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The topic of thermoacoustic instabilities in combustors is well-investigated, as it is
important in the field of combustion, primarily in gas-turbine engines. In recent years,
much attention has been focused on monitoring, diagnosis, prognosis, and control of
high-amplitude pressure oscillations in confined combustion chambers. The Rijke tube
is one of the most simple, yet very commonly used, laboratory apparatuses for emula-
tion of thermoacoustic instabilities, which is also capable of capturing the physics of
the thermally driven acoustics. A Rijke tube apparatus can be constructed with an elec-
trical heater acting as the heat source, thus making it more flexible to operate and safer
to handle than a fuel-burning Rijke tube or a fuel-fired combustor. Augmentation of the
heat source of the Rijke tube with a secondary heater at a downstream location facili-
tates better control of thermoacoustic instabilities. Along this line, much work has been
reported on the investigation of thermoacoustics by using computational fluid dynamics
(CFD) modelling as well as reduced-order modelling for both single-heater and two-
heater Rijke tube systems. However, since reduced-order models are often designed and
built upon certain empirical relations, they may not account for the dynamic behaviour
of the heater itself, which is a critical factor in the analysis and synthesis of real-time
robust control systems. This issue is addressed in the current paper, where modifica-
tions have been made to existing models by incorporating heater dynamics. The model
results are systematically validated with experimental data, generated from an in-house
(electrically heated) Rijke tube apparatus.
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1. Introduction

The prime source of thermoacoustic instabilities (TAI) [1] in a combustor is the strong
coupling between the unsteady heat release rate from fuel-air burning and natural acous-
tics in the confined combustion chamber. The TAI phenomena lead to high-amplitude
pressure oscillations (e.g. peak values reaching ∼ 1000 Pa) in the combustion chamber,
which could be detrimental to the structural integrity of the combustor as these oscillations
may produce thermomechanical fatigue stresses in the combustor wall and liners. The TAI
phenomena also cause disruptions in the air flow through the combustor, often leading to
flow reversal (which affects both upstream and downstream components in the combustion

∗Corresponding author. Email: axr2@psu.edu

© 2020 Informa UK Limited, trading as Taylor & Francis Group



Combustion Theory and Modelling 531

system as well) and instigating flame blowout. It is well known that a very small amount
of energy from the combustion process may lead to TAI due to low acoustic damping in
the combustors [2].

In recent years, much research has been conducted to investigate the nonlinear nature of
acoustic waves within the combustion chamber. The Rijke tube [3] is one of the simplest
experimental devices that can capture the essential physics of combustion chamber acous-
tics and their coupling with the heat release rate. A thorough experimental and numerical
study on Rijke tubes has been conducted by [4]. Other researchers such as [5–7] have also
conducted studies using a Rijke tube apparatus and have attempted to implement various
control methods in order to reduce the severity of TAI. Several researches (e.g. [8–12])
have also conducted experimental research on TAI in fuel-burning laboratory-scale com-
bustors. However, a major drawback of solely using an experimental apparatus for the
purpose of extensive research is the lack of versatility and operating range, which is pri-
marily due to safety requirements or limitations of the facilities at hand. Thus, there is a
strong need for the development of reduced-order numerical models for the study of com-
bustion instabilities in the framework of computational models of affordable complexity.
[13] proposed a simplified reduced-order model based on the principle of Galerkin-type
modal decomposition of the acoustic waves to solve the acoustic wave equation with a
heat source. A similar method has been used by [14,15] for modelling the Rijke tube.
Most current available Galerkin-based models try to account for the heater time lag using
a variable τ (e.g. [16]). However this is a flow time lag and does not include the time
response of the heater itself, i.e. the thermal inertia of the system or the dynamics of the
heater; moreover, estimating of the parameter τ is not always easy. This may lead to mod-
erately inaccurate response times, which is an important factor in designing a robust online
active control system. In the research work reported in the current paper, the authors have
attempted to modify the existing Galerkin-based numerical model to include heater and
thermal dynamics as well as include some of the flow physics to provide more accurate
time responses, while still retaining much lower model complexity than a full-scale com-
putational fluid dynamics (CFD) simulation. In the models available in the literature, the
user needs to specify parameters such as heater temperature, which cannot be directly
controlled. The model, proposed in this paper, uses heater power as an input to the sys-
tem, similar to the input that an experimental Rijke tube apparatus receives. Similarly,
the reduced-order model is re-formulated such that, for the same model parameters, the
entire range of operation of the Rijke tube can be simulated without re-tuning the critical
parameters.

