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Abstract: Metal additive manufacturing (AM) works on the principle of consolidating feedstock
material in layers towards the fabrication of complex objects through localized melting and
resolidification using high-power energy sources. Powder bed fusion and directed energy deposition
are two widespread metal AM processes that are currently in use. During layer-by-layer fabrication,
as the components continue to gain thermal energy, the melt pool geometry undergoes substantial
changes if the process parameters are not appropriately adjusted on-the-fly. Although control of melt
pool geometry via feedback or feedforward methods is a possibility, the time needed for changes
in process parameters to translate into adjustments in melt pool geometry is of critical concern.
A second option is to implement multi-physics simulation models that can provide estimates of
temporal process parameter evolution. However, such models are computationally near intractable
when they are coupled with an optimization framework for finding process parameters that can retain
the desired melt pool geometry as a function of time. To address these challenges, a hybrid framework
involving machine learning-assisted process modeling and optimization for controlling the melt
pool geometry during the build process is developed and validated using experimental observations.
A widely used 3D analytical model capable of predicting the thermal distribution in a moving melt
pool is implemented and, thereafter, a nonparametric Bayesian, namely, Gaussian Process (GP),
model is used for the prediction of time-dependent melt pool geometry (e.g., dimensions) at different
values of the process parameters with excellent accuracy along with uncertainty quantification at
the prediction points. Finally, a surrogate-assisted statistical learning and optimization architecture
involving GP-based modeling and Bayesian Optimization (BO) is employed for predicting the optimal
set of process parameters as the scan progresses to keep the melt pool dimensions at desired values.
The results demonstrate that a model-based optimization can be significantly accelerated using tools
of machine learning in a data-driven setting and reliable a priori estimates of process parameter
evolution can be generated to obtain desired melt pool dimensions for the entire build process.

Keywords: additive manufacturing; melt pool dimension control; machine learning; Gaussian
process modeling; Bayesian Optimization; surrogate-assisted modeling

1. Introduction

Metal additive manufacturing (AM) facilitates direct fabrication of near-net-shape metallic
components, prototypes, or both under rapid solidification conditions [1]. AM is currently used
in manufacturing a wide variety of components with increasing complexity, for example, fuel nozzles,
rocket injectors, and lattice structures [2]. The concept of AM is built on the principle of incremental
layer-by-layer material consolidation through localized melting and resolidification of feedstock
materials by using high-power energy sources [3]. The localized heating causes the formation of
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a melt pool that controls the microstructure and, therefore, the properties of the manufactured
component [3]. Due to the cyclic nature of the deposition process as AM components continue
to gain thermal energy, the thermal gradient (G) and the solidification velocity (R) inside the melt pool
continuously change, resulting in significant alterations in the melt pool properties (e.g., geometry,
thermal profile, and flow field among others) between the initial and final layers [4,5] as illustrated in
Figure 1a. Figure 1b shows that in spite of fixing the G/R ratio at a value meant for yielding a columnar
microstructure, at the leading edge (e.g., beginning of the scan), the grains are columnar; however,
at the trailing edge (e.g., towards the end of the scan), the grains become equiaxed [6] due to progressive
heating. The primary reason for controlling melt pool geometry in metal AM is to allow a part to
be built with consistent melt pool dimensions, even as thermal conditions change continuously [7].
Understanding the fundamental physics of the melt pool evolution is, therefore, a key requirement for
AM process development, optimization, and control. Although high-fidelity computational modeling
of AM processes can provide reliable estimates of the melt pool evolution during the build process,
such elaborate models are nearly-intractable when coupled with an optimization code for melt pool
geometry control due to the computational costs [8]. Therefore, while these models are well suited for
understanding the physical phenomena, challenges exist in using them for performing process design,
optimization, and control [9].

In this respect, machine learning (ML) shows potential in assisting and automating the process
of manufacturing [10] through reliable prediction of melt pool geometries [11]. For example,
Neural Networks (NN) [12] are widely used as a popular choice in prediction problems by
modeling nonparametric input–output relationships. Despite the simplicity of usage, most of these
techniques based on complex NN architectures suffer from issues of interpretability [13]. Moreover,
the applications of such methods in limited datasets are rare, and lack of data can often result in poor
predictive models that lack generalizability due to overfitting [14]. Moreover, a vast majority of the
ML techniques used in AM relies on point estimates of the quantities of interest, without catering
for uncertainty in the predictions. In critical applications involving high stakes associated with
mispredictions, the estimates of uncertainty are particularly important. An attractive alternative,
therefore, is to use probabilistic ML techniques like Gaussian Processes (GPs) [15] that offer the
advantages of interpretability and applicability in limited data regimes. However, their applications in
surrogate-based modeling and optimization are relatively less explored in multi-physics problems
in AM. An implementation of surrogate modeling through the construction of computationally
efficient approximations that can be used in lieu of the original simulation model [16], therefore,
holds significant promise in metal AM.

Figure 1. (a) Comparison between experimentally observed and computationally predicted build
profile in 316 stainless steel, with constant beam power of 210 W and the scanning speed of 12.7 mm/s
(Reproduced from [4,5], with permissions of Elsevier, 2009 and Springer Nature, 2016). (b) Simulation
results showing transition from columnar grains at the beginning of the scan to equiaxed grains towards
the end of the scan in an Inconel 718 specimen with a G/R ratio meant to yield columnar microstructure
(Reproduced from [6], with permission of Elsevier, 2019).
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Surrogate-assisted modeling and optimization techniques are popularly used in various
applications that involve expensive computational models [17–23] for function evaluations. Among the
different types of surrogate models, GPs [15] are used profusely for modeling black-box functions
whereby a fully Bayesian approach allows for probabilistic estimates of the target functions [24–27].
With a relatively small number of measurements, a GP surrogate can be learnt to serve as a proxy to an
expensive objective function [28] (e.g., prediction of melt pool dimensions for a range of process
parameters in metal AM [29]). Under the settings of a GP surrogate, a Bayesian Optimization
(BO) set-up can be invoked for gradient-free global optimization of an objective function under
budget limitations [30] (e.g., prediction of optimal process parameters for controlling temporal melt
pool dimensions in metal AM within N number of iterations; N being an user input). Moreover,
with nonlinearities in the objective function, a search for optimum would require significant amount
of sampling in the search space, particularly in high dimensions. In such settings, BO is found to be
quite successful [31].

