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Abstract: This short communication makes use of the principle of singular perturbation to
approximate the ordinary differential equation (ODE) of prompt neutron (in the point kinetics
model) as an algebraic equation. This approximation is shown to yield a large gain in computational
efficiency without compromising any significant accuracy in the numerical simulation of primary
coolant system dynamics in a PWR nuclear power plant. The approximate (i.e., singularly perturbed)
model has been validated with a numerical solution of the original set of neutron point-kinetic and
thermal–hydraulic equations. Both models use variable-step Runge–Kutta numerical integration.
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1. Introduction

The neutron point-kinetics equation with six (or less) delayed groups has been traditionally used
for modeling the dynamics of neutron power in nuclear power plants (e.g., pressurized water reactor
(PWR)) [1,2]. The neutron point kinetic model is a well-known and experimentally validated model,
which is extensively used in both academia and industry. In the integrated (e.g., lumped-parameter)
representation of PWR plants, the point-kinetics model is coupled with thermal–hydraulic and fuel
heat transfer models to simulate the steady-state and transient behaviors of the reactor and the
primary coolant system. This integrated system model, which is represented by (nonlinear) ordinary
differential equations (ODEs), is solved numerically because there is no analytical solution, in general.
Such numerical simulations are time-consuming especially if the set of ODEs is stiff. Therefore,
a challenge in the transient analysis of nuclear plants for design of (real-time) monitoring and (active)
control systems is to construct a dynamic model that would be computationally efficient and yet serve
the purpose at hand. Since the thermal–hydraulic and fuel heat transfer models act as low-pass filters
that attenuate the high-frequency transients of prompt neutrons, the accuracy of predicted transients
are not significantly affected if the transients due to prompt neutron are eliminated, provided that
net deviations in the total reactivity are small (e.g., in the order of those that may occur during
reactor-following/turbine-leading operations of PWR plants [3,4]). A fortiori, when the turbine load
changes, due to the thermal capacitance of the pressurized water held in the primary system, which
acts a low-pass filter for the secondary system, the states of the primary coolant presents slow dynamics
ensuring that there is sufficient time for reactor control.

Over the last several decades, researchers have applied the concept of singular perturbation for
numerical analysis of neutron-point-kinetics and thermal–hydraulic dynamics in nuclear power plants
(e.g., [1,5–8]). However, in the current state-of-the-art (e.g., [9–13]), different types of nuclear reactors
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are still being modeled by including the dynamics of prompt neutrons along with the dynamics of six
(or less) delayed groups and temperature reactivity feedback from fuel and coolant.

This short communication addresses the above issue by making use of the principle of singular
perturbation [14,15] to approximate the differential equation of prompt neutron as an algebraic
equation, which yields a large gain in computational efficiency without compromising any significant
accuracy of the simulation results. The main objective here is to demonstrate to practicing engineers,
with a rigorous (and yet simple) example, that this approximation of the dynamics of prompt neutrons
in the point kinetics model as an algebraic equation indeed significantly improves the speed of dynamic
simulation without any noticeable loss of accuracy. This information is very important for control
system design in PWR and other types of commercial nuclear power plants.

2. Lumped Parameter Model for Simulation

The equations of point kinetics including the dynamics of prompt neutrons and Nc delayed
groups (1 ≤ Nc ≤ 6) are modeled as:

dn(t)
dt

=
ρ(t)− β

Λ
n(t) +

Nc

∑
i=1

λici(t) (1)

dci(t)
dt

=
βi
Λ

n(t)− λici(t). i = 1, · · · , Nc ≤ 6 (2)

where the terms in Equations (1), (2) and others are defined in the list of abbreviations at the end of
this short communication.