Several methods exist for suppression of the generated high-amplitude pressure oscilla-
tions in combustors. Passive control in the form of acoustic dampers [17] are widely used
for mitigation of TAI. However, such acoustic dampers are only useful over certain fre-
quency ranges, and they may not be effective at low frequencies. Several active control
methods have also been proposed by researchers, such as the use of Helmholtz resonators
[18], loudspeakers [7,14] and radial injection of air through micro-jets [19]. Usage of a sec-
ondary heat source has been introduced by [20] as a method of controlling the TAI based
on the concept of destructive interference. This is a viable method of TAI control, espe-
cially for large combustors in aircraft and land-based gas turbines. Numerical simulations
have been conducted in the current paper to investigate the efficacy of using a secondary
(control) heater downstream for mitigating the instabilities of pressure oscillations in the
Rijke tube.
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Contributions: From the above perspectives, major contributions of the paper are
summarised below.

(1) Modification of established modal decomposition-based order reduction techniques:
The objective here is to include the effects of heater dynamics, system thermal inertia,
and flow dynamics on the reduced-order model.

(2) Modification of the simulation procedure for reduced-order modelling: The objective
here is to develop a numerically efficient procedure that takes into account the effects
of time-varying thermal and flow conditions of the Rijke tube apparatus for numerical
solution.

(3) Demonstration of the efficacy of a secondary control heater as a method for suppress-
ing the instabilities in the Rijke tube system: The objective here is to show how the
results of the numerical simulation compare to those reported in the standard literature.

(4) Experimental validation of the proposed reduced-order modelling technique: The
objective here is to validate the aforesaid model against experimental results from an
in-house Rijke tube and to show how the designed formulation works across the entire
operational regime.

Organisation: The rest of the paper is organised into the following sections:

• Section 2 describes the Rijke tube apparatus that is used to produce the experimental
data for validating the proposed numerical model.
• Section 3 presents the basic mathematical formulation of a reduced-order Galerkin-

based model of the two-heater Rijke tube, where the modifications pertaining to the
thermal inertia effects are also described. Section 3.4 validates the proposed numerical
model with the results that are obtained from the experiments.
• Section 4 discusses the stability chart that is generated from the experimental data.

Section 4.4 briefly discusses the hysteresis effects as seen in the numerical model, and
also provides a comparison with the results of experimental studies that are reported in
the literature.
• Section 5 demonstrates selected numerical simulations by using the secondary heater as

a control mechanism for suppression of instabilities, where the results are compared to
those available in the reported literature.
• Section 6 summarises and concludes the paper along with recommendations for future

research.

2. The experimental Rijke tube apparatus

The experimental Rijke tube apparatus, which has been constructed in the laboratories
of Penn State [21], consists of a 1.5 m long aluminium tube with a hollow square cross-
section of inside lengths of 93 mm. There are two heating elements: a fixed primary heater
at 0.375 m from the flow inlet and a movable secondary heater downstream. Both heaters
are made of compact wire-mesh Nichrome for generating thermal power, which emulate
the flame in a combustible fuel-air mixture in a real-life combustor. The secondary (control)
heater has a maximum displacement of 500 mm from the centre of the tube towards the exit
end. Figure 1 depicts the Rijke tube apparatus.

An array of eight wall-mounted pressure sensors are placed at equidistant axial loca-
tions for capturing the pressure signals. The Rijke tube data are acquired at a sampling rate
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Figure 1. Rijke tube experimental apparatus.

of 8192 Hz. To measure the spatio-temporal temperature variation, 15 K- type transition-
junction thermocouple probes are used. The mass-flow rate into the system is controlled
accurately using an Alicat Mass Flow Controller (0–1000 SLPM). The mass-flow rate con-
trols not just the velocity over the heater but also affects the convective heat transfer from
the wire mesh to the air and heat loss to the walls. The inlet and outlet of the tube are
fitted with decouplers, which are large hollow enclosures serving the purpose of producing
pressure waves under open-open end boundary conditions of the Rijke tube. Additionally,
the upstream decoupler reduces flow fluctuations at the inlet while the downstream decou-
pler serves as a heat sink, allowing the hot air exiting the outlet to be cooled, before it is
released to the atmosphere.

The two Nichrome heaters are capable of handling high heating loads for a sufficiently
long time without being oxidised at the high operating temperatures. The square-weave
40-mesh structure of each heater acts as an acoustically compact source of thermal energy
and allows a uniform heating of air over a cross-section. Two copper rods are welded to
the copper strips and are electrically shielded from the walls of the chamber. The cop-
per tubes are connected to a programmable DC power supply. The length of the tube
downstream of the heater is insulated to prevent heat loss from the walls allowing for
maintaining the same initial and running conditions of different experimental runs. It also
acts as a safety measure to prevent the operator from coming in contact with the hot
metal walls.

3. Reduced-order numerical modelling of the Rijke tube

This section addresses reduced-order modelling of both single-heater and two-heater Rijke
tubes, which include the thermal-hydraulic dynamics and their coupling with chamber
acoustics.