In the field of AM, there are very few applications of GPs as surrogate models for expensive
experiments and simulations. For example, Tapia et al. [32] used experimental data to learn spatial GPs
for predicting porosity in metal AM produced during the laser powder bed fusion process. In another
work, Tapia at al. [16] demonstrated the usage of GPs in predicting melt pool depth as a function of
different process parameters, which were used to describe regimes of operation where the process
was expected to be robust. Seede et al. [33] used a GP framework to develop a calibrated surrogate
model for predicting optimal process parameters for building porosity free parts with low-alloy
martensitic steel AF9628. However, to the best of the authors’ knowledge, no work exists in the field
of AM that leverages the surrogate-based predictions and uses them as a basis for active learning
strategies for optimizing a desired objective, e.g., controlling melt pool dimensions over time under
computational budget constraints in laser powder bed fusion process. The design and deployment of
such predictive methodologies will immensely augment the response time of feedback or feedforward
control strategies as the current response times are rather long compared to the process time scales [34].

To address this gap, this paper proposes a novel framework of controlling the melt pool geometry
in laser powder bed fusion process by formulating it as an optimization problem through the
integration of the tools of physics-based analytical modeling and data-driven analysis. The cardinal
contribution of this work in AM is to bridge the gap in model-assisted prediction and control of
melt pool geometry by using ML techniques that can potentially accelerate the process of melt pool
geometry control. The results demonstrate that by using a low-cost surrogate-assisted modeling using
GP and BO, it is possible to obtain an excellent estimation of process parameter evolution as a function
of time in order to maintain the desired meltpool geometry (e.g., dimensions) throughout the build
process. The framework consists of three critical steps: (i) evaluation of the thermal field using an
experimentally validated 3D analytical melt pool evolution model which serves as a source of data for
formulating a GP surrogate, (ii) development of GPs with flexible kernel structures capable of handling
anisotropies in the dataset, and (iii) establishment of a BO framework involving the GP surrogate that
aims to solve a global optimization problem in a gradient-free setting under a constrained budget.
The computational budget is predefined in most practical problems. With an appropriate selection
of initial design points and acquisition function for active learning of optimal design points, this
work achieves estimates of process parameters with limited model iterations. The GP surrogates,
being based on Bayesian inference, offer principled estimates of uncertainty in predictions. While the
present work uses a 3D analytical model for demonstrating the efficacy of the proposed approach,
the framework described can be applied to any other prediction models of users’ choice.

The paper is organized in five sections including the current one. Section 2 describes the
development of a hybrid modeling framework consisting of the 3D analytical model and its validation
against experimental data. Section 3 presents the results and discusses the significant findings.
The paper is summarized and concluded in Section 4 along with recommendations for future research.
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Supplemental information in Appendix A provides the mathematical background for ML aspects of
modeling and optimization.

2. Development of a Hybrid Modeling Framework

2.1. Simulation Model

A well-known analytical model developed by Eagar and Tsai [35] that solves for the 3-dimensional
temperature field produced by a traveling distributed heat source on a semi-infinite plate is used in
the present work. This model has been previously used by several different researchers for evaluating
melt pool evolution in laser powder bed fusion (L-PBF) [33] and directed energy deposition (DED) [36]
AM processes when extensive evaluation of process parameter space is required. It is a distributed
heat source modification of the Rosenthal’s [37,38] solution for the temperature distribution produced
by a traveling point heat source. As compared to Rosenthal’s solution, Eagar–Tsai’s model provides a
significant improvement in prediction of temperature in the near heat source regions. Figure 2 explains
the coordinate system used in the model. The heat source is traveling with a uniform speed of v in the
X-direction, and is assumed to be a 2D surface Gaussian:

Q(x, y) =
P

2πσ2 e−
(x2+y2)

2σ2 (1)

Z

Y

X

vt

(0,0,0)

Semi - infinite
     plate

Beam travel
direction

Gaussian 
beam

Figure 2. Schematic illustrating the coordinate system of the analytical model.

Here, Q(x, y) is the power distribution per unit area on the X–Y plane of the specimen produced by
the Gaussian beam of peak power P with a distribution parameter σ. According to Eagar–Tsai’s model,
the temperature T(x, y, z, t), at a particular location (x, y, z) and time t, with the initial temperature of
the substrate being T0, is denoted as

T(x, y, z, t)− T0 =
αLP

πρc(4πa)1/2

∫ t

0

dt′(t− t′)−1/2

2a(t− t′) + σ2 e
− (x−vt′)2+y2

4a(t−t′)+2σ2−
z2

4a(t−t′) (2)

Here, αL is the absorptivity of the laser beam, a , k
ρc is the thermal diffusivity, ρ is the density,

and c is the specific heat capacity of the material of the specimen. The primary assumptions of the
model include the following.

1. Convective and radiative heat transfer from the substrate to the environment are ignored.
As the process deals with metals which are good conductors, heat transfer through radiation is
negligible [39] as compared to that due to conduction.

2. The temperature dependence of the thermo-physical properties is not taken into account.
3. The substrate is semi-infinite, therefore the increase in the surface temperature T0 with time

is negligible.
4. Phase change of the material is not taken into consideration.
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Eagar–Tsai’s model, despite its limitations (e.g., its inability to model keyholing effect [33]),
is widely used in literature for parameter space exploration through design of experiments (DoE)-based
approaches. Given the wide range of process parameters in metal AM machines (e.g., L-PBF has over
130 parameters that can affect the final part quality [40]), such a DoE approach would require an
exponential number of samples in the dimension of the parameter space to fully explore the design
space. This makes it prohibitively expensive to explore the design space for building complex parts
through experimentation or high-fidelity simulations. Computationally efficient surrogates can reduce
the computational burden by a significant amount. Eagar–Tsai’s model, when appropriately calibrated,
provides one such alternative as a low-cost simulation model that are extensively used by several
researchers in recent times [33,41,42]. This model especially works well for single-track and single-layer
AM depositions. Owing to these characteristics, the validation and control experiments outlined in
this paper are all single-track and single-layer.

