descriptors which represent the features
extracted from the image.

– Quantization: The second stage of BoW is the
quantization process that also consists of two steps.

1. The clustering process that groups the descriptors
into subsets that are called visual words. Any
clustering technique can be employed to implement
this step; examples are k-means, fuzzy c-means,
and Gaussian mixture model (see, for example, [6,
37] for further details on clustering techniques).
Due to its simplicity and efficient performance,
K-means, explained in Section 3, is frequently
employed for clustering in the BoW technique.

2. Construction of the histogram of the visual words.
This is done by computing the frequency of
occurrence of each visual word by counting
how many descriptors in each cluster. Thus, the
quantization process generates a histogram of
the visual words for each image. Although the
histograms can be used directly in the classification
process, their normalization might be preferable
to make the frequency of occurrence of words
within a certain range. The main purpose of such
normalization is to avoid high numbers in the
subsequent computations in classification stage.

– Classification: The last stage of BoW is the classifi-
cation process by which a decision rule is trained for
image classification. The inputs to the classification
stage are the histograms that are generated earlier; and
the outputs are the class labels of the images. Many
classification schemes can be employed to implement
this stage; examples are decision tree classifier (DTC),
linear discriminant classifier (LDC), and support vector
machine (SVM) (see, for example, [6, 37] for fur-
ther details on classification techniques). Appendix 1
presents a brief description of the performance of a set
of classifiers used in this paper. Due to its efficiency,
quadratic support vector machine (QSVM) is chosen
among these classifiers for accomplishing the classifi-
cation stage. Details on SVM are presented in Appendix
2.

4.2 BoW-based detection

The problem of fatigue crack detection is formulated in
this paper as a binary classification, where the nominal
(healthy) case is denoted as Class 0 and the damage case is
Class 1. Thus, two models are required to be developed that
can generate, as precisely as possible, the following binary
classification rule:

y(I) =
{
0, if I ∈ Class 0
1, if I ∈ Class 1.

(4)
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Fig. 3 Concept of bag-of-words
(BoW) for detection of fatigue
crack

where y(I) is the output of the classification algorithm, and
I is the sensed image.

The BoW modeling technique, explained above, is
employed to realize Eq. (4), and Fig. 3 provides a conceptual
presentation of the modeling sequence. Multiple specimens
are considered and different cyclic loads are applied to the
specimens until they break. During this process, microscope
images at the notch surface of the specimens are captured
and grouped into nominal and damaged sets. Then, the
BoW concept is employed to develop models for the
nominal and damaged phases for crack detection. This
procedure would yield detection of a crack by examining
the image, and further action is required to measure the
detected crack. Once a crack is detected, the next step
is the measurement step from the image of the confocal
microscope. Alternatively, one could consider M + 1
hypotheses, instead of the binary hypotheses, where the
first model corresponds to the nominal (undamaged) case
and the remaining M models are corresponding to M

levels of the normalized crack length [40]. In this case,
the BoW algorithm would yield both the detection of the
crack existence and, based on positive detection, a quantized
estimate of the normalized crack length. Further details
are given in Section 5, where the results are presented for
experiments conducted on multiple specimens.

4.3 Usage of BoW fatigue damagemodel in real-life
applications

The BoW algorithm has been developed and validated in
the laboratoy environment, where a confocal microscope
has been used for generating the images to detect the
cracks; however, in real-life applications, usage of such a
confocal microscope may not be feasible due to its cost and
fragility. Therefore, an appropriate sensor (e.g., ultrasonic
sensor [20]) may be deployed to obtain measurements that
could be used as inputs to a data-driven model for online
monitoring of fatigue damage, instead of using images
from a microscope. Alternatively, using the information on
applied load (e.g., forces and moments), a finite element

model (FEM) could estimate the normalized crack length ĉt

via the following equations [40]:

ât − ât−δt = h
(
�K

eff
t

)
δt with h(0) = 0 for t ≥ t0 and given ât0 > 0 (5)

�K
eff
t = �Se

t

√
πât−δt F (ât ) (6)

�Se
t =

[
Smax

t − max(S0
t , Smin

t−δt )
]
U(Smax

t − S0
t−δt ) (7)