3.1. Modelling of a single-heater Rijke tube

As mentioned previously, a simplified reduced-order model using Galerkin-type modal
decomposition was introduced by [13,22] to solve the acoustic wave equation with a heat
source in the system. The one-dimensional wave equation was derived for the pressure
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perturbations (p′) as

∂2p′

∂t2
− a2 ∂

2p′

∂x2
= (γ − 1)

∂Q̇

∂t
(1)

where a denotes the speed of sound and Q̇ is the volumetric rate of thermal power addition.
Equation (1) does not include the effects of mean flow on the acoustic field. Culick’s expan-
sion [13] is used for the pressure perturbations (p′) and velocity perturbations (u′) using
the Galerkin eigen-acoustic modes. The decomposition into n modes having individual
time-varying modal amplitudes of ηj(t) yields:

p′(x, t) =
n∑

j=1

p′j(x, t) = p0

n∑
j=1

ηj(t)ψj(x) (2)

u′(x, t) =
n∑

j=1

u′j(x, t) =
n∑

j=1

η̇j(t)

γ k2
j

dψj(x)

dx
(3)

where p0 is the mean undisturbed pressure; ψj(x) and kj are the mode shape (at the location
x) and the wavenumber of the jth mode, respectively, which has a natural frequency of ωj;
and γ is the ratio of specific heats of air.

Substituting Equation (2) into Equation (1), expanding into eigen-modes, and adding a
damping term ξj [23], the final expression is obtained as

d2ηj

dt2
+ 2ξjωj

dηj

dt
+ ω2

j ηj = γ − 1

p0

∫
ψj
∂Q̇

∂t
dx (4)

where the left-hand expression in Equation (4) represents a set of n uncoupled linear
oscillators that are excited by the forcing terms on the right-hand side. For a Rijke tube,
[14] proposed a modified version of King’s law, which yields the volumetric rate of heat
addition (Q̇) as

Q̇ = 2Lw(Tw − T)

SL
√

3

√
πλCvρ0
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2

[√∣∣∣∣u0

3
+ u′f (t − τ)

∣∣∣∣−
√∣∣∣∣u0

3
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]
δ(x− xf ) (5)

where L is the length of the Rijke tube, Lw is the equivalent length of the wire, λ is the
thermal conductivity of air, Cv is the constant volume specific heat capacity of air, τ is
the time lag between the heat transfer and the velocity as a result of thermal inertia, ρ0

is the mean density of the Rijke tube air, dw is the heater wire diameter, (Tw − T) is the
mean temperature difference between the heater and the air, S is the cross-sectional area of
the Rijke tube, xf is the heater location, and u′f is the acoustic velocity perturbation at the
heater location. Using Equation (5), the acoustic equation (Equation (4)) is modified to:

d2ηj

dt2
+ 2ξjωj

dηj

dt
+ ω2

j ηj =
˙dQ′

dt
(6)

where Q̇′ combines the remaining terms as

Q̇′ � 2(γ − 1)Lw(Tw − T)
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and the frequency-dependent damping ξj is given by [4] as

ξj �
(

c1
ωj

ω1
+ c2

√
ω1

ωj

)
(8)

where the first term in Equation (8) is responsible for the end losses and the second term
represents losses due to boundary layers; and the constants c1 and c2 are the damping
coefficients that represent the amount of acoustic damping in the Rijke tube. The time lag
τ is computed by using Lighthill’s correlation as: τ � 0.2 dw

u0
.

The modal equations, derived above, can be cast in a linearised state-space form and the
dimensionality of the ordinary differential equation (ODE) system depends on the number
of the selected ‘significant’ acoustic modes. For each mode, there are two states, ηj and η̇j.
This ODE system can be solved using a numerical method (e.g. Runge-Kutta).

3.2. Modelling of a two-heater Rijke tube

A secondary heat source is introduced in the Rijke tube in addition to the primary heat
source, with the secondary heater acting as a control heater. This arrangement changes
Equation (6) to now having two heat source terms:

d2ηj

dt2
+ 2ξjωj

dηj

dt
+ ω2

j ηj =
˙dQ′1
dt
+
˙dQ′2
dt

(9)
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where the subscript i takes values 1 and 2 for the primary and secondary heaters,
respectively.

3.3. Modelling of the heater and thermal dynamics

The state-space representation of the acoustics in Equation (4) for the jth mode is

[
η̇j

η̈j

]
=

[
0 1
−ω2

j −2ξjωj

] [
ηj

η̇j

]
+

[
0

˙dQ′1
dt +

˙dQ′2
dt

]
(11)

where the frequency ωj, computed from [13,24], is represented as

ωj = akj (12)

where the wavenumber kj is fixed for a given acoustic boundary condition with input–
output specifications of a (pressure anti-node, or pressure open) fixed inlet velocity and
(pressure node, or pressure closed) constant outlet pressure; and the speed of sound a is
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a function of the gas temperature in the tube. In this case, the tube has constant pres-
sures at either end, and the speed of sound a is approximated to depend on the mean gas
temperature, which yields the following expressions for ωj and ξj:

ωj =
√
γR Tavg

(
j
π

L

)
(13)

ξj

ξ1
= ωj

ω1
(14)

Since ωj directly depends on the time-dependent temperature T, the system matrix in
Equation (11) is linear parameter varying (LPV) (which is effectively time varying) and
hence needs to be recomputed at each time step.