2.2. Experimental Validation of the Simulation Model

Eagar–Tsai presented experimental validation of their model with a range of process parameters
in welding carbon steel plates [35]. Other researchers validated this model for a range of different
materials such as nickel- [43], iron- [33], and titanium-based [44] alloys among others to obtain
satisfactory accuracy with the experimental data across a range of AM processes, e.g., L-PBF and
DED [45], in recent times. However, most of the experimental validation of this model, so far, has
been performed under steady state conditions. Being a transient model, Eagar–Tsai’s formulation can
potentially be used to simulate the melt pool dimensions as a function of time as well. In this section,
both steady and unsteady state validation of the Eagar–Tsai’s formulation are presented.

2.2.1. Steady-State Experimental Validation

For the steady-state model validation, the melt pool dimensions calculated by Eagar–Tsai’s
model are compared with those obtained using finite-element simulations and experiments for a
popular nickel-based superalloy CMSX-4r reported by Wang et.al [36]. This alloy was processed
by several different researchers using L-PBF [46,47], electron beam powder bed fusion (E-PBF) [48],
and DED [49], and therefore a considerable amount of experimental data is available in the open
literature. The thermo-physical properties of CMSX-4r chosen in this work are those reported
by G‘̀aumann et al. [50]: k = 22 W/(m·K), ρ = 8700 kg/m3, c = 690 J/(kg·K), and the liquidus
temperature TL = 1660 K. Three surface melting experiments were reported by Wang et al. under
different processing parameters, as enlisted in Table 1. A CO2 laser beam with radius W was used in
their work.

Table 1. Processing parameters as reported in Wang et al. [36].

Specimen A B C

T0(K) 300 300 300
P (W) 900 900 450

v (mm/s) 2 6 6
W (mm) 0.39 0.39 0.20

αL 0.114 0.114 0.114

Figure 3 shows the comparison between the current work with those obtained experimentally
and using finite element simulations by Wang et al. [36] showing excellent agreement. Figure 4 shows
a transverse cross section (Y− Z plane, with x = 0) of the analytically calculated melt pool geometry
juxtaposed on the fusion zone produced by the process parameters in the CMSX-4r Specimen A,
as reported by Wang et al. [36]. Similar agreements are also observed for the other two specimens
(i.e., B and C), as evident from the results reported in Figure 3. Cross-sectional images for specimens B
and C are omitted for brevity.
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Figure 3. Comparison of experimentally measured melt pool dimensions with simulations results
provided by Wang et al. (blue markers) [36] and the present work (red markers). Squares correspond
to Specimen A, circles to Specimen B, and Diamonds to Specimen C. The filled markers indicate the
melt pool depths and the unfilled ones indicate the melt pool width.

Figure 4. Comparison of experimental and calculated melt pools for the CMSX-4r Specimen A of
Wang et al [36] (Reproduced from [36], with permission of Elsevier, 2017.). L corresponds to the liquid
zone of the melt pool and s corresponds to the solid substrate.

2.2.2. Transient Experimental Validation

After obtaining excellent agreement with the steady-state results, the analytical model is further
validated using transient melt pool results available in the open literature [51]. Figure 5 shows the
longitudinal cross section of an L-PBF-processed CMSX-4r specimen. This specimen is fabricated
by consolidating a powder layer thickness of 1.4 mm on a CMSX-4r substrate having dimensions of
35.56 mm (length) × 6.86 mm (width) × 2.54 mm (thickness). The process parameters reported are
750 W laser power, 12.7 µm raster scan spacing, and 600 mm/s raster scan speed. The raster scanning
speed (vR) is related to the linear velocity (v) of the laser in the X direction by v =

scan spacing×vR
2×width .

Figure 5. Longitudinal cross section of a CMSX-4r specimen fabricated with 750 W laser power
and scan speed of 600 mm/s showing increase in melt pool depth along the length of the specimen
(Reproduced with permission from the authors of [51].).

Figure 6 shows the comparison between the analytically calculated and experimentally observed
melt pool depth for the CMSX-4r specimen as illustrated in Figure 5. The maximum absolute relative
error between the experimental and analytical melt pool depths is ~8% at the start of the scan period,
with the mean absolute error during the 30 s period being 2.71%. The results also show the transient
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nature of the melt pool, with the depth continuously increasing as a function of time with a fixed set of
process parameters.

Figure 6. Comparison of analytically calculated transient melt pool evolution with experimental data.

2.3. Hybrid Model

The validation results show that Eagar–Tsai’s model can provide excellent low-cost estimates of
melt pool dimensions for single-track and single-layer AM depositions. The goal of this work is to
obtain model-based estimates of the required temporal variations in process parameters for achieving
target melt pool dimensions during the build process. In order to achieve this, an optimization
problem that finds process parameters as a function of time is solved with an objective of minimizing
the deviation from the desired melt pool dimensions. As the true functional form that relates the
process parameters to the melt pool dimensions is unknown, the information regarding gradients is not
readily accessible, therefore the optimization problem is in a black-box setting. Several such black-box
optimization techniques are well-studied by different researchers [52], e.g., stochastic process-based
approaches (kriging methods) [53], evolutionary algorithms [54], trust-region based algorithms [55],
and random search [56]. These approaches typically involve iterative sampling of the objective function
in the search space. Such sampling often proves to be prohibitively expensive, particularly in high
dimensions, when the involved process model is computationally very expensive.

To address this challenge, in the present work, an application of gradient-free optimization under
budget limitations is implemented by solving the melt pool geometry control problem using BO that
employs computationally inexpensive GP surrogate models learnt via sparse sampling of the space of
process parameters (e.g., P and v). The details of the mathematical formulations of GP and BO can be
found in Appendix A. Although all optimization demonstrations in this paper involve the Eagar–Tsai’s
model as the process model, it can very well be replaced by any other process models of users’ choice,
without any fundamental change in the optimization algorithm.