ĉt = ât

w
(8)

where t is the current time upon completion of a stress cycle;
t0 is the initial time; ât is the estimated mean value of crack
length; h(.) is a non-negative measurable function that is
dependent on the material and geometry of the stressed com-
ponent; F is a dimensionless correlation factor that is a func-
tion of the geometric configuration (e.g., thickness, width,
and the crack type in the stressed component) and the crack
length; w is a normalizing factor that depends on the com-
ponent geometry; �Se

t is the effective stress range during
the cycle completed at time t with the corresponding crack
opening stress S0

t , maximum stress Smax
t , and minimum

stress Smin
t ; and U(.) is the unit step function defined as:

U(x) =
{
0, if x < 0
1, if x ≥ 0

(9)

Regardless of whether an inexpensive sensor-based
model or an FEM model is used, the resulting damage
monitoring is likely to be inaccurate and therefore needs
to be calibrated by a more reliable source such as the
image-based BoW model developed in this paper. From this
perspective, the BoW fatigue damage model can be used to
routinely train/calibrate other (inexpensive and less reliable)
models to ensure the accuracy of damage estimation.

As an example, Fig. 4 illustrates how the proposed BoW
model could be used to calibrate an ultrasonic sensor model,
where both (confocal microscope) images and ultrasonic
data are synchronously collected for the same specimen, and
the ultrasonic sensor model’s parameters are calibrated such
that the error of damage estimation by the sensor model
relative to the damage estimated by the BoW model is
significantly reduced.
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Fig. 4 Calibration of an
ultrasonic sensor using BoW
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5 Results and discussion formodel validation

This section presents the results of the BoW model,
developed in Section 4, for validation by using the fatigue
data on a laboratory apparatus.

5.1 Description of the experimental apparatus

Figure 5 shows the experimental apparatus that is built upon
an MTS 831.1 Elastometer fatigue testing machine, which
can be used to apply external load to test specimens with
the desired cyclic load properties: amplitude, frequency,
and the shape of the force function; it is also capable of
applying random loading. The other major component of
the apparatus is a computer-equipped confocal microscope,
Alicona R25 sensor system, which has a high resolution
and magnification power and an excellent capability to take
images from different angles and convert the image to RGB
numerical data. The microscope is mounted to an Aerotech
Motion stage, which is a high-precision moving frame that
can precisely move the microscope to the desired position
relative to the specimen notch surface.

Fig. 5 The fatigue test machine equipped with a traveling confocal
microscope

The images with no cracks are considered to belong to
the nominal model (Class 0), while images with possible
cracks belong to the damaged model (Class 1). The cross-
validation method [6] has been used to train and test the
classification performance, where the BoWmodel is trained
at several time epochs based on labeled specimens. Then,
this trained model is used to classify the other unknown
images and make a decision for each image whether it
belongs to Class 0 (nominal) or Class 1 (damaged). Then,
the classification error is computed for each classifier being
used to find the classification performance.

5.2 Model validation with experimental data

As explained in Section 4, the quantization stage in the
BoW technique results in assigning a histogram of the
visual words to each image and therefore each image is
represented as a point in the feature space of visual words.
Consequently, good feature extraction and quantization
would enhance the quality of discrimination between
nominal and damaged images in the feature space of visual
words. To demonstrate this fact, the feature extraction
and quantization stages of the BoW are implemented on
two different images of the same specimen: one with a
crack and one without a crack. The speeded up robust
features (SURF) technique, which is a speeded up version
of the scale-invariant feature transform (SIFT) [3], is
adopted in the feature extraction stage, and the k-means is
employed in the quantization stage. To choose the number
of clusters, we tested several choices on a validation subset
of the image ensemble. Among these choices, we pick
the number of clusters = 1200 which showed the best
detection performance. The systematic selection process of
the optimal number of clusters in this context is in fact an
open problem which will be discussed in Section 6. Figure 6
presents the results, which show that different histograms
are obtained for nominal and damaged phases. However,
just the differences in histograms between the images of

Int J Adv Manuf Technol (2019) 104:3899–3913 3905



Fig. 6 Histograms for nominal (Class 0) and damaged (Class 1) cases

nominal and damaged phases may not be sufficient for
reliable classification. The key point here is to identify
common patterns (i.e., signature) for the damaged images
despite diversity in the shapes and size of cracks, with
different textures of the images, and other patterns for the
undamaged images which may also largely differ in their
textures. The performance in this regard would depend on
the three stages (namely, feature extraction, quantization,
and classification) of the BoW technique as outlined in
Section 4. It is also noted that different classifiers may result
in different classification performance.