For ease of computation, many researchers have used the above reduced-order equa-
tions by making certain approximations, such as the mean values of temperature and flow
velocity, under the assumption that they are constants. However, this assumption may not
always be appropriate, not only because of the temporal changes but also due to the rate of
change of these time-dependent parameters. In the experimental apparatus, it may not be
possible to control directly the temperature of the heaters, but instead the power input into
the heater is the directly controllable variable and the temperature changes occur as a result
of the power input and the heat transfer within the Rijke tube. Therefore, the temperature
itself has its own dynamics, which has been addressed in this paper and included into the
computational procedure.

In view of the above discussion, the heater power is the variable that is set by the
user, and the temperatures evolve following the various relations of heat transfer and
fluid mechanics. In the experimental apparatus, the power supply has its own transient
behaviour, which is assumed to be linear within the operational range such that the heater
is able to go from 0 to 2000 W in a linear ramp in 1 s; and this limits the rate of power
rise or fall in the heaters. The rate of heat loss (Q̇heater) from the heater in a time step is
computed from the following equation [15]:

Q̇heater(t) = Lw(Tw,i − T)

[
λ+ 2

√
πλCvρ0

dw

2

((
1− 1

3
√

3

)√
u

+ 1√
3

√∣∣∣∣u

3
+ u′(t − τ)
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)]

(15)

So the temperature of the heater wire (Tw) changes in the time interval [t, t + dt) as

Tw ← Tw + (P(t)− Q̇heater(t)) dt

MCpwire(Tw)
(16)

where M is the mass of the wire mesh that can be obtained by measurement; P(t) is the
time-dependant power supplied to the heater; and Cpwire is the (temperature-dependent)
specific heat capacity of the wire material, which is available from manufacturer’s speci-
fications. For computing the temperature in the Rijke tube, the flow domain in the tube is
split into three segments; one containing the volume between the inlet and first heater, the
next being the volume between the two heaters, and the third being the volume between
the secondary heater and the outlet. It is assumed that the temperature in the first seg-
ment is always the same as the inlet temperature (Tin). The temperatures in the remaining
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two sections are computed by doing energy flow analysis on the constant volume; Q̇add is
the power added to a segment in a time step, where the subscript down denotes the value
downstream:

Q̇add = Cp(Tdown)Tdownṁin + Q̇heater(t)− Q̇conv − Cp(Tsegment)Tsegmentṁin (17)

where Q̇conv is the rate of heat loss to the Rijke tube wall of area Asegment (which is at the
inlet temperature) via convection.

Q̇conv = 0.664λ(Resegment)
0.5(Nu)0.333Asegment(Tsegment − Tin) (18)

Finally, the temperature of the volume segment Vsegment is computed in the time interval
[t, t + dt) as

Tsegment ← Tsegment + Q̇add dt

ρVsegmentCp(Tsegment)
(19)

The average temperature is measured as the segment length-weighted average of the
segment temperatures.

Using all the above additional information that is computed by solving the heat transfer
and certain fluid equations, the reduced-order model can be improved by removing some
of the typical assumptions. Values of parameters (e.g. the mean temperature, wire temper-
ature, density and velocity at the wire) now become functions of time and are dependent
on the changing operating conditions of the Rijke tube. This is in agreement with what
is observed experimentally as for the same heater input, the heater wire temperature is
substantially higher when the flow rate is low due to lower convective heat transfer as
opposed to higher flow rate situations. These physical processes also dictate mean temper-
ature, speed of sound and the natural frequency of the system. Thus, a single model can
be used for the entire operational range of the Rijke tube without having to make assump-
tions and change the individual variable values for each operating region. Furthermore,
accounting for heater lag produces a more accurate time response of the system to changes
in the control power and thus is better for studying transient phenomena or for testing the
effectiveness of controllers on the system.

Equations (10) and (15) are modified to account for the local conditions of temperature
and density as follows. The assumption here is that only the upstream values are considered
when computing the heat transfer, where the subscripts in and down denote the values at
the inlet and the downstream sections, respectively. It is noted that the model parameters
Cv and λ are functions of temperature.