3. Results and Discussion

This section presents the results and discusses the significant findings therefrom.

3.1. Prediction of Melt Pool Dimensions Using GP

The melt pool dimensions in the L-PBF AM process continuously increase due to progressive
heating of the specimen caused by the layer-wise fabrication as evinced by simulation results [57]
as well as experimental observation [47]. Figure 7 shows the variation in melt pool dimensions as a
function of time for a CMSX-4r specimen fabricated using a laser power of 900 W and linear scan
velocity of 0.25 mm/s. The melt pool depth increases from 1.814 mm at t = 1 s to 3 mm at t = 20 s,
while the melt pool width increases from 3.82 mm to 6.11 mm. The percentage increase in melt pool
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depth is ~65%, and the increase in width is ~59%. The melt pool reaches a steady state at ~20 s.
If the melt pool dimensions need to be maintained at desired values, the process parameters should
be adjusted during this transience period. However, performing simulations for a range of process
parameters over the entire deposition process is computationally expensive when coupled with an
optimization framework.

Figure 7. Temporal variation of melt pool dimensions for a CMSX-4r specimen fabricated using
P = 900 W and v = 0.25 mm/s: (a) longitudinal cross section with the liquidus isotherm showing the
variation in melt pool dimensions with time and (b) variation of melt pool depth and width with time.

In applications where data is scarce, particularly when each simulation can be potentially
computationally expensive, it is often infeasible to have a large number of training points. Moreover,
inherent uncertainties in the physical process and the simulation models (e.g., uncertainties in the
thermophysical properties of the material) mandate the need of uncertainty quantification with the
predictions [33,58]. Surrogates, like GPs, can be very useful in such cases in order to have probabilistic
estimates of the quantity of interest with limited datasets, whereby the posterior mean and variance
can not only be informative for prediction at unknown input locations, but the information can also
be used for budget-constrained optimization, as described in the following subsection. A surrogate
modeling and optimization technique as discussed in Appendix A is adopted in this work to find the
model-based estimates of the process parameters required for controlling the melt pool dimensions.

In order to build the surrogate using GPs, two-hundred (200) Latin hypercube sampling (LHS)
simulations are performed to obtain the values of melt pool depth and width at each time instant for
combinations of P and v in the range of 300 to 1200 W and 0.5 to 2.5 mm/s, respectively. This parameter
range is chosen to avoid any keyhole mode of melt pool formation in CMSX-4r where the Eagar–Tsai’s
model shows limited accuracy [59,60]. The cross section of melt pools created in conduction mode is
generally semicircular, as predicted by Eagar and Tsai’s conduction mode model [35]. LHS is selected
as this is one of the most commonly used statistical methods for DoE. It allows for a good spread of
the initial DoE over the design region with limited iterations due to its high sampling efficiency [61].
For every time instant under consideration, each DoE point comprises a combination of process
parameters (P, v) and its corresponding melt pool depth and width values.

The effect of training data size on the regression performance of the GP surrogate in predicting
melt pool depth and width is of critical interest. Out of the 200 initial LHS points, a test set of randomly
selected 100 points is set aside for testing the regression performance of the GP models. Different GPs
are trained at different time instants with randomly selected samples from the training set. The training
data size is varied from 10 to 100, in steps of 10 samples. Ten random selections of the training data
is chosen for each training size, in order to find the average behavior of the regression performance
for each training size. The prediction performances are tested on the set aside 100 samples for each
trained GP model.
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The metric for gauging the prediction performance is chosen as the Relative Squared Error (RSE)

, ||ŷ−y∗ ||2
||y∗ ||2 , where ŷ is the prediction and y∗ is the true value (i.e., ground truth as obtained by the

Eagar–Tsai’s model). A lower RSE suggests that the most likely prediction (mean of the predicted
posterior Gaussian distribution) of the depth/width in the test set matches closely with the true value.
Figure 8 shows that the RSE is quite low for all the time steps, while there is a slight increase in RSE
from 2 s to 20 s for both depth and width. RSEs for the melt pool depth and width prediction show a
sharp drop from training size of 10 to 20 samples, after which the RSE saturates for almost all the higher
training sizes. This indicates that a training size of at least 20 LHS DoE points is in general sufficient
for a satisfactory prediction of the melt pool depth and width in the selected process parameter space.
This provides an estimate of the number initial DoE points required for learning the surrogate model
for the subsequent BO steps at each time instant.

Figure 8. Relative Squared Error in prediction of melt pool depth and width at (a) t = 2 s, (b) t = 5 s,
(c) t = 10 s, and (d) t = 20 s.

Figure 9 shows the regression performance (on the test dataset of 100 samples) in predicting
the melt pool depth and width at 2 s with a training set size of 20. Sample numbers in Figure 9a,c
refer to the test samples, which are different (P, v) combinations. The test samples are arranged in an
ascending order of their true depth values. The 2σ-band coverage percentage is the proportion of test
points for which the true amplitude lies within ±2σ of the predicted mean, which corresponds to the
95% confidence interval, as the output distribution is a Gaussian. The parity plots in Figure 9b,d show
the comparison of the predicted means with the true values. The high R2 (coefficient of determination)
scores for the depth (0.96) and width (0.99) predictions at 2 s indicate high reliability of the GP model
in predicting the melt pool dimensions. Similar results are shown in Figure 10 for the melt pool depth
and width predictions at 20 s, with a training set size of 20 samples. The R2 score decreases to 0.82 for
depth prediction and 0.88 for width prediction, which is also explained by the higher RSE in prediction
at 20 s (Figure 8). The variability in the predicted values from the true values is explained by the
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wider ±2σ band at the test locations. The lower R2 score at 20 s as compared to 2 s can be attributed
to the higher variability in the steady state values of depth and width as compared to the initial
stages as a function of the process parameters. From the perspective of applicability of the surrogate
predictions, GPs provide the end user with not only a computationally inexpensive way of predicting
the melt pool dimensions at different operating conditions for which experiments and simulations are
not performed, but also with an estimate of uncertainty quantification (UQ) for predictions from the
variance associated at the query points.