At a steady state (ss), having the total reactivity ρss = 0, dn(t)
dt |ss = 0, and dci(t)

dt |ss = 0, it follows
from Equation (2) that:

ci|ss

n|ss
=

βi
λiΛ

, i = 1, · · · , Nc (3)

For convenience of analysis, the relative neutron density nr(t) ,
n(t)
n|ss

and relative delayed neutron

precursors concentration cr,i(t) ,
ci(t)
ci |ss

are obtained by normalization to the fraction of their respective
steady-state values. After the normalization, Equations (1) and (2) are rewritten as:

dnr(t)
dt

=

(
ρ(t)− β

Λ

)
nr(t) +

Nc

∑
i=1

(
βi
Λ

)
cr,i(t) (4)

dcr,i(t)
dt

= λinr(t)− λicr,i(t) for i = 1, 2, ..., Nc (5)

The heat transfer from fuel to coolant and the net heat removal from the coolant are modeled as:

Pc(t) = Ω(Tf (t)− Tc(t)) (6)

Pe(t) = M(Tl(t)− Te(t)) (7)

The state equations for the lumped fuel temperature Tf and lumped coolant temperature Tl are
obtained as:

d
dt

Tf (t) =
(

f f Pa(t)− Pc(t)
)
/µ f (8)

d
dt

Tl(t) =
(
(1− f f )Pa(t) + Pc(t)− Pe(t)

)
/µc (9)
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where the average reactor power at time t is obtained in terms of its initial value as:

Pa(t) = Pa(0)nr(t) (10)

and the total reactivity due to control rod and temperature feedback from the coolant and fuel is:

ρ(t) = ρr(t) + α f (Tf (t)− Tf (0)) + αc(Tc(t)− Tc(0)) (11)

Under a steady-state normal operation, the reactivity is balanced to be zero by the loaded
fuel, the control rod position, and the coolant Boron concentration. The coolant and fuel reactivity
feedbacks are affected by deviations from the respective temperature reference points. In this short
communication, the reference temperatures are set as the initial fuel and average coolant temperatures,
respectively; and the control rod reactivity is set as zero before any reactivity insertion. Table 1 lists
numerical values of the pertinent parameters and initial conditions, which will allow reproduction of
the simulation results presented in this short communication.

Table 1. Parameters and Values of parameters used in the simulation [2].

Parameters Values [Units]

Ω 6.53 (MW/◦K)
M 92.8 (MW/◦K)
µ f 26.3 (MW·s/◦K)
µc 70.5 (MW·s/◦K)
Te 563.15 (◦K)
f f 0.98
αc 0.00001
α f −0.00005
λ1 0.0124 (s−1)
λ2 0.0305 (s−1)
λ3 0.1110 (s−1)
λ4 0.3010 (s−1)
λ5 1.1400 (s−1)
λ6 3.0100 (s−1)
Λ 0.0001 (s)
β1 0.000215
β2 0.001424
β3 0.001274
β4 0.002568
β5 0.000748
β6 0.000273
β 0.006502

Nc 6
nr(0) 1
cr,i(0) 1
Tl(0) 590.09 (◦K)
Tf (0) 951.81 (◦K)
Pa(0) 2500 (MW)

Figure 1 shows the dynamics of the reactor parameters after three consecutive steps of
control rod reactivity insertion and withdrawal by numerically solving Equations (4)–(11) with
Runge–Kutta–Fehlberg method [16], which is an adaptive stepsize version of the standard
(fixed stepsize) Runge–Kutta method; the variable stepsize reduces the local truncation error to
the order of five. It is noted that the reactivity insertion rate is 3.07 cents per second, which is ∼0.0002
reactivity per second. The simulation code, written in Python 3, takes ∼ 8 s to run on a PC with 4th
generation 2.2 GHz Intel Core i7 CPU and 16 GB 1600 MHz DDR3 memory; there are 19,245 steps
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with the tolerance value of 1× 10−6 for the estimated local truncation error. The complete code of this
paper is uploaded to github, the url is provied at the Supplementary Materials.

Figure 1. Profiles of relative neutron density nr, delayed neutron precursor concentration
cr,i, i = 1, · · · , 6, relative average fuel temperature Tf ,r and relative outlet coolant temperature Tl,r
with integration step size of 1 ms and 0.9 million steps.

3. Enhacement of Numerical Efficiency by Singularly Perturbed Point Kinetics

This section shows how the dynamics of prompt neutrons can be approximated with an algebraic
equation, generated by singular perturbation [14,15], and eventually, the step size of integration
is dramatically increased to enhance computational efficiency. However, before embarking on
construction of singularly perturbed neutron point kinetics, it is necessary to provide a succinct
mathematical background, which is presented in the next subsection.

