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This paper presents a novel framework of symbolic time series analysis (STSA) for anom-
aly detection in dynamical systems. The core concept is built upon a property of
measure-preserving transformation (MPT) sequence, acting on a probability
space with ergodic measure, that the eigenfunctions of these transformations would
be time-invariant. As a result, unlike a standard STSA that is required to generate
time-homogeneous Markov chains, the proposed MPT-based STSA is allowed to have
time-inhomogeneous Markov chains, where the (possibly time-varying) state transition
probability matrices have time-invariant eigenvectors. Such a time-invariance facilitates
analysis of the dynamical system by using short-length time series of measurements. This
is particularly important in applications, where the underlying dynamics and process
anomalies need fast monitoring and control actions in order to mitigate any potential
structural damage and]or to avoid catastrophic failures. The MPT-based STSA has been
applied for low-delay detection of fatigue damage, which is a common source of failures
in mechanical structures and which is known to have uncertain dynamical characteris-
tics. The underlying algorithm has been validated with experimental data generated from
a laboratory apparatus that uses ultrasonic sensors to detect fatigue damage in
polycrystalline—alloy specimens. The performance of the proposed MPT-based STSA is
evaluated by comparison with those of a standard STSA and a hidden Markov model
(HMM) on the same experimental data. The results consistently show superior perform-
ance of the MPT-based STSA. [DOI: 10.1115/1.4046156]
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1 Introduction

Data-driven detection of anomalous behavior [1] is important in
diverse engineering applications (e.g., prediction of fatigue fail-
ures, condition-based maintenance, and radar systems) as well as
for malware detection (e.g., Ref. [2] and references therein). One
of the commonly used methods for anomaly detection is the
cumulative sum technique, developed by Page [3], which has been
widely used for the detection of change points [4]. This tool is
very efficient for detecting changes in the time series, which may
occur as a result of abrupt variations in the underlying model
structure. However, changes in the time series may often happen
due to gradual degradation in the underlying dynamical system.
Detection of such changes is more challenging than those due to
abrupt variations.

Hidden Markov models (HMMs) [5] have been widely used for
both change point and anomaly detection in diverse applications
such as electronic systems [6], bio-informatics [7], target detec-
tion [8], brain imaging [9], early detection of thermo-acoustic
instabilities in combustion systems [10,11], and detection of
fatigue damage in structural materials [12]. In this setting, the
(nominal) HMM is trained by using observed time series that is
known to represent the nominal behavior. Then, if a change
occurs in the time series, the likelihood of the new observed sub-
sequence under the nominal HMM is expected to deviate signifi-
cantly from the nominal likelihood [11].
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In a similar context, the concept of symbolic time series analy-
sis (STSA) has been used by many researchers (e.g., Refs.
[13-15]) for constructing Markov chain models from the observed
time series. In the STSA framework, a (finite length) time series is
partitioned for conversion into a string of symbols from a (finite
cardinality) alphabet of symbols (e.g., Refs. [16-20]). Subse-
quently, a PFSA (is constructed from the symbol string (e.g.,
Refs. [21-23]), in which the probability distribution of the emit-
ted symbols depends upon the immediately preceding D sym-
bols, where the Markov depth D is a positive integer. Such a
PFSA is called a D-Markov machine, which has found diverse
applications in pattern recognition and anomaly detection (e.g.,
Refs. [15,16,23-25]). The main distinction between HMMs and
D-Markov machines is that the state transition in HMMs could
have a nondeterministic algebraic structure [22], which requires
an iterative method (e.g., the Baum-Welch algorithm [5]) for
training the HMM parameters; in this scenario, the algorithm
might lead to a poor local optimum. In contrast, D-Markov
machines have a deterministic algebraic structure [23], which
makes computation much simpler and less prone to local
optimality issues.

In the STSA setting, the selection of the window length of time
series to construct the PFSA largely depends on several parame-
ters (e.g., Markov depth and alphabet size) and the nature of the
particular underlying process that generates the time series [23].
To find a lower bound on the window length of the time series
required to estimate the PFSA parameters, one may consider an
increasing sequence of window lengths. Under the assumption of
statistical stationarity [15], the (possibly time-varying) state tran-
sition probability matrix converges to a constant matrix when the
window length may become arbitrarily large [15]. Thus, one may
choose a minimum window length at which this matrix tends to
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be approximately time-invariant. The resulting model in this case
would be a time-homogeneous Markov chain [26]. However, this
scenario would typically require a large window length, which
could be infeasible in many applications where a decision needs
to be made with low delay tolerance.

The notion of measure-preserving transformation (MPT) has
been widely used to represent Hamiltonian (i.e., conservative)
dynamical systems evolving on a probability space such that the
total energy of the dynamical system is invariant [27,28]. A key
concept in this regard is that even though a measure-preserving
dynamical system could be described by a sequence of transfor-
mations with time-varying eigenvalues, the eigenfunctions may
remain unchanged with time under the ergodicity assumption.
Based on this rationale, this paper presents a methodology for
constructing PFSAs, from short-length time series, which may
generate a nonhomogeneous Markov chain model for adequately
describing the underlying stochastic process. As a result, the time-
invariance of eigenvectors, which reflects measure-invariance of
the underlying ergodic dynamical system, can be used to
decide the window length of the time series required to con-
struct the PFSA. Unlike a standard STSA [15,23] that requires
increasing the window length until the resulting PFSA is no
longer significantly changing, the proposed MPT-based STSA
increases the window length until the eigenvectors are nearly
constant. The rationale is that anomalies are usually associated
with a change in the system’s total energy, which naturally
makes the system no longer measure-invariant and thus the
eigenvectors are no longer time-invariant. Along this line, a
metric of variability in the eigenvectors is proposed as a mea-
sure of anomaly. The application example in this paper focuses
on fatigue damage in polycrystalline alloys (e.g., Ref. [29]),
which is a common source of failure in mechanical structures.
The performance of the proposed MPT-based STSA is eval-
uated by comparison with those of a standard STSA and
an HMM on the same experimental data sets. These data sets
have been generated from a laboratory apparatus that uses
ultrasonic sensor measurements to detect fatigue damage in
polycrystalline—alloy specimens.