Figure 9. Melt pool depth and width prediction performance at 2 s with a training set size of 20 samples.
(a,b) Probabilistic prediction of depth and corresponding parity plot. (c,d) Probabilistic prediction of
width and corresponding parity plot. Samples arranged in ascending order of the true values in panels
(a,c). Predicted values at the points of query are represented as follows; GP mean by blue dots and ±2σ

bands by vertical bars, where σ is the standard deviation of the GP’s posterior prediction at a query
point. Red stars indicate the true value of the melt pool depth at those points.

Figure 10. Cont.



Metals 2020, 10, 683 11 of 24

Figure 10. Melt pool depth and width prediction performance at 20 s with a training set size of
20 samples. (a,b) Probabilistic prediction of depth and corresponding parity plot. (c,d) Probabilistic
prediction of width and corresponding parity plot. Samples arranged in ascending order of the true
values in panels (a,c). Predicted values at the points of query are represented as follows; GP mean
by blue dots and ±2σ bands by vertical bars, where σ is the standard deviation of the GP’s posterior
prediction at a query point. Red stars indicate the true value of the melt pool depth at those points.

3.2. Optimization of Process Parameters for Melt Pool Dimension Control: Objective Function

As discussed in Sections 1 and 2, appropriate control of the process parameters, e.g., P and v are
required for maintaining desired melt pool dimensions during the deposition process. The goal of
controlling the melt pool dimensions is formulated as an objective function that needs to be maximized
in the setting of BO, as described in Appendix A.3. In order to pose the melt pool control problem in
an optimization setting, an appropriately defined objective function (J) is to be maximized at every
discrete time instant of control,

J , −
(

c1
|d− d∗|
|d∗| + c2

|w− w∗|
|w∗| + c3

|P− Pmin|
|Pmax − Pmin|

)
(3)

where d and W denote the depth and width, respectively, at a particular time instant, whereas d∗ and
w∗ represent the desired depth and width, respectively, during the deposition process. P indicates
the power at time instants of control, whereas Pmax and Pmin denote the maximum and minimum
values of the range of laser power in the space of process parameters. Therefore, |P−Pmin |

|Pmax−Pmin |
denotes the

normalized power input at a particular time instant, and incorporating it into the objective functional
serves as a penalty term for high power values. This is introduced since it is desired to achieve the
controlled process along with avoiding processing conditions involving very high levels of power.

c1, c2, and c3 in Equation (3) denote the relative weights of the components of the objective
function that controls the depth, width, and power, respectively. By varying the relative values of
c1, c2, and c3, it is possible to preferentially weigh the objective function to meet the requirements.
Formulating the objective functional J is a key step in the optimization process, and the optimization
routine should be designed in such a way that undesirable process parameters result in low values of
objectives. This formulation conforms to the mathematical characteristics of the Matérn covariance
function [15] used in this work, which assumes local smoothness of the inputs, so that input process
parameters that are close together in the (P, v) space are expected to have similar objective values.
As undesirable parameter combinations have low objectives, points in the close vicinity of them will
have low acquisition potential (see Appendix A) during the optimization steps, and therefore will
have lower priority for the incumbent selection.
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3.3. Optimization Routine

A sequential global–local optimization thread [62] is employed in this work for the selection
of process parameters for controlling the melt pool geometry. The terms “global” and “local”
correspond to the search spaces with respect to which BO is performed. In the global optimization
thread, a potential optimal process parameter combination is selected, around which a refinement
is made during the local optimization thread for the final selection of the optimal process parameter
combination. The outline of the process is described in the flowchart as depicted in Figure 11. Details
of the optimization algorithm can be found in Appendix B. Entities capped with “tilde” (∼) correspond
to parameters of the local optimization thread.

Figure 11. Flowchart depicting the global–local optimization process.

The control problem is designed to maintain the melt pool depth (d∗) at 2.5 mm and width
(w∗) at 5.0 mm. The initial global GPs are learnt with 20 Ninit LHS points in the (P, v) space,
with P ∈ [300, 1200] W and v ∈ [0.5, 2.5] mm/s. The ranges of the process parameters and the
controlled geometrical parameters chosen in this problem are often dictated by the experimental
requirements and constraints, and can be modified as needed. The optimization problem over the entire
duration of the L-PBF process can be considered as a sequence of optimization problems performed at
some discrete intervals of time, which motivates the choice of learning separate surrogates for each
discrete time instant for which the melt pool needs to be controlled.

With the initial trained GP from 20 LHS samples for each time instant, low-cost surrogate
predictions are made over the large global search space Xstar, consisting of 2000 uniformly chosen
points. This methodology forms the key to the surrogate-based optimization processes: predictions
are made over an extensive search space by employing a low-cost surrogate by avoiding functional
evaluations (physics-based simulations in this case) at the search points. Based on the mean–variance
trade-off of the GP’s posterior predictive distribution, the acquisition function EI (See Appendix A)
guides the search iteratively to subsequent optimization points until the computational budget is
depleted. NGlobal Iter = 10 optimization steps are chosen for the global thread, after which the optimal
process parameter combination with the highest objective value is selected.

For all the time instants of control, it was possible to obtain optimal process parameters
within the global thread that can yield the melt pool depth and width close to the desired values.
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However, for finer adjustments in P and v values in order to achieve the micron-level control in the
melt pool geometry, the local optimization thread is executed. Here, the local search space X̃star is built
around x̃∗, the optimum with the highest objective value from the global thread, in the following way;
P is varied within ±20 W and v within ±0.15 mm/s of the corresponding values in x̃∗. 20 Ñinit LHS
points are chosen within the limits of X̃star, the optimization routine is performed within this local
search space for ÑLocal Iter = 10 steps. This yields the refinement of the process parameter values that
result in melt pool dimensions very close to the ones desired. The number of optimization iterations in
both the local and global threads (i.e., NGlobal Iter and ÑLocal Iter) are kept as design parameters in this
paper, which are expected to be driven by computational budget for practical applications. The scaling
factors for the objective function components are chosen as c1 = 1, c2 = 0.1, and c3 = 0.1, which are
based on the greater relative importance of maintaining the depth as close to d∗ as possible during the
build process, so that a uniform deposit is maintained.