5.3 Performance evaluation of the BoW-based
detection

This subsection evaluates the performance of the BoW-
based detection, using different methods in the classification
stage, for classifying images of specimens without and with
cracks. The evaluation is made based on 174 images from
a microscope, some of which contains cracks, ranging from
very tiny cracks to big ones, and the others do not contain
any cracks. These images belong to different specimens and
corresponds to different regions in the notch part of the
specimen, where cracks are most likely to initiate. Figure 1
shows some of the images for a sample specimen at different
load cycles.

The SURF technique [3] is used in the feature extraction
phase, which generates 1,887,436 descriptors from all
the 174 images. The quantization phase utilizes k-means
clustering with 1200 clusters. Each of these clusters
represents a visual word and each image generates a

Table 1 Classification performance of the BoW model with different
classifiers

No. Classifier description Performance (%)

1 Decision Trees 85.7

2 Linear Discriminant 82.4

3 Quadratic Discriminant 89.0

4 Logistic Regression 63.7

5 Linear SVM 83.5

6 Quadratic SVM 94.5

7 Cubic SVM 93.4

8 Fine Gaussian SVM 80.2

9 Medium Gaussian SVM 86.8

10 Coarse Gaussian SVM 80.2

11 Fine KNN 86.8

12 Medium KNN 84.6

13 Coarse KNN 80.2

14 Cosine KNN 85.7

15 Cubic KNN 85.7

16 Weighted KNN 87.9

17 Ensemble Boosted Trees 80.2

18 Ensemble Bagged Trees 90.1

19 Ensemble Subspace Discriminant 93.4

20 Ensemble Subspace KNN 85.7

21 Ensemble RUSBoosted Trees 87.9

histogram of the visual words, where the frequency of each
visual word is given by the number of descriptors that
belong to the cluster representing this visual word.

The three important observations from the above
evaluation process are as follows: (i) a large number of
feature vectors (e.g., 1,887,436 descriptors) for a relatively
small (only 174) number of test images; (ii) different
textures of images from the same group (i.e., belonging
to either damaged or undamaged) of test images; and (iii)
various different shapes and sizes of the emerging cracks to
be learned. A large number of feature vectors is required for
learning the highly random cracks with the different image
textures.

We use 21 different classifiers in the classification
stage of the BoW method. Table 1 lists the classification
performance of each one of these classifiers, and a detailed
discussion of these classifiers performance is given in
Appendix 1. As seen in Table 1, quadratic support vector
machine (QSVM), cubic support vector machine (CSVM),
and ensemble subspace discriminant (ESD) classifiers yield
better performance compared with the other classifiers,
while QSVM is found to have the best classification
performance of 94.5%.

The best combination (BoW/QSVM) has been used to
compute the receiver operating characteristic (ROC) curve
[37] for crack detection in the images. The results are shown
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Fig. 7 ROC curve of
BoW/QSVM for detecting the
nominal (Class 0) model
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in Figs. 7 and 8 for nominal (Class 0) (i.e., no crack) and
cracked (Class 1) (i.e., with cracks) cases, respectively. For
both cases, the BoW method shows the area under the curve
(AUC) to be 0.97. This is an excellent performance in view
of the fact that the maximum value of AUC is 1.0.

The images used in this paper have been taken from
different specimen samples, at different locations within the
notch area for each specimen, and under different lighting
conditions. Figure 9 shows samples of the images used

Fig. 8 ROC curve of
BoW/QSVM for detecting the
damaged (Class 1) model
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Fig. 9 Variation of sample
images in illumination, object
surface property, and cracks’
shape and size

in this work, where the images in the individual twelve
plates are subjected to different levels of illumination,
object surface property, and shape and size of cracks. The
classification accuracy of ∼ 94.5% and the ROC detection
performance of ∼ 0.97 achieved by the proposed BoW-
based feature extraction algorithm combined with a QSVM
demonstrate robustness of the proposed technique to these
environmental changes.