Major contributions of the paper:

(1) Construction of an MPT-based framework of STSA for non-
homogeneous Markov chain modeling: The underlying
algorithms are built upon the concept of measure-
invariance in dynamical systems [28,30-32], which facili-
tates ergodic measure-preserving modeling of dynamical
systems from short-length time series.

(2) Identification of a metric for machine/process anomaly:
Evolving anomalies are quantified as a norm of deviations
in the eigenvectors of the constructed sequence of stochas-
tic matrices by utilizing the invariant property of eigenvec-
tors. This norm tends to be small if the dynamical system
remains in the nominal state. As the system starts deviating
from the nominal state, the eigenvectors no longer remain
constant, and hence the quantified anomaly tends to
increase. Anomalous patterns are detected as the metric
exceeds a user-selected threshold.

(3) Validation with experimental data: The proposed anomaly
detection methodology is validated on a laboratory-scale
experimental apparatus for detection of fatigue damage in
polycrystalline—alloy structures.

Organization of the paper: The paper is organized in six sec-
tions, including the present one. Section 2 provides background
information on measure-preservation and ergodicity in dynamical
systems. Section 3 briefly describes the principle of STSA for
anomaly detection. Section 4 presents the technical approach for
developing STSA-based anomaly detection algorithms that rely
on spectral properties of sequences of MPTs. Section 5 presents
the results of validation with experimental data. Section 6 summa-
rizes and concludes the paper along with recommendations for
future research.
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2 Measure-Preserving Transformation and Ergodicity

This section provides a brief introduction to the notion of MPT
that forms the backbone of the methodology presented in this
paper; the details are extensively reported in literature (e.g., Refs.
[12] and [33]). The following definitions are presented below for
completeness of this paper and ease of readability.

DErINITION 1. Let Q be a nonempty set. A collection & of subsets
of Q is called a o-algebra and the members of £ are called E-
measurable (or measurable) sets provided that the following three
conditions are satisfied:

e Qe

e IfE€ & thenQ\E € £

e A countable union of measurable sets is measurable, i.e., if
{Ey} is a countable collection of members of &, then
UEr € E.

The pair (Q, &) is said to form a measurable space.

DEFINITION 2. Let (Q, E) be a measurable space. Then, the value
of the set function, defined as P : £ — [0,1], is called a probabil-
ity measure provided that the following two conditions are
satisfied:

e PIQ=1.

e [f {Ex} is a countable collection of members of &, then
P[Uy Ef] < >, P[Ei]; and the equality holds if the members
of {Ex} are pairwise disjoint, i.e., E; N E; = (J Vi # j.

The triple (Q, &, P) is called a probability space.

If two measurable sets E,F € £ are such that P[EAF] =0,
then it is said that E = F P-almost everywhere (abbreviated as P-
ae) or for P-almost all x € Q. Therefore, all measurable sets that
are equal P-ae form an equivalence class;, members of this equiv-
alence class are P-almost equal sets. Note: The symmetric differ-
ence (EAF) £ (E\F) U (F\E).

DeriNtTioN 3. Let (Q,E,P) be a probability space and let T :
(Q,&,P) — (Q,&,P) be a transformation. Then, T is called meas-
urable if T"'E € EVE € €.

A measurable set E €& is called T-invariant if
P[EAT™'E] =0, which implies that Tx € E for P-almost all
x € E. Furthermore, a function f : Q — C is called T-invariant if
f(Tx) = f(x) for P-almost all x € Q, where C is the field of com-
plex numbers.

A measurable transformation T s
P[T~'E] = PIE|VE € €.

A measure-preserving transformation T is called an endomor-
phism if T is surjective (i.e., onto).

Remark 1. The concept of MPT has been widely used to investi-
gate the asymptotic properties of random sequences in statistical
mechanics [33]. For an MPT T on a (finite) measure space
(Q, &, P), every set E € £ has a recurrence property in the sense
that once E is visited, it will be revisited infinitely many times;
that is, if x € E, then there are (countably) infinitely many values
of n such that 7"x € E [33].

DErFINITION 4. [34] Let {T"} be a one-parameter semigroup of
MPTs on a probability space (Q,E,P). Note: An algebraic system
(S,0) is called a semigroup if the following two conditions hold:
(i) closure, ie., o:SxS—S and (ii) associativity, i..,
o(x,0(y,z)) = o(o(x,y),z) Vx,y,z € §.

A function f € L{(P) is said to be an eigenfunction of a
sequence {T"} of transformations with the corresponding
sequence {J,} of (scalar) eigenvalues if f is a nonzero function
such that f(T") = A,f P-ae and Vn € N.

The sequence {T"} is said to be ergodic and P is called an
ergodic measure if each T'-invariant set E € £ is trivial, i.e.,
either P[E] =0 or P[E] = 1.

The following theorem provides a property of MPTs on a prob-
ability space (Q, &, P) with an ergodic measure P.