3.1. Background of Singular Perturbation

While standard perturbation methods are generally applied to differential equations that are
smoothly dependent on a small parameter ε, singular perturbations [14,15] are characterized by
discontinuous dependence of system properties on ε, as seen below in the system state equations of a
full-order model:

dx
dt

= f (t, x, z, ε), x(t0) = ξ(ε) (12)

ε
dz
dt

= g(t, x, z, ε), z(t0) = η(ε) (13)
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where the functions ξ and η in the initial conditions smoothly depend on the parameter ε and the initial
time t0 ∈ (0, t1]. If ε is sufficiently small (i.e., 0 < ε� 1), then the time scales of Equations (12) and (13)

are treated as slow (t) and fast (τ), respectively, because ε
d
dt︸︷︷︸

slow

=
d

d(t/ε)
≡ d

dτ︸ ︷︷ ︸
f ast

such that
dτ

dt
=

1
ε

.

Remark 1. If 0 < ε� 1 in Equation (13), then the transients of z last for a very short time as they have very
high frequency contents due to the fact that dz

dt = g/ε. Having ε = 0 in Equation (13) makes the transients of z
instantaneous whenever g 6= 0.

Setting the parameter ε = 0, which is called singular perturbation, causes an abrupt and significant
change (e.g., reduction in the dimension of the state space) in dynamical behavior of the full-order
system, because the fast-time system (13) degenerates to an algebraic (or transcedental) equation,
which is assumed to have at least one isolated real root [14,15].

The reduced-order system is obtained by setting ε = 0 as:

0 = g(t, x̃, z̃, 0) (14)

z̃(t) = h(t, x̃) (15)

where x̃(t) is the solution of the following equation;

dx̃
dt

= f (t, x̃, z̃, 0), x̃(t0) = ξ(0) , ξ0 (16)

and z̃ represents the quasi-steady-state of z when x = x̃. The above action may give rise to a
discontinuity problem that can be circumvented by analysis in multiple time scales, which is the
essence of singular perturbation.

Remark 2. The solutions, x̃(t) and z̃(t) of the reduced-order system (i.e., ε = 0) in Equations (16)
and (15)), respectively, are expected to be different from x(t) and z(t) in the full-order system in
Equations (12) and (13)), respectively. While the unperturbed variable z may start from an arbitrary initial value
at time t0, the quasi-steady-state z̃ is not allowed to have an arbitrary initial value at any time t. Therefore, z̃(t)
cannot be a uniform approximation of z(t, ε); however, if the relation (x(t, ε)− x(t)) ∼ O(ε) is guaranteed to
hold uniformly on an interval [t0, t1], then it follows that (z(t, ε)− z̃(t)) ∼ O(ε) over the same interval, because

(x(t0, ε)− x̃(t0)) = (ξ(ε)− ξ0) ∼ O(ε)

where a function θ : R → R belongs to the class O(ε) if limε→0
|θ(ε)|
|ε| exists and is equal to a non-negative

real number.

The concept of the so-called “boundary layer” [14,15] is now introduced to investigate the fast
transients in terms of exponential stability of the equilibrium point in the state space. With a change of
variable for convenience: y , z− h(t, x), which shifts the quasi-steady-state of z from z̃ to the origin,
the full-order model in Equations (12) and (13) are rewritten in the (x, y) space as:

dx
dt

= f (t, x, y + h(t, x), ε), x(t0) = ξ(ε) (17)

ε
dy
dt

= g(t, x, y + h(t, x), ε)− ε
∂h
∂t

− ε
∂h
∂x

f (t, x, y + h(t, x), ε), y(t0) = η(ε)− h(t0, ξ(ε)) (18)
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state of Equation (18) is y = 0, which is now substituted into Equation (17) to yield the reduced-order
model in Equation (16). By setting ε = 0 in the fast time

(
τ , t−t0

ε

)
scale, Equation (18) reduces to:

dy
dτ

= g(t0, ξ0, y + h(t0, ξ0), 0), y(0) = η(0)− h(t0, ξ0) (19)

which is called the “boundary layer” model for singular perturbation.
During the “boundary-layer” interval [t0, t1], if the error (z(t0, ε)− z̃(t0)) is indeed O(ε), then the

function z should asymptotically approach z̃ provided that the following conditions, laid out in
Tikhonev Theorem [14,15], are satisfied.