Figure 12 shows the performance of the surrogate based optimization method. Figure 12a,b shows
the variation of the controlled melt pool depth and width from the desired d∗ and w∗ values as a
function of time. It is seen that the maximum variation in the meltpool depth is 1.1 µm which is 0.04%
of the desired depth, while that for width is 173 µm, which is 3.46% of the desired width. The process
parameters change from P = 948.07 W, v = 0.40 mm/s at t = 2 s to P = 737.81 W, v = 0.37 mm/s at
t = 20 s (Figures 12c,d). It is to be noted that penalization of P in the objective function allows us to
have a smoothly variation of P over 20 s with lower P values, which changes by ~22% of the starting
value at t = 2 s. The maximum change in v is ~27%. It is possible to have process parameters with
higher P values (and higher v values) that control the melt pool, but those conditions are avoided by P
penalization in the objective function. Similar formulation of the objective function can be pursued by
v penalization, if smother v transition is desired.

Figure 12. Time-varying control of process parameters at intervals of 2 s for maintaining d∗ = 2.5 mm
and w∗ = 5.0 mm: (a) variation in melt pool depth (d− d∗) at the control steps, (b) variation in melt
pool width (w− w∗) at the control steps, (c) optimal laser power, and (d) optimal laser velocity.

3.4. Validation with Experimental Results of Melt Pool Depth Control

The model-based control strategy is validated with experimental results reported in the open
literature [63]. Figure 13a shows the longitudinal cross section of an L-PBF processed René 80
specimen fabricated using a powder layer thickness of 1.4 mm on a substrate of dimensions
35.56 mm × 6.86 mm × 2.54 mm. The experiment was carried out with the raster scanning speed
of 450 mm/s and scan spacing of 25.4 µm. In reality, experiments are extremely challenging to perform
with melt pool depth as a controlled variable as there exists no easy way of measuring the melt pool
depth in situ. During the conduction mode, the surface temperature control of melt pools was found
to correlate well with the melt pool depth experimentally by Bansal et al. [63]. The observation was
also made by Raghavan et al. in E-PBF of Inconelr 718 [64]. The mean value of the melt pool depth
during the control period is around 1200 µm from experiments. Accordingly, d∗ is set at 1200 µm for
the surrogate-based optimization routine involving only P as outlined in the experiments.
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The melt pool simulation is performed by employing the Eagar–Tsai’s model, with the
thermo-physical properties of solid René 80: k = 24.56 W/(m·K), ρ = 7604 kg/m3, c = 600 J/(kg·K),
and the liquidus temperature TL = 1607 K obtained using the software JMatPror [65], with the alloy
composition of René 80 provided by the vacuum alloy product catalog of Cannon Muskegon [66].
The objective function involves two components in this case:

J , −
(

c1
|d− d∗|
|d∗| + c2

|P− Pmin|
|Pmax − Pmin|

)
(4)

with c1 = 1 and c2 = 0.1.
Figure 13 shows that the predicted melt pool depth with the surrogate assisted control scheme

remains very close to the desired d∗. A variation of ∼200 µm is observed in the experimental results,
whereby the melt pool depth shows a slightly increasing trend towards the end of the control process,
reflected by the slight increase in power input from 10 s till 14 s. The trend of the surrogate predicted
controlled power input matches closely with the experimental results till 8 s, which is explained by
the fact that for a constant laser speed, the power input should decrease as a function of time in
order to maintain a constant melt pool depth as the specimen gains thermal energy continuously.
Nonetheless, the validation results indicate the efficacy of the surrogate-based optimization routine in
predicting process parameters as a function of time for achieving melt pool dimension control during
the deposition process.

Figure 13. (a) Longitudinal cross section showing a René 80 specimen fabricated using an adaptive
control scheme (Reproduced from [63],with permission of the author ). (b) Melt pool depth as a
function of time. (c) Controlled laser power as a function of time, obtained by the adaptive control
scheme of Bansal [63], compared with the results from surrogate based optimization method. The black
markers in (b,c) show the variation in the melt pool depth and laser power as a function of time during
the time of control. The red markers in (b,c) show the variation in the melt pool depth and laser power
obtained by the BO routine.
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4. Summary and Conclusions

This paper develops a novel hybrid methodology for control of melt pool geometry in AM
in the framework of ML-assisted modeling and optimization. The continuous changes in the
melt pool geometry are predicted by a low-cost GP surrogate developed using an experimentally
validated analytical 3D model. The uncertainties in the predictions for the melt pool geometry are
quantified using GPs. Reliable estimates of the optimal process parameter evolution are obtained
through active learning via BO by devising appropriate objective functions that quantify the control
requirements. The methodology provides an estimation of process parameter variation during the
AM deposition process in order to maintain a desired melt pool geometry under continuously varying
thermal conditions.

Being data-driven, the reliability of the optimized process parameters obtained from the algorithm
is based on the accuracy of the underlying physical model in predicting the melt pool geometry in
the range of process parameters considered. However, with a high-fidelity model, the computational
cost involved in the optimization process can be significantly high. For example, the cost of running
a Netfabbr [67] DED model for a single-track and single-layer process on a CMSX-4r specimen as
described in this paper is ∼10 times as expensive as Eagar–Tsai’s model at t = 2 s, and ∼150 times
at t = 10 s. Although such high-cost simulation is prohibitive in practical applications, in the
future, the methodology will be enhanced by using information from different fidelities [68] of
AM computational models to develop a multifidelity modeling and optimization framework for
prediction and control of melt pool geometries. For example, a Netfabbr model can be combined with
inexpensive observations from Eagar–Tsai’s model to develop a two-fidelity GP that can be used for
melt pool geometry prediction and optimization with an expected reduction in computational cost.
Additional investigations are also planned as summarized below.

1. Usage of process parameters (other than P and v) such as scan spacing (i.e., hatch spacing), scan
pattern (i.e., hatch pattern), build plate temperature, and powder layer thickness (for powder bed
AM) and powder feed rate (for directed energy AM) as control inputs.