TueoreM 2.1. [33] Let (Q, &, P) be a probability space, and let
{T'} be a semigroup of MPTs, where t € [0,00). Then, {T'} is
ergodic if and only if the absolute value of every eigenfunction is

called a MPT if
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a constant P-ae. That is, if f is an eigenfunction of the MPT
sequence {T'}, then |f (x)| is a constant for P-almost all x € Q.
Proof. The proof of the theorem is given in Ref. [33]. |

3 Symbolic Time Series Analysis

Before embarking on a description of the technical approach
and the algorithms therein, it is necessary to provide the back-
ground for construction of a probabilistic finite state automaton
(PFSA) (see Sec. 3.1) [15] and D-Markov machines (see Sec. 3.2)
[23]. Section 3.1 refers to Sec. 2 that addresses the measure-
preservation property of ergodic transformations.

3.1 Probabilistic Finite State Automata. A (finite length)
time series is converted into a symbol string by partitioning the
signal space into a finite number of cells, where the number of
cells is identically equal to the cardinality |.A| of the (symbol)
alphabet A, and each cell is assigned exactly one of the symbols
in A. At a given instant of time, a data point is assigned the sym-
bol corresponding to the cell within which the data point is
located; details are reported by Mukherjee and Ray [23]. The
resulting symbol string is used to construct a D-Markov model,
defined in Sec. 3.2, which models the statistics of the underlying
stochastic process. The following definitions, which are available
in standard literature (e.g., Refs. [15] and [23]), are recalled here
for completeness of the paper and ease of readability.

DEFINITION 5. A finite state automaton (FSA) G, having a deter-
ministic algebraic structure, is a triple (A, Q, 0) where:

e A is a (nonempty) finite alphabet, i.e., its cardinality
|Al € N.

e Q is a (nonempty) finite set of states, i.e., its cardinality
Q€ N.

e 0: QX A— Qisa (deterministic) state transition map.

DEFINITION 6. A symbol block, also called a word, is a finite
length string of symbols belonging to the alphabet A, where the
length of a word w2sysy---s; with s; € A is |w| = £, and the
length of the empty word ¢ is |¢| = 0. The parameters of FSA are
extended as:

e The set of all words, constructed from symbols in A and
including the empty word ¢, is denoted as A*.

o The set of all words, whose suffix (respectively, prefix) is the
word w, is denoted as A*w (respectively, wA”).

e The set of all words of (finite) length £, where ¢ € N, is
denoted as A"

A symbol string (or word) is generated from a (finite length)
time series by symbolization.

DEFINITION 7. A probabilistic finite state automaton (PFSA) K is
a pair (G, ), where:

o Deterministic FSA G is the underlying algebraic structure of
PFSA K.

e The morph function m: Q x A — [0, 1] is also known as the
symbol generation probability function that satisfies the con-
dition: Y . 47(q,0) = 1 forall g € Q.

Often the state transition probability mass function K :
Q x Q — [0,1] is constructed by combining 6 and w, which can
be structured as a |Q| x |Q| matrix T . In that case, the PFSA can
be described as the triple K = (A, Q,T).

Remark 2. 1t is noted that the |Q| x |Q| state transition proba-
bility matrix 7 is stochastic [35] (i.e., each element of 7 is non-
negative and each row sum is unity). Ergodicity of the underlying
process, from which 7 is constructed, is equivalent to irreducibil-
ity of 7 [35], which implies that 7 has exactly one eigenvalue at
unity (i.e., 2= 1) and that the rest of the eigenvalues are either on
or within the unit circle with center at 0 (i.e., |A| < 1). The (sum-
normalized) left eigenvector v corresponding to the unity eigen-
value (i.e., 4= 1) represents the stationary state probability vector
of the Markov chain [35].
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The mathematical concept of ergodic semigroup of endomor-
phisms and some of the relevant results have been presented in
Sec. 2. Following Theorem 2.1, the absolute values of the eigen-
functions of individual transformations 7" at a time epoch 7 in the
one-parameter ergodic semigroup of endomorphisms do not
change with 7 although the respective eigenvalues may vary with
n. These results are explained below in the context of STSA.

In the probability space (Q, &, P) for STSA, the sample space Q is
the (finite) state space Q of the PFSA under consideration, the associ-
ated g-algebra £ is the power set 29, and P is the probability measure
(see Sec. 2). The objective here is to model the system dynamics
from a time series of measurements for anomaly detection in the
STSA setting. With symbols s € A occurring randomly, the state
transition map 0 : Q X A — Q in Definition 5 becomes a random
mapping 7 : (Q,&,P) — (Q, &, P) such that T(g) yields a Q-valued
random variable for each ¢ € Q. The state transition probability mass
function x : Q@ x Q@ — [0, 1] satisfies the following condition:

P{{T(q)} €292 > x(4,4) Vg € Q

GeQ

M

where the state transition probability x(q,q) is computed with
respect to the underlying probability space (Q,&,P), which
implies that the random variable 7(¢) has the probability mass
function x(g,-). Note: The |Q| x |Q)| state transition probability
matrix 7 in Definition 7 is a stochastic representation of the ran-
dom mapping 7T (see Remark 2).

