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One of the pertinent problems in decision and control of dynami-
cal systems is to identify the current operational regime of the
physical process under consideration. To this end, there has been
an upsurge in (data-driven) machine learning methods, such as
symbolic time series analysis, hidden Markov modeling, and artifi-
cial neural networks, which often rely on some form of supervised
learning based on preclassified data to construct the classifier.
However, this approach may not be adequate for dynamical sys-
tems with a variety of operational regimes and possible anoma-
lous/failure conditions. To address this issue, the technical brief
proposes a methodology, built upon the concept of symbolic time
series analysis, wherein the classifier learns to discover the pat-
terns so that the algorithms can train themselves online while
simultaneously functioning as a classifier. The efficacy of the
methodology is demonstrated on time series of: (i) synthetic data
from an unforced Van der Pol equation and (ii) pressure oscilla-
tion data from an experimental Rijke tube apparatus that emulates
the thermoacoustics in real-life combustors where the process
dynamics undergoes changes from the stable regime to an unsta-
ble regime and vice versa via transition to transient regimes. The
underlying algorithms are capable of accurately learning and
capturing the various regimes online in a (primarily) unsuper-
vised manner. [DOI: 10.1115/1.4047449]
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1 Introduction

Large-scale dynamical systems, depending on their complexity,
may exhibit a variety of operational regimes and a number of pos-
sible anomalous/failure conditions. Thus, when a control com-
mand is issued, it needs to be conditioned on both present and
intended operational regimes. Accordingly, traditional classifica-
tion techniques are often based on the concept of supervised learn-
ing, wherein the classifier is trained on labeled data corresponding
to various regimes and anomalous characteristics of the underly-
ing process.

Pattern recognition is a mature field of research, which has
found its applications in many aspects of machine learning. Sev-
eral methods [1,2] exist for identification of various classes that
the observed data emanate from. Many researchers have made use
of several machine learning techniques for time series

classification in diverse applications. Bagnall et al. [3] have
reported a comprehensive review of time series analysis for online
detection, classification, and decision and control. Sugimura and
Matsumoto [4] have reported feature extraction from time series
to generate a decision tree for pattern classification. The concepts
of reduced-order Markov modeling and probabilistic finite state
automata (PFSA) have been studied for analysis of combustion
instabilities [5], failure prognosis of structural materials [6] and
rolling-element bearings [7], as well as usage of sensor networks
for detection of moving targets [8]. Several researchers have also
used deep neural networks [9] as well as recurrent neural networks
for time series classification [10]. However, not all of these tech-
niques are suitable for online detection, which requires real-time
classification (e.g., by using as short a time series window as pos-
sible). Online regime detection and classification have been dem-
onstrated by Mondal et al. [11], in the setting of hidden Markov
models and by Lim and Harrison [12] in the setting of neural net-
works, for example.

In a vast majority of the methods mentioned previously, the
models are trained offline (i.e., no simultaneous learning and clas-
sification). Furthermore, all of the above algorithms belong to the
category of supervised or semisupervised learning in the sense
that they need labeled data, where the labeling is done by (human)
domain experts. Even when using an unsupervised technique such
as K-means [2] for time series analysis [13], a human expert must
decide the number of regimes (i.e., the parameter K). Other algo-
rithms such as Gaussian mixture models are also used for learning
subclasses in populations; however, for this approach to work,
data from all possible classes need to be considered during offline
training. These methods are flexible for learning multiple classes
only if a human supervisor pre-informs the algorithm about the
actual number of classes the given data needs to be divided into.
In such a situation, if the algorithm comes across a hitherto unfa-
miliar anomaly or signal during the online classification phase, it
may misclassify the operation as one of the trained regimes.
Often, it is not possible to have a training dataset containing all
possible events, especially in systems that may be subjected to
occurrence of rare events.

This technical brief proposes a low-computational-cost method-
ology that is built upon a concept that adaptively learns new pat-
terns and signal forms in an online fashion (i.e., in real-time)
without the need to know the total number of classes a priori. The
efficacy of the proposed methodology is demonstrated on both
synthetic data from an unforced Van der Pol oscillator and experi-
mental data of pressure time series from an electrically heated
Rijke tube apparatus [11,14,15] that emulates thermoacoustic
instabilities (TAI) in real-life combustors, which can lead to fail-
ure of mechanical structures, loud noise, and flow-reversal in the
combustion system. From these perspectives, major contributions
of the technical brief are delineated below.