2. Incorporation of design constraints in the surrogate assisted modeling framework, e.g., tackling
harder problems whereby a melt pool geometry needs to be controlled, along with the final
microstructure such as columnar grains in CMSX-4r.

3. Development of heterogeneous design spaces in formulating multifidelity modeling framework,
which can be useful in catering to optimization problems where the varied levels of fidelities
have different input spaces. As an example, a HF L-PBF process model can have several process
parameters, such as powder distribution properties, hatch spacing, scan strategy, etc., apart from
P and v of the laser (which are the only process parameters for a LF model like the Eagr-Tsai’s
model), which can potentially affect the build characteristics. Optimization in such a framework
can be possible via heterogeneous transfer learning [69] to learn from a common subspace of
the inputs.

4. Integration of the surrogate modeling framework developed in this work with microstructure
prediction framework using an open source SPPARKS code [70] to optimize the process
parameters for obtaining a desired microstructure.

5. Implementation of the surrogate modeling framework for checking its efficacy towards
mitigating unintended melt pool behavior such as keyholing effect. However, in such a case,
the computational model needs to be a high fidelity one capable of predicting such a behavior.

It is envisioned that the newly developed framework can be implemented in developing feedback
strategies for melt pool control during AM processes with shorter response time due to improved
prediction capability [71].
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Appendix A. Mathematical Background

This section provides the mathematical background for machine learning (ML)-assisted modeling
and optimization of additive manufacturing (AM) processes. While the details are available in standard
literature (see, e.g., in [72,73]), the following three subsections succinctly present the core concepts of
ML for completeness of the paper.

Appendix A.1. Surrogate Modeling: Gaussian Processes

This subsection provides a brief overview of the surrogate modeling technique using Gaussian
Processes (GPs), which is the foundation of the Bayesian Optimization (BO) framework used in this
work for control of melt pool geometry. Salient properties of GPs modeling are delineated below.

1. GPs belong to a class of stochastic processes based on the assumption of a multivariate jointly
Gaussian distribution for any finite collection of random variables.

2. GPs are nonparametric models that do not assume a predefined functional relationship between
the inputs and outputs (unlike polynomial regression models [73], for example).

3. GPs are flexible for modeling nonlinear functions. As the underlying concept is fully Bayesian,
the predictions are made via a posterior probability distribution, which is a normal distribution
in case of GPs, completely specified by its mean and covariance.

Remark A1. The main advantage in having a probabilistic prediction method is that it naturally provides
a measure of uncertainty quantification (UQ) associated with these predictions through the variance of the
distribution. Moreover, having a probabilistic estimate instead of a fixed estimate provides the end user with a
confidence level of the predictions.

For a finite subcollection {x1, x2, · · · , xN} of the random input x, the corresponding
objective values

{ f (x1), f (x2), . . . , f (xN)}

are assumed to have a multivariate jointly Gaussian distribution: f (x1)
...

f (xN)

 ∼ N

 m(x1)

...
m(xN)

 ,

 k(x1, x1) · · · k(x1, xN)
...

k(xN , x1) · · · k(xN , xN)


 (A1)

where the mean m(x) , E[ f (x)] and the covariance k(x, x′) , E[( f (x) − m(x))( f (x′) − m(x′))],
and E(·) indicates the expectation of a random variable.

Let Dtrn = {(xtrn
i , ytrn

i )}, i = 1, · · · , N, be the training set that are available for model formulation.
For a noisy regression model, it is assumed that

ytrn
i = f (xtrn

i ) + εi (A2)
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where the additive noise εi are independent and identically distributed (iid) zero-mean Gaussian
random variables, i.e., εi ∼ N (0, σ2). By incorporating the noise term, the joint distribution of the
observed values and the functional values at the test locations are[

ytrn

ytst

]
∼ N

(
0,

[
k(xtrn, xtrn) + σ2 I k(xtrn, xtst)

k(xtst, xtrn) k(xtst, xtst)

])
(A3)

where Dtst = {(xtst, ytst)} is the test set in which ytst is online observed data and xtst is the
unknown variables to be estimated. Therefore, by the property of multivariate normal distributions,
the conditional distribution of the function values at the test location is Gaussian [72]. In particular,

ytst|ytrn, xtrn, xtst ∼ N (µtst, Σtst) (A4)

where

µtst = K(xtst, xtrn)[K(xtrn, xtrn) + σ2 I]−1ytrn (A5)

Σtst = K(xtst, xtst)− K(xtst, xtrn)[K(xtrn, xtrn)

+σ2 I]−1K(xtrn, xtst)
(A6)

Thus, the algorithm predicts the mean and covariance for the posterior distribution that models
the output at every test data point.

Appendix A.2. Kernel Function

The choice of the covariance function is one of the most critical aspects of the model selection
process in GP-based surrogates. It is assumed that the objective function is locally smooth and that
the GP priors belong to the class of automatic relevance determination (ARD) Matérn covariance
functions [15]. The ARD formulation facilitates learning a length-scale for each input dimension to
deal with directional anisotropies in the data set. The Matérn class of covariance functions has a
shape parameter that can be tuned in order to control the smoothness of the correlation function in
the input space. In this work, a Matérn shape parameter of 5/2 is used, which results in the form

k(x, x′; θ) = σ2
f (1 +

√
5r + 5

3 r2) exp(−
√

5r), where r =

√
∑D

m=1
(xk−x′k)

2

σ2
m

. The hyperparameters in the

kernel are θ = [σ2
f , (σm)D

k=1], where D is the dimensionality of the data set, and σf and σm are the
scaling coefficient and the characteristic length-scales, respectively.

Instead of squared exponential kernels that are generally best suited for interpolating smooth
functional relationships, Matérn kernels are chosen here because length-scales associated with the
latter are less prone to be affected by the presence of non-smooth regions in the data set, which might
yield poor extrapolation results in the smoother regions [74].