Example 1. In the probability space (Q,E,P), let Q = {q1,92}

with  the c-algebra € =222{J {q1}, {92}, Q}, and
P:£—[0,1]. Let {T'} be a sequence of mappings
(Q,&,P) — (Q,&,P), such that the representation of T" by a

|Q| x |Q|  stochastic  matrix  (see  Definition 7) is:
k ok
T = [1 fﬁk ! p}; |, where p*,p* €[0,1) can be arbitrary

for any given k. The eigenvalues of each stochastic matrix T* are:
)f =1 and /1]2‘ = (p* + p* = 1), and the corresponding absolute-
sum-normalized left eigenvectors are: vk = (1 -pr/2-pt -
YY) (1 =pt/(2 = p* = p*))] that are k-variant, in general, and
Vi =1[0.5—-0.5] that are k-invariant. Hence, P[(T")™'Q]=
P[Q] =1 and P[(T*)"'&| = P[@] = 0. Furthermore, the pre-
image of {q:} (i.e., (T*) "' {q\}) is either {q:} itself or {q>}; simi-
lar  results hold for {q.}. Then, it follows that
P[(T")"'E] = PIE]VE € € (i.e., the system is measure-preserving)
if and only if P[{q1}] = P[{q2}] = 0.5, i.e., p* = p* in the matrix
T*Vk. Moreover, with the restriction p*,p* € [0, 1), it also fol-
lows that {T*} is ergodic, because the only T*-invariant measura-
ble sets (i.e., members of £) are & and Q. Then, it follows from
Definitions 3 and 4 that, in this example, the sequence {T*} is
measure-preserving and ergodic if and only if p* =p* and
pFeo,1)Vk.

Following Definitions 4 and 7, a sequence {K"}£
{(A,Q,7")} on a probability space (Q,&,P) is measure-
preserving and ergodic if 7" is measure-preserving and ergodic
Vn € N. A straightforward result, which is central to this paper,
follows from Theorem 2.1 for PFSAs and is presented as the fol-
lowing corollary.

CoroLLARY 1. Let {K" :n € N}, be a sequence of measure-
preserving and ergodic PFSAs on a probability space (Q,&,P).
Then, the (sum-normalized) left eigenvector V|, corresponding to
the eigenvalue 1, = 1, is uniformly distributed, i.e.,

N R
vi= LQ"M’|QJ Vn

3.2 D-Markov Machines. In the construction of a D-Markov
machine, it is assumed that the generation of the next symbol
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depends only on a finite history of at most D consecutive symbols,
i.e., a symbol block not exceeding the specified length D. In this
context, a D-Markov machine [23] is defined as follows.

DErINITION 8. A D-Markov machine is a PFSA in the sense of

Definition 7 and it generates symbols that solely depend on the
(most recent) history of at most D consecutive symbols, where the
positive integer D is called the depth of the machine. Equivalently,
a D-Markov machine is a stochastic process S = ---s_15081 - ",
where the probability of occurrence of a new symbol depends only
on the last consecutive (at most) D symbols, i.e.,

P[Sn| ot Sp—D " 'Sn—l] :P[sn‘snfD "'sn—l] (2)

Consequently, for w e AP (see Definition 6), the equivalence
class A*w of all (finite length) words of suffix w, is qualified to be
a D-Markov state that is denoted as w.

Remark 3. While the algebraic structure of the PFSA in D-
Markov machines is deterministic [15,23], a HMM may have a
nondeterministic algebraic structure [21,22]; this difference yields
significant computational advantages of D-Markov machines over
HMMs at the expense of limited loss of modeling flexibility.
Moreover, since HMMs are typically trained by expectation maxi-
mization [5], the underlying algorithms might suffer from having a
poor local optimum. In addition to its iterative computation cost,
HMMs may not be sufficiently robust in terms of convergence even
to a locally optimum point. In contrast, the deterministic algebraic
structure of D-Markov machines makes the modeling process much
simpler and less prone to the local optimum issue, where the model
can be trained by frequency counting [23], for example.

The PFSA of a D-Markov machine is capable of generating
symbol strings. That is, such a generated symbol string has the
form {s;s,---s¢}, where s5; € A and £ is a positive integer. Both
morph function 7 and state probability transition matrix 7 implic-
itly support the fact that PFSA satisfies the Markov condition,
where generation of a symbol depends only on the current state
that is a symbol string of at most D consecutive symbols [23].

For construction of the proposed D-Markov-based PFSA, there
are four primary choices as enumerated below:

* Alphabet size (|A|): Larger is the alphabet size, the dynami-
cal system is more discretely represented as different sym-
bols, which will require more training data. Therefore,
selection of the alphabet A is a critical step of PFSA con-
struction; while there are several techniques for selection of
A (e.g., Refs. [19] and [23]), the alphabet size A has been
chosen to be very small (e.g., |A|= 2 or 3) in this paper so
that the number of states |Q| is also small to limit the
required window length L.

Partitioning method: While there are many data partition-
ing techniques, maximum entropy partitioning (MEP)
[16,18] and K-means partitioning [36] have been chosen as
they are commonly used for symbolization of time series.

» Depth (D) in the D-Markov machine: In this paper, D =1
has been primarily chosen for PFSA construction to limit
the window length L. Higher values of the positive integer
D may lead to better results at the expense of increased
number of states |Q| and central processing unit (CPU)
time due to larger dimension of the feature space and may
need more training data.

Choice of feature: The feature needs to be the one that best
captures the physical nature (e.g., texture) of the signal and
also that is not computationally too expensive. In this
paper, (absolute sum-normalized) left eigenvectors of the
T -matrix are selected as features.

3.3 Anomaly Detection in a Standard Symbolic Time
Series Analysis Setting. From the perspectives of discrete-time
measurements and their discrete-space symbolization, usage of D-
Markov machines is an efficient and convenient way of modeling
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a dynamical system. In this setting, the time series {x,} is con-
verted into a symbol string {s,}, s, € A, where A is a finite car-
dinality alphabet. Then, PFSAs are constructed from the symbol
strings, which in turn generate low-dimensional feature vectors
that are used for detection of anomalous patterns. The procedure
for anomaly detection using a standard STSA [23], is executed in
the following steps:

(1) Select a block of a time series, called the nominal block, for
which the system is in a normal operating condition.

(2) Construct a partitioning for the nominal block and convert
it into a symbol string to construct the nominal PFSA. The
emission matrix (and hence the state transition probability
matrix) of the PESA are constructed by frequency counting
[23]. This learned nominal model generates a probability
vector v that represents the nominal pattern.