Q̇heater(t) = Lw(Tw,i − Tdown)×
[
λ+ 2

√
πλ(T)Cv(T)ρin
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Tdown

dw
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×
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)
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3
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+ u′(t − τ)

∣∣∣∣
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(20)
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The effects of uncertainties are realised in the simulation by modifying the acoustic veloc-
ity perturbation u′ with a zero-mean additive Gaussian noise component that is chosen to
have an intensity equal to 0.5% of the mean flow velocity.

3.4. Parameterisation of the reduced-order model

This section parameterises the reduced-order model, developed in Section 3, to match the
Rijke tube apparatus described in Section 2. The geometry and other model parameters are
chosen to be the same as those in the experimental apparatus. The length of the numerically
modelled Rijke tube is taken to be L = 1.5 m, area of cross-section S = 0.093× 0.093 m2.
The primary heater is placed at x1 = 0.375 m, similar to the experimental apparatus, and
the pressure sensor is located at xp = 1 m; all lengths are measured downstream from
the inlet. The heaters have properties similar to the actual wire mesh used in the exper-
iment with Lw = 23.6 m, dw = 0.33 mm. The thermal heat capacity is taken to be that
of Nichrome and each wire mesh has a total mass of M = 170 gm. The thermal proper-
ties of air used are fourth-order polynomials obtained from a NASA report (the NASA
polynomials) [25].

In the numerical simulations reported in this paper, a total of 10 eigen-modes are con-
sidered to adequately capture the dynamics of the acoustic system. This implies that the
number of eigen-modes is n = 10, as seen in Equations (2) and (3). To model the damp-
ing coefficients in Equation (8), the parameters c1 and c2 that are to be set by the user
depend on the actual observed damping. These parameters have been set to be c1 = 0.048
and c2 = 0.040 to match the experimental results described in Section 4. Furthermore, the
entire amount of the net heat transferred from the heater(s) enters the air, because a part of it
is lost to the surroundings (primarily by radiation). Therefore, a factor α < 1 is multiplied
to the value of Q(t). An empirical model of the parameter α is

α = 1−
(

Tw − Tavg

Tw

)0.15

(22)

The above formulation assumes the system to be acoustically closed. However, that is
not actually true as though the presence of the decouplers maintain nearly constant pres-
sures at the ends, the presence of a flow rate regulator ensures a constant flow. Thus, the
average flow deviates from that computed directly in terms of the measured flow rate
in LPM. Instead the flow velocity is obtained by multiplying the computed value of Uin

by a scaling factor β that is empirically defined as β = |Uin/U∗in|0.9, where U∗in � 1 m/s,
making β a dimensionless quantity. A zero-mean Gaussian noise of standard deviation
0.3Pa has been added to the output in order to emulate the process noise as well as the
sensor noise. This choice is made to match the (non-dimensional) Prms value described
in Section 4.3. The numerical sensor measures the acoustic pressure of each Galerkin-
mode and then computes the combined acoustic pressure at that location following
Equation (2).

For the remainder of the paper, the parameter values described in this section have been
used without any changes. In other words, with these parameters optimised a complete
model of the system is obtained, and the only changes that need to be made for each
numerical experiment are the boundary conditions.
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Figure 2. Stability map generated from experimental data of Rijke tube apparatus. Instability
indicated by dark shading marked with ‘× ’, and stability by light shading with ‘°’.

4. Stability maps developed from experimental data and model data

This section develops and compares stability maps from data generated from the Rijke
tube apparatus (see Section 2) and reduced-order model (see Section 3.4) under the same
operating conditions.

4.1. Stability map: experimental data

Experiments have been conducted with multiple combinations of heater power input (Ein)
and air flow rate (Q) to record data of 30 s duration for each case. A typical stability map is
shown in Figure 2 with the following notations: the spaces marked as ‘× ’ (with a darker
shaded box) denote unstable operation with an audibly discernible resonating mode, and
those marked as ‘°’ (with lighter shading) denote stable operation.

Different values of initial temperatures affect the stability characteristics of the ther-
moacoustic process as a consequence of changes in the mean temperature in the Rijke
tube. When a lower initial mean temperature of around ∼ 300◦K is maintained in the
Rijke tube apparatus, a lower frequency (∼ 114 Hz) mode of instability is observed; the
instability occurred at a higher frequency (∼ 131 Hz) mode at a higher initial mean tem-
perature of ∼ 348◦K. These observations are attributed to the increase in the speed of
sound at an elevated mean temperature, which changes the fundamental frequency from an
analytically calculated value of 115– 127 Hz for an open-open tube, tallying closely with
the peak frequencies of experimental data. In this work, only the higher initial temper-
ature mode has been reported for validation because it is more consistent and is easier
to obtain experimentally because cooling the Rijke tube after each experiment is very
time-consuming.