� Novelty of the algorithms: The classifier is trained offline
only on a single ensemble of time series data corresponding
to an a priori known regime. Subsequently, other regimes
are autonomously identified and learned as they are encoun-
tered online, which enable the algorithms to decide whether
or not a block of time series belongs to one of the trained
regimes.

� Experimental validation: The proposed algorithms have
been tested and validated with time series of both synthetic
data and experimental data to establish their feasibility for
potential commercial applications.

2 Mathematical Theory

Before embarking on an explanation of the proposed algo-
rithms, it is necessary to provide the background for construction
of PFSA (see Sec. 2.1) [16,17] and D-Markov machines (see
Sec. 2.2) [18].
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2.1 Probabilistic Finite State Automata. Time series of the
measured signal is quantized and then symbolized as a symbol
string. In this process, the signal space is partitioned into a finite
number of cells, where the cardinality jRj of the (symbol) alphabet
R is identically equal to the number of cells. A symbol from the
alphabet R is assigned to each (signal) value corresponding to the
cell to which it belongs [19,20]; the details are reported in Ref.
[18]. Thus, a symbol is associated with a data point at a given
instant of time when the value of that data point is located in the
particular cell corresponding to that symbol. The following defini-
tions, which are available in standard literature (e.g., Refs. [16]
and [18]), are recalled for completeness of the technical brief.

DEFINITION 1. A finite state automaton (FSA) G, having a deter-
ministic algebraic structure, is a triple ðR;Q; dÞ where:

� R is a (nonempty) finite alphabet, i.e., its cardinality jRj is a
positive integer.

� Q is a (nonempty) finite set of states, i.e., its cardinality jQj
is a positive integer.

� d : Q� R! Q is a state transition map.

DEFINITION 2. A symbol block, also called a word, is a finite
length string of symbols belonging to the alphabet R, where the
length of a word w¢s1s2 � � � s‘ with every si 2 R is jwj ¼ ‘, and
the length of the empty word � is j�j ¼ 0. The parameters of FSA
are extended as:

� The set of all words, constructed from symbols in R and
including the empty word �, is denoted as R?.

� The set of all words, whose suffix (respectively, prefix) is the
word w, is denoted as R?w (respectively, wR?).

� The set of all words of (finite) length ‘, where ‘ is a positive
integer, is denoted as R‘.

Remark 3. A symbol string (or word) is generated from a (finite
length) time series by symbolization.

DEFINITION 4. A PFSA K is a pair ðG; pÞ, where:

� The deterministic FSA G is called the underlying FSA of the
PFSA K.

� The probability map p : Q� R! ½0; 1� is called the morph
function (also known as symbol generation probability func-
tion) that satisfies the condition:

P
r2R pðq; rÞ ¼ 1 for all

q 2 Q.
� The ðjQj � jRjÞ morph matrix P, which is converted into

the ðjQjjRj � 1Þ morph vector � to serve as a feature in the
sequel, is generated by the morph function p.

Equivalently, a PFSA is a quadruple K ¼ ðR;Q; d; pÞ.

2.2 D-Markov Machines. The PFSA representation of a D-
Markov machine generates symbol strings fs1s2 � � � s‘ : ‘ 2
Nþ and sj 2 Rg on the underlying Markov process. In the con-
struction of a D-Markov machine, it is assumed that the genera-
tion of the next symbol depends only on a finite history of at most
D consecutive symbols, i.e., a symbol block of length not exceed-
ing length D. A D-Markov machine [18] is defined as follows.

DEFINITION 5. A D-Markov machine [16] is a PFSA in the sense
of Definition 4 and it generates symbols that solely depend on the
(most recent) history of at most D consecutive symbols, where the
positive integer D is called the depth of the machine. Equivalently,
a D-Markov machine is a statistically stationary stochastic process
S ¼ � � � s�1s0s1 � � �, where the probability of occurrence of a new
symbol depends only on the last consecutive (at most) D symbols,
i.e.,

P½snj � � � sn�D � � � sn�1� ¼ P½snjsn�D � � � sn�1� (1)

Consequently, for w 2 RD (see Definition 2), the equivalence class
R?w of all (finite length) words, whose suffix is w, is qualified to
be a D-Markov state that is denoted as w.