(3) Select a new block of the time series up to the current time
n and convert it into a symbol string using the learned nom-
inal partition. This yields a new PFSA with a new (quasi-)
stationary probability vector V" that represents the feature
vector at the time epoch 7.

(4) Compute the (scalar-valued) anomaly metric 6" at the time
epoch n from a string of divergences between the nominal
feature vector ¥ and the current feature vector v and by
sliding the block of data N times as:

n+N—1

1
e > di (V0 0") A3)

where dgy (¢, ) is the Kullback-Leibler divergence [37], and the
number N of sliding windows serves the sole purpose of data
smoothing. The anomaly metric " in Eq. (3) is used in this paper
for the standard STSA, which is more robust to outliers and fast
fluctuations in the time series than if an individual term is used for
computation of dx; (V0,v").

4 Technical Approach

A major issue in a standard STSA-based anomaly detection is
that it may require a long time series to construct a stationary state
transition probability matrix 7, from which the stationary state
probability vector v is generated to serve as a feature vector. How-
ever, many applications do require low-delay detection of anoma-
lous events, for which short-length windows of time series must
be used. For example, fatigue damage in critical mechanical struc-
tures must be detected as early as possible to avoid a catastrophic
failure. This requirement mandates early detection of the damage
by using short-length windows for PFSA construction [11].

To address the above-mentioned issue, the dynamical system is
described by an ergodic sequence of MPTs {7"}, n € IN, acting
on a probability space (Q, &, P). It is stated in Sec. 3.1 and is reit-
erated here that the sample space € is the (finite) state space Q of
the PFSA of a D-Markov machine, the associated g-algebra & is
the power set 2, and P is the probability measure. Based on the
concept of MPT-based STSA, if a time-varying PFSA is con-
structed using short-length windows of time series, then the result-
ing sequence of state transition probability matrices {7"} would
describe nonhomogeneous Markov chain models. Although the
underlying stochastic process could be stationary, short-length
windows of time series may produce time-varying 7 -matrices;
hence, in general, the eigenvalues and eigenvectors of 7 may be
time-varying as well. However, in light of Corollary 1 in Sec. 3.1,
the left eigenvectors of {7"} should be n-invariant to reflect
measure-invariance and ergodicity of the dynamical system
model. Therefore, rather than increasing the length of windows
until a constant 7 is obtained, as required by a standard STSA,
the proposed MPT-based STSA requires that 7 may only satisfy
the property of time-invariant left eigenvectors given by Corollary
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1. Moreover, a metric of variability of left eigenvectors is pro-
posed as a measure of anomaly in the dynamical system.2

A modification of a standard STSA is now proposed based on
the variations of eigenvectors. Table 1 lists the major differences,
demonstrated in the sequel, between a standard STSA and the pro-
posed MPT-based STSA.

Algorithm 1 MPT-based selection of window length

INPUT: Alphabet .A, Markov depth D, a time series {x, } generated by an
ergodic measure-preserving stochastic process, number of sliding windows
N € N, increment of the window length AL in each iteration, and a thresh-
old 7; > 0.

OUTPUT: Window length L of the data blocks {x,.,4,} for construction
of a D-Markov model of the stochastic process.

1:  Choose an initial window size L.

2: do

3: Convert time series blocks {x,4142}, n=0,1,...,N — 1, into
symbol strings {s,+1..11}, i € A, using one of the STSA partitioning
methods.

4: Using frequency counting, construct a D-Markov machine based
on each s,.1.,+, to obtain state transition probability matrices {7"}.
5: Find the (sum-normalized) left eigenvectors {v} }, corresponding to
A1 = 1, for each one of the state transition probability matrices.
6: TS Srats

. 1 \N-1 -
T 0= o [0 =)l

*®

Q|
p e [101]],,. where [|04]],, £ Y212} |04,].

L— L+ AL.
10 while p > 1,

R

Algorithm 2 MPT-based anomaly detection

INPUT: Alphabet .A, Markov depth D, window length L, time series {x, },
number of sliding windows N € N, a threshold 7, > 0.

OUTPUT: The decision on whether the system is nominal or anomalous.
1:  Convert time series blocks {x,+1,+2}, n=0,1,...,N — 1, into sym-
bol strings {s,+ 1141}, $i € A, using one of the STSA partitioning
methods.

2:  Using frequency counting, construct a D-Markov machine based on
each s, 1.,4+, to obtain state transition probability matrices {7"}.

3:  Find the (sum-normalized) left eigenvectors {V/ }, corresponding to
A1 = 1, for each one of the state transition probability matrices.

4 v =g
N=1i/n -

50 0 ‘_1%12,1:0 [0 = v1)l-

. Q
6 p |0l where ||01], 2 S, [0,
7: if p > 1, then
8: declare the system as anomalous
9: else
1
1

0:  declare the system as nominal
I:  endif

Algorithms 1 and 2 implement the theory of proposed MPT-
based STSA. Algorithm 1 presents a procedure for identification
of the window length L when the measure-preserving and ergodic-
ity conditions are satisfied. In Algorithm 1, the parameter L is
kept on increasing until a metric of variations of the left eigenvec-
tor, hereafter called ergodicity metric p, which should be a con-
stant for measure-preserving and ergodic processes, is less than
the (user-specified) threshold parameter 7. Algorithm 2 presents
the steps for detecting anomalous patterns using short-length win-
dows by constructing a D-Markov machine for the underlying sto-
chastic process, given the alphabet size |.A|, the Markov depth D,
and window length L. In this situation, an anomaly is detected
online when the aforementioned ergodicity metric p exceeds the
(user-specified) threshold parameter 7,. It is demonstrated in

One may check the eigenvectors, which bear pertinent information on
occurrence of anomalies. Apparently, it suffices to look at the left eigenvector vy,
corresponding to the eigenvalue 4; = 1, to validate the anomaly detection algorithm
in Sec. 5. However, depending on the particular application, examination of some of
the other eigenvectors could be effective in quantifying anomalies of the system.
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Sec. 5 that this criterion can be used to achieve class separability
in the feature space for pattern classification. Figures 1 and 2
show the flowcharts of Algorithms 1 and 2, respectively.