4.2. Stability map: numerical simulation of the reduced-order model

The reduced-order model, described in Section 3, has been run with the same model param-
eters for the same range of flow rates and primary heater power inputs as the experiments
described above. The ambient temperature is taken to be 348◦K, which is the more appre-
ciable ambient conditions as described above. Each simulation has been performed for
simulated time intervals of 30 s with a time step size�t = 10−4 s; and the root mean square
(RMS) values of pressure oscillations are computed over the last 2 s as a measure of sta-
bility. An operational condition is considered to be unstable if the Prms exceeds a threshold
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Figure 3. Stability map generated from simulation data of reduced-order model. Instability
indicated by dark shading marked with ‘1’, and stability by light shading with ‘0’.

of 5 Pa. The generated stability map is shown in Figure 3. The boxes shaded darker blue
with the Boolean value of 1 indicates an unstable operating condition.

It is seen that the stability map matches very closely with that reported from experiments
(shown in Figure 2). A comparison of the stability in Figures 2 and 3 reveals that, in the
physical experiments, the maximum range of unstable operation is bounded in the power
range 1000– 2000 W and in flow range 132–246 LMP. For the numerical simulation, the
power range 1000–2000 W is identical to that in experiments, while the flow rate range is
132–255 LPM, which is reasonably close. The frequency of the unstable mode was also
found to be 117 Hz which is very close to the experimentally obtained value of 131 Hz.

A comparison of the experimental stability map and numerical stability map reveals that
the discrepancies occur for 7 out of 57 unstable conditions, yielding an error rate of about
12%. This discrepancy is possibly due to the fact that the numerical model is a determin-
istic model of a stochastic process with a few outliers. In addition, there may be certain
experimental uncertainties such as the exact ambient temperature, the exact initial condi-
tion of the tube, both of which are not perfectly repeatable. There are also some modelling
simplifications that may tend to lead to inaccuracies towards the edges of the unstable
region seen in the stability map. However, for the purpose at hand, a higher-fidelity model
may not be necessary because this low-fidelity model yields a sufficiently close match
to the experimental ground truth. For another Rijke tube, the parameters (e.g. damping
coefficients c1 and c2) of the numerical model should be tuned to match the experimental
data.

It is also worthwhile to note that although theproposed reduced-order model is more
detailed than the traditional Galerkin-based models (which do not account for heater effects
or thermal inertia), the time required to run a simulation is reasonably low. In practice, it
is observed that the simulation time required is approximately 1.5× (i.e. simulation of a
time interval of 30 s takes ∼ 45 s of the machine run-time). The code has been developed
and run on MATLAB 2019b utilising a single core of an Intel Xeon Workstation using the
E5-2670 chipset.

4.3. Comparison of numerical simulation and experimental results

A major focus of this paper is to incorporate the thermal inertia of the heaters in the
model equations and to investigate the effects of the same on the system dynamics of
the Rijke tube. In order to study these phenomena, each experiment has been conducted
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Figure 4. Time series of pressure oscillations: experimental and simulation data, where the upper
parts (in black) are experimentally observed time series and the lower parts (in grey) are numerically
simulated from the reduced-order model under the same operating conditions.

for a duration of 30 s in the following fashion. The heater power is maintained at 200 W for
the first 10 s and then the heater power is abruptly increased to the final value. It is noted
that the resulting increase in the heater temperature is not linear over the entire period.
Furthermore, there is a process-dependent time delay between the heater power and heater
temperature responses. As mentioned before, many reduced-order numerical models do not
capture this behaviour. The model proposed in this paper incorporates the heater dynamics,
and thus captures these delays in the formulation of the reduced-order model.

The four plates in Figure 4 display four profiles of pressure oscillations to compare the
dynamic behaviour of the Rijke tube both in the experiment as well as in the numerical
simulation under four different operating conditions. The primary power is maintained
at 1400, 1600 and 1800 W as shown in the figure. For all of these runs, the secondary
heater is kept inactive. For each of the operating condition reported here, the upper part
(in black) of Figure 4 shows the pressure profile obtained from experiments following the
same power profile. The lower part (in grey) of Figure 4 shows the equivalent numerical
simulation. These responses have been scaled for ease of comparison, where the scaling
factor has been chosen to be the root mean square (RMS) value of the noise. With this
scale factor, the peak values of the numerically obtained instabilities match those that are
obtained experimentally; from these observations, the noise in the reduced-order model is
identified to be a zero-mean Gaussian with intensity 0.3 Pa.

Form the results of comparisons in Figure 4, it is concluded that the model-predicted
instability growth is very close to that observed in the experimental results. This obser-
vation suggests that the numerical model is capable of capturing the Rijke tube dynamics
very well, which include heater dynamics and delays. The small deviations between the
model predictions and experimental observations, as seen in Figures 2 and 3 and in the
four plates of Figure 4, can be attributed to the uncertainties in modelling of experimental
conditions.
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Figure 5. Time series of hysteresis experiment simulation.