As the proposed D-Markov algorithms need a uniform dimen-
sion of the feature vectors, the concept of state-merging [18] has
not been included. There are four primary parameters in the algo-
rithms as enumerated below:

(1) Alphabet size (jRj): Larger is the alphabet size, more dis-
tinct are the different regimes, but more training data would
be needed. There are several algorithms for selection of the
optimal alphabet size (e.g., Ref. [21]); but, to demonstrate
efficacy of the algorithms, an alphabet size jRj ¼ 16 is cho-
sen in the technical brief for the synthetic dataset and an
alphabet size jRj ¼ 6 for the experimental dataset. The
choice of alphabet size is dependent primarily on how
closely spaced the data are from each regime, with higher
alphabet sizes typically yielding better regime separability
(if needed).

(2) Partitioning method: While there are many data partition-
ing techniques, maximum entropy partitioning (MEP)
[18–20], which is a commonly used partitioning technique,
has been chosen in this technical brief.
Depth (D) in the D-Markov machine: Higher values of the
positive integer D may lead to better results at the expense
of increased computational time due to larger dimension of
the space and need for more training. In this technical brief,
D¼ 1 has been chosen in order to keep lower word lengths
and smaller PFSAs, which lead to faster training and
testing.

(3) Choice of feature: The feature needs to be one that best
captures the nature (e.g., texture) of the signal. The morph
vector � (see Definition 4) has been chosen in this technical
brief as the feature, because it is not only easily computed
but also captures pertinent dynamics embedded in the
signal.

3 The Proposed Algorithms

To address the problem of online discovery and classification
of operational regimes, the proposed algorithms are first executed
upon a time series at a given time epoch, not in its entirety, but in
a windowed fashion with or without an overlap. The algorithms
require only a single regime to be labeled, where a (human) expert
is required to label a part of the ensemble of training time series
data, which corresponds to a specific regime, called the base
regime. Typically, this regime would represent the nominal oper-
ating condition of the physical process under consideration; how-
ever, it is not restricted to be so.

The algorithms have two learning phases: the first is the (off-
line) learning/training phase of the base regime and the second is
the (online) discovery-classification phase for learning and classi-
fying the remaining regimes.

3.1 Learning the Base Regime. A windowed segment of
time series from the training data (e.g., corresponding to the base
regime) is first analyzed. Each segment is symbolized by MEP
[19] with a preset alphabet size, followed by construction of a
PFSA1 as described in Sec. 2. The boundaries of MEP are com-
puted for every window. Training is done for assigned time series,
where each time series possibly comprises of multiple windowed
segments and the corresponding morph vector serves as the fea-
ture of each windowed time series, and is stored. After training,
the mean of all morph vectors is taken as the centroid correspond-
ing to the regime under consideration in the higher dimensional
space, similar to what is done in K-means [1]. The Euclidean dis-
tance jj•jje of each of the training morph vectors from the base
centroid is obtained as

1The PFSA codes used in this paper are developed in-house by the authors and
are available at: https://github.com/Chandrachur92/PFSA
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di
j ¼ jjCj � vi

jjje; i ¼ 1;…;Nj (2)

where vi
j is the morph vector of segment i in regime j (¼ 1 for this

phase), and Cj is the centroid of regime j defined as:

Cj¢
1
Nj

PNj

i¼1 vi
j. It is noted that the segment number i runs from 1

to Nj, which is the number of windowed segments used to train
regime j. A neighborhood of the base regime (i.e., j¼ 1) is gener-
ated about its centroid with radius q1 that is computed by setting
j¼ 1 in the following equation:

qj ¼
1

Nj

XNj

i¼1

di
j þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNj

i¼1

di
j

� �2

Nj � 1

vuuuut
(3)

where the first term on the right hand of Eq. (3) is the mean of all
distances in regime j, and the second term is the standard devia-
tion multiplied by a user-selected parameter c. The rationale for
choosing the specific structure in Eq. (3) is that the distribution of
di

j is assumed to be nearly Gaussian, because the cumulative
effects of many independent random variables in the construction
of a PFSA tend to yield a Gaussian distribution. For a Gaussian
distribution, the 4r band contains almost 100% of the data and
also ensures that obvious spurious outliers do not contaminate the
estimate of the radius; the parameter c¼ 4 is chosen in this techni-
cal brief. However, for a non-Gaussian (e.g., fat-tailed) distribu-
tion, c should be appropriately chosen.