Appendix A.3. Bayesian Optimization

In this work, the term optimization is used to denote maximization of a target function, without any
loss of generality. A minimization problem can be posed similarly by taking the negative of the target
function. Therefore, in order to optimize an objective function f , the following solution is sought.

x∗ = argmax
x∈X

f (x) (A7)

If the functional form of f is unknown, it may not be possible to have gradient-based optimization
for solving the problem; in that case, gradient-free or black-box optimization might be suitable. BO is
one such black-box optimization technique [31] that leverages the predictions through a surrogate model
for sequential active learning (AL) to find the global optima of the objective function. The AL strategies



Metals 2020, 10, 683 18 of 24

are aimed at finding a trade-off between exploration and exploitation in possibly noisy settings [52,75,76],
which facilitates a balance between global search and local optimization through acquisition functions.
Usage of GPs in the surrogate modeling framework for BO often leads to closed-form analytical
expressions for acquisition functions, which are inexpensive to compute.

In the above formulation, the acquisition functions are designed in the following way.
The potential of performance improvement is driven by the predicted mean function (which is in the
category of exploitation), whereas the uncertainty prediction is manifested by regions of high variance
(which is in the category of exploration). A trade-off between these two requirements is achieved by
the acquisition functions iteratively, as a sequential optimization process.

Figure A1. Sequence of Bayesian Optimization iterations for maximizing f (x). (a) Iteration#1 :
Prediction based on initial DOE of 4 points. (b) Iteration #2. (c) Iteration #5. (d) Iteration #7. Filled blue
circles indicate initial DOE. Filled red circles denote points selected in optimization iterations.

One commonly used acquisition function in Bayesian optimization is Expected Improvement (EI),
which is employed in this work. According to the formulation of Mockus et al. [77] and Jones et al. [52],
the EI acquisition function can be written as

EI(x) =


(µ(x)− f (x+)− ξ)Φ(Z) + σ(x)φ(Z)

if σ(x) > 0

0 if σ(x) = 0

(A8)

where

Z =


(µ(x)− f (x+)−ξ)

σ(x) if σ(x) > 0

0 if σ(x) = 0.
(A9)

and x+ = argmaxxi∈x1:k
f (xi) is the input corresponding to the maximum functional value sampled

until iteration k; the parameter ξ > 0 controls the trade-off between exploration and exploitation [31];
µ(x) and σ(x) are the mean and variance, respectively, predicted by the GPs for the an input point x;
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and φ(·) and Φ(·) are the probability distribution function (PDF) and cumulative distribution function
(CDF) of the standard normal distribution, respectively.

If the objective function is noise corrupted, instead of using the best observation, the point with
the highest expected value is defined as the incumbent, i.e., f (x+) replaced by µ+, which is defined as

µ+ , argmax
xi∈x1:k

µ(xi). (A10)

The optimization algorithm proceeds sequentially by sampling x̂ = argmaxxEI(x) at every step
of the iteration process to add on to the dataset, after which the GP model is retrained with the new
data set to predict the acquisition potential for the next iterative step. This process continues until
an optimum is reached, or the computational budget is extinguished. As the acquisition potential is
predicted over the entire search space by the surrogate, BO can achieve fast predictions without a lot
of function calls in the search space (i.e., without having to run the simulations to obtain the objectives
at all the search locations), which, otherwise, might be computationally infeasible when the search
space is high-dimensional and the simulations are expensive.

Figure A1 demonstrates the optimization process through a simple problem of maximizing a
black-box function f (x) in the input space of [−2, 2] (denoted by solid blue line). The process is started
with an initial design of experiments (DoE) of 4 points (filled blue circles) chosen in the search domain
by Latin hypercube sampling (LHS) [61], which allows the initial selection of points to be well-spread
in the search space. Figure A1a shows the GP prediction in the initial stage, which is characterized by
the mean function (red dotted line), and the variance associated with the prediction (denoted by the
orange band). The variance is high globally at the initial stage, because only four points are sampled
on the true function. The maximizer of the acquisition function EI(x) shows the location to sample for
the next point at every iteration (filled red circles). Figure A1b shows that the predicted mean of the
function in Figure A1a drives the selection of the first optimization point. It is interesting to note that
in Figure A1c, although the true maximizer of f (x) is already sampled, EI(x) points towards a region
where the variance is high. This is because of the exploration-exploitation trade-off which allows
the algorithm to explore the search space instead of greedily searching for the optimum, a property
that helps the algorithm avoid being stuck at a local optima. Eventually after seven optimization
iterations, the routine converges at the true optima, as shown in Figure A1d. Moreover, the mean
function predicted at the last stage is very close to the true function, and the uncertainty band also
reduces globally, which indicates that the algorithm not only finds the maximizer of the function,
but in doing so it also learns a pretty accurate surrogate model of the function, which can now be used
as a low-cost approximation of the true function.

Appendix B. Optimization Algorithm

Algorithm A1 shows the surrogate-based optimization routine that is employed in this paper for
solving the melt pool geometry control problem, which is elucidated in Section 3.3. The global thread
picks up an optimal point x̃∗, which is refined in the local thread to give x∗, as the final optimal point
chosen by the algorithm.
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Algorithm A1 Optimization Routine
Global Thread

Require: Start with surrogate GP for the objective functional J with Ninit LHS initialization
for k = 1 to NGlobal Iter optimization steps do

- Use the trained GP to predict the posterior distribution of the objective function in the global

search space Xstar
- Sample an incumbent optimized process parameter from Xstar as x∗k = argmaxx EI(x)
- Compute the objective function Jk at the chosen x∗k
- Add the pair (x∗k, Jk) to the surrogate model’s input and output sets respectively
- Retrain the surrogate model

end for

- Select x̃∗ = argmaxxk
J

- Select X̃star appropriately around x̃∗

Local Thread

Require: Start with surrogate local GP for the objective functional J with Ñinit LHS initializations
for k = 1 to ÑLocal Iter optimization steps do

- Use the trained local GP to predict the posterior distribution of the objective function in the local

search space X̃star
- Sample the optimized process parameter from X̃star as x̃∗k = argmaxx̃ EI(x̃)
- Compute the objective function Jk at the chosen x̃∗k
- Add the pair (x̃∗k, Jk) to the local surrogate model’s input and output sets respectively
- Retrain the local surrogate model

end for

- Select x∗ = argmaxx̃k
J
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