4.4. Hysteresis as a result of thermal dynamics

It has been observed by [4] that the onset of instability in the Rijke tube exhibits hysteresis
due to the thermal inertia of the system. The rationale is that the direction of approach-
ing a particular operating condition may change depending on whether that it is stable or
unstable; this effect is seen in the simulation as well. In order to observe the hysteresis phe-
nomena, the simulation has been conducted for a total of 720 s duration when the air flow
rate is held constant at 160 LPM and the primary heater power is varied in the following
way. For the first 90 s, the primary heater power is held at 600 W to ensure that a steady
state is reached. Subsequently, the primary heater power is increased in steps of 50 W on
an interval of 30 s. Holding the power constant for each window of 30 s ensures that a
quasi-steady state is reached for the respective power setting. These stepwise increments
are continued till the power reaches a maximum of 900 W. The system is held steady at
a power of 900 W for a minute and then the process is reversed by reducing the power in
decrements of 50 W every 30 s. It is seen that the system remains unstable even at 600 W
during the decreasing power steps although the system was initially stable at 600 W as seen
in Figure 3. Therefore, the decrements in power are continued till a lower bound of 200 W
is reached as seen in Figure 5.

The top part in Figure 5 shows the profile of pressure signal for the above numerical
experiment, while the bottom part shows the temporal variations in power and the average
(wire) temperature of the two heaters in the Rijke tube apparatus: P1 and TWire1 for the
primary heater, and P2 and TWire2 for the secondary (inactive) heater. It is seen that the
temperature profile has a lag as compared to the heater power profile, which is an effect
of the thermal dynamics; these phenomena have not been captured by most reduced-order
numerical models. Figure 6 presents the hysteresis loop for the numerical experiment,
where the changes in the RMS values (Prms) of the pressure oscillations over the last 5 s
of each 30 s window are shown along with the arrows that indicate the direction of the
primary heater power being varied.
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Figure 6. Hysteresis loop obtained from the simulation in Figure 5.

Following Figure 6, the system becomes unstable at ∼ 700 W while the power is
increased (i.e. forward path in the hysteresis diagram). However, as per the stability chart in
Figure 3, this operational condition is expected to be stable. Further increasing the power to
900 W only increases the amplitude of the pressure oscillations, but the system still remains
unstable. On the return path, however, the system stays unstable past 700 W and remains
unstable right down till ∼ 450 W. At ∼ 400 W, the system finally returns to stability and
remains stable for lower values of power. As seen in Figure 6, this leads to a reasonably
large hysteresis loop, very similar to what was reported by [4].

5. Simulated control using the secondary heater

This section presents a numerical simulation of active control of the Rijke tube system by
manipulating the power of the secondary heater while that of the primary heater is held
constant. Having the dynamical model of the Rijke tube validated with experimental data,
numerical simulations have been performed to test the efficacy of the secondary heater as
a (passive) controller to suppress the thermoacoustic oscillations.

Usage of a secondary heat source for active control of thermoacoustic instabilities has
been addressed in the technical literature (e.g. [20,26]. To this end, the researchers have
placed a secondary electric heater downstream in the flow path of the Rijke tube to control
the instabilities, where a Bunsen burner served as the primary heat source; this concept has
been validated both numerically and experimentally. However, the numerical simulations
have not included the heater dynamics and therefore yielded nearly instantaneous control,
which is different from real-life experiments. The current paper has included the effects of
heater dynamics and compared the results with the findings of [20]. In the current paper,
all controllers are passive with no feedback loop because the primary aim is to show the
effectiveness of the secondary heater for control of thermoacoustic pressure oscillations
and the expected time delays due to the system dynamics.

5.1. Simulated control: effectiveness of control heater

In order to demonstrate its efficacy as a controller, the secondary heater has been placed
at x2 = 1.125 m, which is about three-quarters of the length down the Rijke tube. This
location has been demonstrated by [4] to be most effective for suppressing thermoacoustic
instabilities in the Rijke tube when the primary heater is placed at a quarter length down
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Figure 7. Time series of pressure, temperature, and power in two simulated control experiments.
(a) Time series from the first control case: flow rate of 140 LPM and (b) time series from the second
control case: Flow rate of 210 LPM.

from the inlet. Two trial cases are conducted to demonstrate the effects of the secondary
heater and the results are shown in Figure 7.

The first case consists of numerical simulations for a time interval of 90 s with a con-
stant flow rate of 140 LPM. At the very start (i.e. time t = 0 s), as the primary heater
power is increased to 1200 W, the system becomes unstable. The primary power is then
held at a constant level of 1200 W for 90 s, while leaving the secondary heater turned
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off. At time t = 30 s, the secondary heater power is increased to 300 W and then further
increased to 450 W at t = 60 s. The profiles of the corresponding pressure time series and
associated power and temperature time series are shown in Figure 7(a). It is seen that
although the secondary heater power at 300 W is incapable of completely suppressing
the thermoacoustic instabilities, it modestly reduces the amplitude of the pressure oscil-
lations. However, increasing the secondary power to 450W completely suppresses the
high-amplitude pressure oscillations.