The threshold parameters 7; and 7, in Algorithms 1 and 2,
respectively, are interdependent in the sense that a smaller 7,
would result in a larger window length L (i.e., increased delay),
which would require a smaller 7, under a fixed maximum allow-
able false positive rate (FPR) for similar qualities of decisions on
anomaly detection. Both parameters, tolerated delay and maxi-
mum allowable FPR, are generally application-dependent. In this
regard, Pareto optimization for selection of the threshold parame-
ters 7, and 7, is recommended as a topic of future research in
Sec. 6.

S Experimental Validation

This section evaluates the performance of the MPT-based
STSA for early prediction of fatigue damage in a
polycrystalline—alloy material. In this regard, an ensemble of time
series has been generated for both nominal (e.g., undamaged) and
anomalous (e.g., damaged) conditions; the objective here is to
evaluate the performance of the MPT-based STSA, presented in
Algorithms 1 and 2, for online anomaly detection using short-
length windows and low-dimensional feature vectors. The per-
formance of the MPT-based STSA is compared with those of a
standard STSA (e.g., Ref. [23]) and an HMM [5]3 on the same
experimental data. In all three methods (i.e., standard STSA,
MPT-based STSA, and HMM), the number of sliding windows is
taken as N =30 (see Eq. (3), Algorithms 1 and 2).

Seventeen experiments have been conducted on the test appara-
tus, shown in Fig. 3(a), which is built upon a computer-
instrumented and computer-controlled fatigue testing machine
equipped with ultrasonic sensing and optical microscopy. The test
specimens (see Fig. 3(b)) are made of polycrystalline aluminum
7075-T6 alloy, where each specimen is 3mm thick and 50 mm
wide with a notch of 1.58 mm x 4.57 mm on one side of the speci-
men. The notch is made to increase the (local) stress concentration
factor that ensures crack initiation and propagation at the notch
end.

The test specimens have been subjected to sinusoidal loading
on the apparatus under tension—tension stress at a frequency of
~50 Hz. The ultrasonic time series collected during each experi-
ment contains approximately 1,000,000 data points. Since it is not
possible by inspection to determine the exact point at which a
change in the time series has occurred, an interval is identified
(within which this change point is located) to serve as the ground
truth, against which efficacy of the test methods are evaluated. A
part of the time series before that interval and another part of the
time series after that interval are selected such that these two parts
can be concatenated to form a single time series with a clearly
defined instant of change time; the total length of these two parts
of the selected time series is ~10, 000.

Figure 4 shows the reconstructed ultrasonic signals for sixteen
(16) test specimens, and Fig. 5 shows a typical sample of the
reconstructed ultrasonic signal with a fatigue failure onset at the
approximate stress cycle 4525. The goal here is to promptly detect
such an onset point using a short-length window of the ultrasonic
signal. The main challenges in doing so are:

(1) Fatigue failure phenomena in polycrystalline alloys are sto-
chastic, which increases the probabilities of missed detec-
tions and false alarms due to large uncertainties of
(randomly changing) failure onset points in individual
specimens, even under identical loading conditions.

(2) Typically the change in a signal pattern is very small, as
seen in the expanded view of Fig. 5 over a span of 1000

3Gaussian mixtures have been used for state-conditional density functions in the
HMM implemented here, where the number of mixture components is determined by
Bayesian information criterion (BIC) [36]. Details on the HMM-based anomaly
detection are given in Ref. [11].
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Table1 Comparison of standard STSA and MPT-based STSA

Standard STSA

MPT-based STSA

1 Time-invariance of nominal-phase PFSA

2 Generation of homogeneous Markov chain models

3 Anomaly quantification by divergence of the current PFSA
from the nominal PFSA

4 Requirement of relatively long time series for modeling of the
underlying process dynamics

5 Less robust to parametric changes in data partitioning and detection system

(e.g., alphabet size |.A| and Markov depth D)

Time-invariance of eigenvectors of nominal-phase PESA that may be
time-varying, in general.

Generation of nonhomogeneous Markov chain models

Anomaly quantification by variability of eigenvectors of evolving PESA

Requirement of relatively short time series for modeling of the
underlying process dynamics

More robust to parametric changes in data partitioning and
detection system (e.g., alphabet size |.A| and Markov depth D)

INPUT: Alphabet A, Markov depth D, a time series
generated by a measure-invariant ergodic process, number
of sliding windows N, increment of the window length AL
in each iteration. and a threshold t, >0

I Initial window size L |

| Conversion to a gtn'ng of symbols |

| D-Markov machine construction for each substring of length L |<—

U

Computation of the (sum-normalized) left eigenvector for the
eigenvalue (A;=1) of the state transition probability matrix for
each one of the generated D-Markov machines

<

Computation of the anomaly measure p as the /; norm of the
difference of the generated eigenvectors from their mean value

{} Yes
Isp>r1?[:> L=L+AL

OUTPUT:L

Fig.1 Flowchart for Algorithm 1

cycles at the top right-hand corner. The challenge is to
detect such pattern changes and to identify the onset point
in near-real-time (e.g., within a short window of length,
say, ranging from L = 50 to L =200).