6 Summary and conclusions

This paper has developed and validated a data-driven
method of detecting fatigue crack evolution in polycrys-
talline alloys. The proposed method has industrial appli-
cations toward automated inspection of machinery com-
ponents. The potential applications include power plants,
chemical plants, and transportation vehicles.

Relying on the images captured by a confocal micro-
scope under a variety of environmental conditions (e.g.,
different illumination, object surface property, and shape
and size of cracks), the algorithm of crack detection is for-
mulated as a binary classification problem that is composed
of two classes: (i) nominal (Class 0) (i.e., no cracks) corre-
sponding to the healthy phase of the structural material and
(ii) damaged (Class 1) corresponding to images with cracks.
The bag-of-words (BoW) technique is proposed for clas-
sification of images with the QSVM algorithm. The clas-
sification performance has been computed to be ∼ 94.5%
reflecting an excellent performance for early detection of
fatigue crack damage by using the BoW/QVSM algorithm.
The performance of the BoW algorithm is comparatively

evaluated by employing several classification schemes and
superiority of the BoW/QSVM is established.

Despite the excellent performance of the BoW/QSVM
method, there are several areas of theoretical and experi-
mental research that must be conducted before the proposed
BoW technique can be optimally applied to real-life prob-
lems. To this end, the authors suggest the following topics
for future research:

– Calibration of inexpensive and environmentally rugged
sensors with the proposed BoW/QSVM algorithm: The
usage of a confocal microscope in real-life applications
may not be feasible due to its cost and fragility.
Therefore, an appropriate sensor (e.g., ultrasonic sensor
[20]) may be deployed for online monitoring of fatigue
damage, instead of using images from a microscope;
alternatively, the information generated from a finite
element model (FEM) could be used to estimate the
crack length [40]. The BoW model developed in
this paper could be used in the laboratory setting to
calibrate/enhance such an inexpensive damage detector.

– Estimation of the number of visual words: This informa-
tion resulting in optimal fatigue crack damage detection
performance is an open problem and might result in a
significant enhancement of the Bow/QSVM algorithm.

– Multiclass classification: The BoW method is used
in this paper to do binary classification of images
and detect whether a crack exists in the image or
not. However, to estimate the fatigue damage level,
an estimate of the normalized crack ct is needed.
Once a crack is detected in the image, the confocal
microscope utilized in this paper can be used to measure
the crack. Alternatively, one can partition the space

Int J Adv Manuf Technol (2019) 104:3899–39133908



of the normalized crack lengths into M regions, with
each region representing a crack length level. Then,
M + 1 classes are considered, where the first class
corresponds to the nominal (undamaged) case and the
remaining M classes are corresponding to the M levels
of the normalized crack length. In this case, a BoW
algorithm can be developed to learn M + 1 statistical
models for the nominal (undamaged) case and for each
crack level, and images are classified into M + 1
classes, instead of two only. In this scenario the BoW
algorithm would yield both the detection of the crack
existence and estimation of the fatigue damage level
in an automated fashion, without the need for the
crack length measurement by the confocal microscope.
However, this would impose more challenge to the
problem, where instead of learning common patterns
for the nominal images and other common patterns for
the damaged images, the developed algorithm needs to
learn patterns for each crack length level despite the
random nature of the crack shapes. This should be a
good topic for future experimental study.
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Appendix 1. Comparison of classification
methods

The various classification methods, listed in Table 1, which
yield relatively low performance, generally have specific
shortcomings (see [6, 21, 37, 47] for more details), possibly
because they rely on assumptions that may not be valid under
the encountered conditions. These issues are discussed below.

1. While theDecision Treesmethod is known to suffer from
lack of robustness, where small changes in the input data
can cause large deviations in the tree structure, the com-
plexity of this method may also lead to overfitting prob-
lems.

2. The Discriminant Analysis technique may become very
sensitive to outliers and also rely on assumptions
that may not be valid in the specific application. For
example, each discriminant function has approximately
the same variance over different classes of images,
which is unlikely to be fulfilled, because different
images from the same group (nominal or damaged) may
have very different textures and crack shapes and sizes,
where the corresponding feature vectors are likely to be
largely different.