The second case consists of numerical simulations for a time interval of 90 s with a
constant flow rate of 210 LPM. At time t = 0 s, the primary heater power is increased
to 1600 W while the secondary heater is kept off till t = 30 s and then raised to 500 W;
the secondary heater is switched off at t = 60 s. The corresponding pressure time series
and the associated power and temperature time series are shown in Figure 7(b). It is seen
that the initially unstable system is adequately controlled by switching on the secondary
heater. However, when the secondary heater is switched off, the system reverts back to
instability.

5.2. Simulated control: effect of control heater location

The location of the control (secondary) heater largely determines whether the instabil-
ity would be successfully suppressed. To demonstrate this phenomenon, numerically, two
cases have been considered, each having a simulated time interval of 460 s. In both cases,
the air flow rate is kept constant at 180 LPM and, at t = 0 s, the primary heater power is
raised to 1400 W; at t = 20 s, the secondary heater power is increased to 600 W. As seen in
Figure 8(a), the instability is completely suppressed. Figure 8(b) shows that, although the
amplitude is very modestly reduced, the pressure oscillations still prevail. This is due to the
fact that the secondary heater is located at x2 = 1.125 m (i.e. 3L/4 from inlet) for first case
(Figure 8(a)), which is the most effective location for control. In contrast, for Figure 8(b),
the secondary heater is placed further upstream at x2 = 0.875 m (i.e. 7L/12 from
inlet).

5.3. Simulated control: comparison with results reported in technical literature

In their research, [20] studied the effects of location of the secondary heater on suppres-
sion of thermoacoustic instabilities in a Rijke tube. It was observed that, for a particular
operating condition, placing the secondary heater at 0.73 L causes the minimum power
needed to mitigate instability to be 122.5 W in their apparatus. Placement of the secondary
heater at 0.80 and 0.87 L causes the needed minimum power levels to be 183 and 309 W,
respectively.

In the current paper, similar numerical simulations have been conducted for the flow
rate of 210 LPM and primary power of 1200 W. When the secondary heater is placed at
0.73 L(1.095 m), the minimum power needed to completely suppress the oscillations is
found to be ∼ 268 W; and when the heater is placed at 0.80 L(1.2 m)and 0.87 L(1.305 m),
the minimum power requirements are∼ 326 and∼ 513 W, respectively. Thus, a very sim-
ilar trend is observed between the numerical simulations presented in this paper and those
generated experimentally by [20]. The values do not match exactly because of the fol-
lowing reasons. The Rijke tube geometries are different and the primary heat source in
the experimental work by [20] is a flame while the heat source in the numerical model,
presented in this paper, is an electric heater; hence the input conditions are dissimilar.
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Figure 8. Effects of the control heater location on system dynamics. (a) Time series of pressure,
temperature, and power in the simulation with the control heater placed at x2 = 1.125 m (3L/4) and
(b) time series of pressure, temperature, and power in the simulation with the control heater placed
at x2 = 0.875 m (7L/12).

6. Summary, conclusions, and future work

This paper has proposed a modification of the traditional Galerkin-mode-based technique
to construct a reduced-order model of an (electrically heated) Rijke tube, which includes
the inherent thermal physics of the heaters and the system dynamics in general. The model
equations are developed by including the heat transfer phenomena in the heaters and ther-
moacoustics in the Rijke tube. This approach yields realistic time lags which are critical for
evaluating dynamic performance and system stability for real-time monitoring and active
control. The model structure is flexible in the sense that it is capable of incorporating either
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a single heater or a combination of two heaters, where typically the secondary heater acts
as an actuator for controlling the thermoacoustic instabilities.

The single-heater reduced-order model has been validated with experimental data col-
lected from the Rijke tube apparatus, and the numerical results of the reduced-order model
have yielded very good agreement with those obtained experimentally. The performance
of the two-heater model has been tested by numerical simulation and is seen to func-
tion as expected. Numerical results of the two-heater model are compared with those of
other available models, reported in open literature, which are also in good agreement.
The numerical simulations show the effectiveness of the secondary heater as a (passive)
controller.

The following topics are suggested for future research:

(1) Experimental validation of the two-heater model results on the Rijke tube apparatus.
(2) Detailed analysis of the fundamental frequencies in the system dynamics to serve as

indicators of anomalous operations.
(3) Analysis and synthesis of a robust controller for real-time active control of thermoa-

coustic instabilities based on the two-heater numerical model.
(4) Implementation and testing of the above active controller on the Rijke tube apparatus.
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