(3) Low-cost ultrasonic sensors have been used for generating
and measuring the signals. These sensors are noisy and are
very sensitive to the location where they are fixed on the
specimen. Therefore, a slight change in their relative loca-
tions may produce a significant change in the measured sig-
nals. These phenomena would increase the uncertainty of
the failure onset point and make its detection even more
challenging.

Considering the healthy part of an ultrasonic signal in Fig. 5,
nearly all the signal components are available at the receiver sen-
sor. The signal energy is nearly constant and the process can be
considered as nearly measure-preserving. Moreover, if the signal
space is partitioned and the signal time series is converted to a
symbol sequence, then every cell is visited many times if the
healthy state prevails for a long time period. Therefore, the result-
ing symbolic dynamics can be considered as measure-preserving
and ergodic. In contrast, the transient part of the signal cannot be
considered as measure-preserving because some of the signal
components are reflected back rather than being available at the
receiver, and the received signals are attenuated as a result of the

061003-6 / Vol. 142, JUNE 2020

INPUT: Alphabet A, Markov depth D, a window size L. a
time series generated by a stochastic process, number of
sliding windows N, and a threshold t, >0

I Conversion to a string of symbols |

D-Markov machine construction for each substring of length L

L

Computation of the (sum-normalized) left eigenvector for the
eigenvalue (h;=1) of the state transition probability matrix for
each one of the generated D-Markov machines

0

Computation of the anomaly measure p as the /; norm of the
difference of the generated eigenvectors from their mean value

v

Yes
Isp>1y 2 Declare the system

: as anomalous
Nodb

Declare the system
as nominal

Fig.2 Flowchart for Algorithm 2

decrease in energy. Consequently, by following Corollary 1 in
Sec. 3.1, it is expected that eigenvectors would tend to be time-
invariant in the nominal (healthy) phase and time-varying in the
transient (anomalous) phase.

The above-mentioned facts are demonstrated in Fig. 6 by analy-
sis of experimental data, where the behavior of the eigenvectors is
displayed over time for different window lengths L of time-series
blocks. The state transition probability matrix 7 is constructed for
an alphabet size of |A| = 2 and Markov depth D = 1, which leads
to the number of states |Q| = 2 (see Sec. 3.1). Since |Q] =2 in
this case, there are only two (two-dimensional) eigenvectors and
only one element of the eigenvector v; corresponding to the eigen-
value /, is needed.*

Figure 6 shows that the eigenvectors (corresponding to the
eigenvalue 4; = 1) tend to become time-invariant in the nominal
(healthy) phase as the window length L is increased, while they
are grossly time-varying in the transient (damaged) phase. The
results displayed in Fig. 6 are, only to some extent, consistent
with Corollary 1 in the sense that the (sum-normalized) eigenvec-
tors, corresponding to A; = 1, should converge to the uniform

“In this paper, eigenvectors are always absolute-sum-normalized; therefore, given
an M =2-dimensional eigenvector, only (M — 1 = 1) element(s) of the eigenvector
need to be specified because the remaining Mth component will be a linear
combination of the rest.
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distribution provided that the underlying stochastic process is
truly ergodic and measure-preserving. However, the left eigenvec-
tor, corresponding the eigenvalue Z; = 1 in the nominal phase,
converges to a constant vector that deviates from being uniformly
distributed (i.e., v;; = 0.3 instead of 0.5), as seen in Fig. 6. A pos-
sible reason for this deviation is that the dynamical system is not
perfectly measure-preserving, because the ultrasonic signal is
received with some loss or dissipation. An explanation following
Example 1 is that p, # p; in the (2 X 2) state transition probabil-
7t
1-p*
large window length (e.g., L =1000), a typical value of the state
transition probability matrix in the nominal phase is:
T {0.65 0.35
0.15 0.85
tor v; = [0.3 0.7]. In this case, the stochastic model of the dynam-
ical system is ergodic but not exactly measure-preserving. In this
context, the system in the nominal phase is considered to be
ergodic and approximately measure-preserving. This property is
largely violated in the transient phase, where energy dissipation
and loss in the ultrasonic signals are much more significant. It is
seen in Fig. 6 that once the damage evolution starts, the eigenvec-
tors lose the time-invariance property and become time-varying.

Figures 7 and 8 compare the receiver operating characteristic
(ROC)’ performance of MPT-based STSA, described in Algo-
rithm 2, with those of a standard STSA and HMM in terms of the
area under the curve of ROC plots, for different parameters (i.e.,
window length L and alphabet size A) and partitioning methods.
While the results of MPT-based STSA and standard STSA are dif-
ferent for MEP and K-means partitioning in the ROC plots of
Figs. 7 and 8, respectively, the results for HMM in these two fig-
ures are largely similar because data partitioning is not relevant in
the (stochastic) algorithm of HMM. All eight plates in Figs. 7 and
8 exhibit that the performance of MPT-based STSA is consistently
superior.®

Since the (two-dimensional) eigenvectors are sum-normalized,
a change in one component implies a change in the other one.
Therefore, only one component of the eigenvector, corresponding
to the eigenvalue 4; = 1, has been used. Different values of win-
dow lengths are considered: L =50, 100, and 200. As shown in
Figs. 7 and 8, a significant improvement over the standard STSA
and some improvement over HMM are obtained by MPT-based
STSA for different values of L, with an excellent performance at
L =200, where area under the curve ~1, using K-means for parti-
tioning. It is also noticed from the figures that increasing the num-
ber of hidden states may degrade the detection performance of
HMM. This behavior is due to proneness of HMMs with Gaussian
mixtures to singularity, especially when a short-length time series
is used for training. This proneness is increased when the number
of hidden states is increased [39], in which case the maximization
of the observed data likelihood may fail or end up with a poor
local minimum.