1. The functions f and g in Equations (12) and (13), respectively, and their first partial derivatives
with respect to (x, z, ε) and the first partial derivative of g with respect to t are continuous.

2. Initial conditions ξ(ε) and η(ε) in Equations (12) and (13), respectively, are smooth functions of ε.
3. The function h(t, x) in Equation (15) and the Jacobian [∂g(t, x, z, 0)/∂z] have continuous first

partial derivatives with respect to their arguments.
4. The reduced-order system in Equation (16) has a unique solution x̃(t) for t ∈ [t0, t1] within a

compact subset of the solution space.
5. The origin in the state space of Equation (19) is an exponentially stable equilibrium of the

boundary-layer system.

3.2. Singularly Perturbed Neutron Point Kinetics

This subsection undertakes the task of singular perturbation of Equation (4) and examines the
consequences of this approximation. To reveal the (fast-transient) time constant of neutron kinetics,
a time-dependent small parameter ε is defined as:

ε(t) , − Λ
ρ(t)− β

, (20)

so that Equation (4) can be rewritten as:

ε(t)
dnr(t)

dt
= −nr(t)−

Nc

∑
i=1

(
βi

ρ(t)− β

)
cr,i(t). (21)

With a step reactivity insertion ρr(0+) = 2 × 10−4 by the control rod, and after a relatively
long time, T (∼300 s), during which temperature reactivity feedback takes place, the reactor regain
steady-state, ρ(t) = 0 ∀t > T. The values of ε(t) before the transients, at the beginning of the
transients, and long after the transients are calculated using Equation (20) as: 0.0154, 0.0159, and 0.0154
respectively, as shown in Figure 2. This implies that the mean ε̄ of the variable ε(t) is always a small
number and the ratio of standard deviation to mean for ε(t) is much smaller than 1, which implies
that ε(t) ≈ ε̄ ∀t ∈ [t0, t1] during the transients. The small value of ε(t) also indicates that the neutron
dynamics has a small time scale. Singular perturbation (i.e., setting ε(t) = 0) approximates the ODE in
Equation (21) by an algebraic equation as:

ñr(t) , −
Nc

∑
i=1

(
βi

ρ(t)− β

)
cr,i(t) (22)

Remark 3. The approximation in Equation (22) is a consequence of filtering out fast transients from the original
dynamical system. Thus, the boundary layer (i.e., details of the fast time-scale behavior) are eliminated as seen in
Figure 3. It is also seen that, beyond the boundary layer, the results of approximation are consistent with the
original solution.
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The boundary layer model can now be set in terms of the analytical solution under the assumption
that the parameters of slow-dynamics system are constant. Solving Equation (21), the following
closed-form solution is obtained:

nr(t) ≈
[
1 +

Nc

∑
i=1

βi
ρ(t)− β

cr,i(t)
]

exp
(
− t

ε̄

)
−

Nc

∑
i=1

βi
ρ(t)− β

cr,i(t) (23)

Remark 4. The closed-form solution in Equation (23) is interpreted as adding a fast decay term to the algebraic
Equation (22), which makes up for the missing transients.

Figure 3 compares the results generated from Equations (4), (22) and (23). It is noted that
Equation (23) only works under the step reactivity insertion case. An example of oscillating reactivity
insertion, where the decay term may not die out asymptotically, is presented below.

Figure 2. Evolution of the singular perturbation parameter ε with time (Equation (20)).

Figure 3. Profiles of relative neutron density nr within the boundary layer, where the solid line —–
indicates the profile governed by Equation (4); the dashed line - - - indicates the profile governed by
Equation (22); and the dotted line · · · · · · indicates the profile governed by Equation (23).