3. The Logistic Regression method has a major disadvan-
tage that it requires independent inputs. For example,
if multiple images are taken at the same location (e.g.,
at the notch of a specimen) under different load cycles,
then the resulting images could have very similar tex-
ture, which would generate highly correlated feature
vectors. Logistic Regression is also known for overfit-
ting problems.

4. The K nearest neighbor (KNN) classifier has a funda-
mental flaw that it does not rely on a learning procedure
to enable capturing patterns in the data efficiently.
Given a new input, KNN would find the closest K

neighbors to the new input from the training data, and
assign it the most common label among the K closest
neighboring points. The problem at hand requires the
classifier to be capable of learning existence of cracks,
despite their different shapes and sizes, and to identify
their patterns in the data that would uniquely distinguish
them from other types of dark lines in the images (e.g.,
scratches and material surface finishing lines).

5. The ensemble subspace discriminant (ESD) classifier
has two main advantages [5, 22]: (i) it combines the
models produced by several discriminant learners into
an ensemble that performs better than the original
learners, and (ii) only part of the features are used for
training each one of the original learners by randomly
sampling from the original features. By doing so,
the individual learners will tend not to over-focus on
features that appear highly predictive in the training
set, but not for points outside that set. This could be
very useful in situations where the number of features
is much larger than the number of training points; this
is the situation in our case where we have 1,887,436
descriptor (feature) with only 174 total images.

6. The support vector machines (SVM) serve as classifiers
and rely on convex optimization for which local
optimality is global as well. Linear SVM happen
to be the simplest SVM configuration (which is
optimal for linearly separable data) and is unlikely
to be suitable for images with different texture and
having different cracks lengths and shapes that would
normally give rise to largely nonlinearly separable data.
Therefore, a significant improvement is expected if
a nonlinear SVM is used instead of a linear SVM.
As explained in Appendix 2, among many types of
nonlinear SVM, the quadratic SVM (QSVM) and
cubic SVM (CSVM) have the key feature that, while
they are capable of handling nonlinearly separable
data, they are less prone to overfitting compared with
higher order kernels. It is noted that QSVM is less
susceptible to overfitting than CSVM, as explained in
Appendix 2.
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Fig. 10 Binary classification for linearly separable data

Appendix 2. Support vector machines

In classification problems, a classifier is constructed upon
a discriminant function f (x) that assigns each input vector
x to one of the (a priori defined) K classes. To put this in
perspective, consider a two-dimensional linearly separable
data setD � {xi , yi}, for which each input vector xi belongs
to one of the two classes C0 or C1, where each xi is labeled
by a class index yi ∈ {−1, 1} such that:

yi =
{ −1, xi ∈ C0

1, xi ∈ C1
(10)

This is called the binary classification problem, where a
linear discriminant function is trained as:

f (x) = wT x + b (11)

by finding a weight vector w and a bias b such that, for all
xi ∈ D:

f (xi ) < 0 , xi ∈ C0
f (xi ) > 0 , xi ∈ C1

(12)

Then, for any new input x, the corresponding class index y

is estimated as:

ŷ = sign(wT x + b) (13)

where sign(.) is the signum function defined as:

sign(x) =
⎧⎨
⎩

−1 x < 0
0 x = 0
1 x > 0

Figure 10 illustrates the idea of training a classifier on a
linearly separable data, where a hyperplane separating the
two classes is given by the straight decision line f (x) =
wT x + b = 0.

Margin Separa�ng 
Hyperplane

Support Vectors

Fig. 11 Linearly separable data

It can be shown that the distance r(xi ) from any point xi

to the decision line is given by:

r(xi ) � yi

(wT xi + b)

||w|| (14)

The data inputs with minimum distance to the separating
hyperplane are called Support Vectors. TheMargin, ρ, is the
maximum width of the band that can be drawn separating
the support vectors of the two classes. Figure 11 illustrates
these two concepts. It follows from Eq. (14) that if one
scales w → cw and b → cb, the distance from any point to
the decision line is unchanged. For convenience, we scale w
and b such that

yi(wT xi + b) = 1 (15)

at the support vectors of each class. Hence, for all (xi , yi) ∈
D:

yi(wT xi + b) ≥ 1 (16)

and, from Eqs. (14) and (15), the margin is given by:

ρ = 2

||w|| (17)

The main idea of SVMs is to maximize the margin
while zero classification error is maintained. The optimal
separating hyperplane satisfying these two conditions
is called the Support Vector Machine [47]. These two
conditions can be formulated as:

– ρ = 2

||w|| is maximized, and

– For all (xi , yi) ∈ D, yi(wT xi + b) ≥ 1

This can be converted to the minimization problem:(
ŵ, b̂

)
= argmin

w,b

[
1

2
||w||2

]
(18)

Int J Adv Manuf Technol (2019) 104:3899–39133910



Fig. 12 Mapping nonlinearly
separable data into linearly
separable feature vectors

Ø

Input Space
Feature Space

subject to the constraint:

yi(wT xi + b) ≥ 1, for all (xi , yi) ∈ D (19)

It is worth pointing out that the cost function in Eq. (18)
is convex and the constraints in Eq. (19) consists of
linear functions. These two conditions together lead to
a unique feature of SVMs that any local minimum is
also global so that SVM optimal classifier is unique [47].
This constrained optimization problem can be solved using
Lagrange multipliers technique [6]. Hence, the constraint
(19) needs to be satisfied for all data inputs. Assuming that
N data inputs are available, N Lagrange multipliers α =
[α1, . . . , αN ] are needed to obtain the Lagrangian function

L(w, b, α) = 1

2
||w||2 −

N∑
i=1

αi{yi(wT xi + b) − 1} (20)

The solution [32] is given by:

w =
N∑

i=1

αiyixi (21)

and

b = yk − wT xk for any xk such that αk �= 0 (22)

where the optimal Lagrange multipliers are computed by
solving the Wolf-dual optimization problem [47]:

argmax
α

⎛
⎝ N∑

i=1

αi − 1

2

N∑
i=1

N∑
j=1

αiαjyiyjxT
i xj

⎞
⎠ (23)

such that:

αi ≥ 0, i = 1, . . . , N (24)

N∑
i=1

αiyi = 0 (25)

Once the optimal Lagrange multipliers have been computed,
any new input x can then be classified by using the optimal
SVM classifier:

f (x) = sign

(
N∑

i=1

αiyixT
i x + b

)
(26)

Interestingly, αi is zero for all the data inputs except the
support vectors. Since usually only few inputs are support
vectors, this has two important advantages:

– The computation in Eqs. (21) and (26) is greatly
reduced, and

– The complexity of the resulting classifier is charac-
terized by the number of support vectors rather than
the dimensionality of the feature space so that SVMs
are generally less susceptible to problems of overfitting
than other types of classifiers [14].

A2.1 Nonlinear SVM

So far it has been assumed that the data set is linearly
separable. However, this may not be the case in many
real-life applications, where data are usually nonlinearly
separable. SVM can efficiently handle such cases through
mapping nonlinearly separable data into a higher-dimension
linearly separable feature vectors for which linear decision
hyperplane can be used for classification. The idea is
illustrated in Fig. 12, where a two-dimensional nonlinearly
separable data is mapped to a three-dimensional linearly
separable feature vectors using a map φ.

This is called the “the kernel trick,” which is simply
done by replacing x in the previous analysis by φ(x). Then,
Eq. (26) is rewritten as:

f (x) = sign

(
N∑

i=1

αiyiK(xi , x) + b

)
(27)

where K(xi , x) � φ(xi )
T φ(x) is called the kernel function.

There are many kinds of kernels that have been used in
this regard, among them are the polynomial kernel functions
given by the general form [32]:

K(xi , x) �
(
1 + xT

i x
)d

(28)

If d = 1, it is the linear kernel, which have been explained
so far for linearly separable data, where the constant 1 would
just change the threshold. Among the most commonly used
kernel is theQuadratic Kernel given by Eq. (28) with d = 2.
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A key feature of this type of kernel is that, while it is
capable of handling nonlinearly separable data, it is less
prone to overfitting problems compared with higher order
polynomial kernels.
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