Table 2 lists the statistics of CPU execution time’ of standard
STSA, MPT-based STSA, and HMM for fatigue damage detection
using an ensemble of ultrasonic signals. As explained in Ref. [11],
the decision of the HMM involves only the computation of the
joint likelihood of the observed time series conditioned on the

k
ity matrix 7% = 5"] where p*,p* € [0,1). For a

}, which yields a nonuniform left eigenvec-

SThe ROC curves have been used here for assessing the detection performance by
varying the parameter 7, [38], where each point in a ROC curve corresponds to a
specific value of the threshold 7,. It is noted that 7, can be determined from the ROC
curve by specifying a maximum allowable FPR, which may depend on the
application. If the cost of a positive false alarm is low, the maximum FPR could be
increased. On the other hand, for applications where the cost for a positive false
alarm is high, a small value for the maximum FPR should be selected.

SFor fair comparison, the number of states for both STSA methods and HMM in
each experiment lS the same. That is, if an alphabet A is used with a Markov depth D
in STSA then |A[” hidden states are used in HMM.

"The results have been computed on a DELL PRECISION T3400 with an
Intel(R) Core(TM)2 Quad CPU Q9550 at 2.83 GHz and 8 GB RAM, running under
Windows 7.
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Fig. 3 (a) Fatigue testing apparatus and (b) details of a test
specimen

nominal HMM. This is efficiently computed by using the forward
procedure only, which does not require iterations. Table 2 shows
that HMM typically takes more CPU execution time than both
STSA methods.

6 Summary, Conclusion, and Future Work

This paper has presented an alternative framework for STSA by
constructing time-inhomogeneous Markov models of dynamical
systems, based on the theory of ergodic sequences of MPTs. This
concept of MPT is used to develop an STSA-based anomaly
detection method. The underlying algorithm has been validated on
experimental data for fatigue damage detection in polycrystalline
alloys by using short-length time series of ultrasonic measure-
ments. The experimental validation has been conducted with dif-
ferent detection parameters, data partitioning methods, and
window lengths of the observed time series. The performance of
the proposed MPT-based STSA has been compared with those of
a standard STSA [23] and a HMM [5,10,11] for anomaly detec-
tion; the results show consistent superiority of MPT-based STSA
in terms of detection accuracy. An important property of MPT-
based STSA is that it enhances robustness of decisions on anom-
aly detection to changes in the nominal phase. It is concluded that
the MPT-based STSA is suitable for near-real-time detection of
anomalies and prediction of (possibly) forthcoming failures.

While there are many areas of theoretical and experimental
research to enhance the work reported in this paper, the authors
suggest the following topics for future research.
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Fig. 5 Ultrasonic signal with fatigue onset at 4525 cycles
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Fig. 6 Convergence of eigenvectors, corresponding to the eigenvalue /; =1 to constants in the nominal phase, with a
time-varying behavior in the transient phase, for | 4| =2, D=1, and three different window lengths L
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Fig. 7 ROC performance of the MPT-based STSA and the standard STSA, with MEP partitioning, and HMM for fatigue damage
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MEP, and (d) |4| =3, D=1, and L =200 with MEP

(€]

)

3

Pareto optimization for selection of the threshold parame-
ters t; and 1, in Algorithms 1 and 2, respectively: This will
also involve rigorous statistical analysis (e.g., Ref. [40]).
Comparative evaluation of MPT-based STSA with other
techniques of anomaly detection: Examples of potential
candidates are neural network-based forecasting [41], and
dynamic mode decomposition [42].

Investigation of sufficient conditions for commutativity of
MPTs: In this case, the commutator norm can be used as a
measure of evolving anomalies, which is expected to yield
a significant reduction in CPU execution time.

Journal of Dynamic Systems, Measurement, and Control

(4) Experimental validation of MPT-based STSA in diverse

applications: These applications should demonstrate high
performance and robustness of MPT-based STSA for real-
time monitoring and active control.
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Table 2 Statistics of CPU execution time (sec) per window for online fatigue damage detection

Standard STSA MPT-based STSA HMM

Parameters and partitioning method Mean Std dev Mean Std dev Mean Std dev

|A| =2,D =1, L =50, MEP 2.133x 107° 9.609 x 10~° 2.133x 1072 9.610 x 107° 2754 x 107* 2372x107°
|A| =2, D=1, L =100, MEP 3.866 x 107> 9.110 x 107 3.866 x 107° 9.110x 10°° 3.956 x 10~* 3.422x107°
|A| =2, D=1, L =200, MEP 9.031 x 107° 7.117 x 1072 9.031 x 107> 7.117 x 1072 7.693 x 1074 4282 % 107°
|A| =3, D=1, L =200, MEP 1.733 x 107* 9.122x107° 1733 x 1074 9.119x107° 8.831x107* 6.494 x 107°
|A| =2, D=1, L =50, K-means 1.053 x 107 5.696 x 107> 1.054 x 1074 5.696 x 107> 2783 x 107* 3.226 x 107°
|A| =2, D =1, L =100, K-means 1339 x 107* 1.616 x 1072 1339 x 107* 1.616 x107° 4.109 x 107* 3.606 x 107°
|A| =2, D=1, L =200, K-means 2.177 x 1074 8.809 x 107> 2.177 x 107* 8.809 x 107> 7.816 x 1074 4791 x 1072
|A| =3, D =1, L =200, K-means 3.048 x 107* 1272 x 1074 3.048 x 107* 1272 x107* 9.063 x 107* 6.529 x 107°
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