3.3. Example: Sinusoidally Oscillating Reactivity Insertion

Let us consider a situation in which the position of the reactor control rod is subjected to
small fluctuations around its mean value due to variations in the electrical power generation in the
reactor-following/turbine-leading mode of plant operation. This situation is simulated by vibratory
motion of the reactor control rod that causes approximately sinusoidal reactivity insertion and
withdrawal at 1 Hz frequency with the magnitude of 2× 10−4. To this end, Equations (4) and (22),
which represent the original version and singularly perturbed version of prompt neutron model,
respectively, are used in the simulation. The computation time and the number of integration steps for
the simulation using Equation (4) are 564 milliseconds and 1661, respectively. In contrast, the simulation
using Equation (22) takes computation time of ∼ 67 milliseconds and the number of integration steps
is 197. The simulation results are shown in Figure 4, and the relative error

( nr−ñr
nr

)
is plotted in Figure 5.

It is calculated that the absolute value of the relative error is bounded by ∼0.31%, which is considered
to be very accurate from the perspectives of numerical simulation. The number of integration steps in
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the simulation using the algebraic relation in Equation (22) is approximately one order of magnitude
less than that using the ODE in Equation (21) or Equation (4).

Figure 4. Profiles of relative neutron density nr
(
Equation (4) simulated with 1661 steps, and indicated

by —–
)

and ñr
(
Equation (22) simulated with 197 steps, and indicated by - - -

)
under excitation of

sinusoidal oscillations of rod reactivity insertion.

Figure 5. Profile of percent error
( (ñr−nr)×100

nr

)
for approximation of relative neutron density nr

(see Equation (4) and Equation (22)).

4. Discussion and Conclusions

This short communication has demonstrated how the fast dynamics of prompt neutron kinetics
can be singularly perturbed to yield an algebraic equation with one order of reduction in the simulation
time and without any noticeable loss of accuracy (e.g., peak error in the order of ∼0.31% during
transients) and then the error of approximation rapidly approaches zero. Stability of transients is
guaranteed if net deviations in the total reactivity are small in the sense that the conditions of Tikhonev
Theorem [14,15] are satisfied (see the end of Section 3.1).

Reducing the order of the primary coolant system model by singular perturbation of the reactor
prompt kinetics equation is indeed sufficient to investigate its impact on the dynamics of the entire
PWR plant. The rationale is that the primary coolant system in a PWR is thermally coupled with
the secondary coolant system through the steam generator that, having a reasonably large thermal
capacitance, would act as a low-pass filter. Since the primary coolant system practically filters fast
transients of prompt neutrons, responses of the secondary coolant system will be even less sensitive to
singular perturbation.

Supplementary Materials: The code is available at https://github.com/chenxiangyi10/MDPI-sci-On-Singular-
Perturbation-of-Neutron-Point-Kinetics-in-the-Dynamic-Model-of-a-PWR.
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Abbreviations

The following abbreviations are used in this manuscript:

n neutron density
ci i-th delayed neutron precursor concentration
Nc number of delayed concentration groups (1 ≤ Nc ≤ 6)
λi effective precursor decay constant for group i
Λ effective prompt neutron lifetime
ε(t) time-dependent singular perturbation parameter
ε̄ time-averaged singular perturbation parameter
β total delayed neutron fraction (β , ∑Nc

i=1 βi)

ρ reactivity
ρr control rod reactivity
Pc power transferred from fuel to coolant
Pe power removed from the coolant
Pa reactor power
Ω heat transfer coefficient between fuel and coolant
M mass flow rate times heat capacity of coolant water
Tf average fuel temperature in the reactor

Tf ,r relative average fuel temperature (
Tf

Tf (0)
)

Tl coolant temperature at reactor exit
Tl,r relative coolant temperature at reactor exit ( Tl

Tl(0)
)

Te coolant temperature at reactor entrance
Tc average coolant temperature in the reactor
f f fraction of reactor power deposited in the fuel
Te0 reference coolant temperature at reactor entrance
Tc0 reference average coolant temperature
µ f total heat capacity of the fuel and structural material
µc total heat capacity of the reactor coolant
βi fraction of neutrons that come from delayed group i
αc coolant temperature coefficient
α f fuel temperature coefficient
nr relative neutron density
cr,i i-th delayed neutron precursor’s relative concentration
t0 initial time of transients
t1 end time of transients
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