It is noted that, at the end of this primary training, the algo-
rithms are only aware of the feature centroid and neighborhood
corresponding only to the base regime and are unaware of any
other regimes (e.g., anomalies or other operational states). At this
point, the number of trained regimes is T¼ 1.

3.2 Online Discovery and Classification. The algorithms
executes on a window of data, hereafter referred to as a data seg-
ment, from an unknown time series. The partitioning parameters
of MEP are recomputed with the same alphabet size to construct a
PFSA from the data segment and to compute the morph vector to
serve as an extracted feature. If the morph vector is within the
neighborhood of a known regime, the time-window is classified to
belong to that regime; otherwise, the algorithms treat the data seg-
ment as belonging to a newly discovered regime.

The algorithms keep track of the number of segments that they
receive corresponding to the new regime and store the feature vec-
tor for each data segment; it is noted that the segments need not
be observed consecutively. As the algorithms discover a new
regime, the feature vector (v1

new) is taken to be the initial guess for
the centroid of the new regime (Cnew). However, there may not be
enough data to estimate the radius of the neighborhood. To allow
for larger initial search regions, the parameters, aj > 1, are defined
as follows:

aj¢

1

Nj

XNj

i¼1

di
j þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNj

i¼1

di
j

� �2

Nj � 1

vuuuut

1

Nj

XNj

i¼1

di
j � b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNj

i¼1

di
j

� �2

Nj � 1

vuuuut
; j ¼ 1; 2;…;T (4)

where T is the number of trained regimes and the user-set parame-
ter b determines how much of the symmetric tail of the probability
density is removed. The value of the parameter b ¼ 1:5 has been
used for both the cases (i.e., synthetic data and Rijke tube data) in
Sec. 4. For each trained regime, aj is computed, and a single
parameter a is obtained as the minimum of a1 (corresponding to

the base regime j¼ 1) and the average of aj for all T trained
regimes

a¢min a1;
1

T

XT

j¼1

aj

0
@

1
A (5)

A restriction a1 � ða1Þmin is imposed to ensure numerical stabil-
ity, where the user-set lower bound is selected in this paper as
ða1Þmin ¼ 1:5.

Now, the yet unknown radius, (qnew), of a newly discovered
regime is initially assigned a value computed as the mean of qj’s,
over all T trained regimes, multiplied by the factor a (see Eq. (5)),
as below:

qnew ¼
a
T

XT

j¼1

qj as the first initialð Þ guess (6)

For the subsequent ðM1 � 1Þ online training segments, (where
M1 � 1 is a user-defined parameter) the radius qnew is updated as

qnew  
qnewNnew þ a jjCnew � vNnew

new jje
Nnew þ 1

� �
(7)

where Nnew is number of segments in the discovered regime; and
vNnew

new is the observed morph vector from the Nnewth segment that
was classified to belong to the “new” discovered regime.

The procedure in Eqs. (6) and (7) allows for larger initial search
regions until the algorithms yield a better estimate of the radius of
the new regime. This is necessary because each regime may have
a different variance and would need a different neighborhood for
accurate classification. The updating of a in Eq. (5) ensures that,
as the algorithms become more confident, it attempts to make less
conservative (i.e., tighter) estimates of the neighborhood radius.

The next M2 online training segments, where M2 is also a user-
set parameter, the radius qnew is updated as

qnew  
1

Nnew

XNnew

i¼1

di
new þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNnew

i¼1

di
new

� �2

Nnew � 1

vuuuut
(8)

For each of the above ðM1 þM2Þ online training segments, the
centroid of the regime is shifted as Cnew¢ 1

Nnew

PNnew

i¼1 vi
new as the

mean of all observed feature vectors of that regime changes.
Once the number of training segments in a given regime

reaches the set number of M1 þM2, the training for that regime is
deemed completed and no further parameter updating occurs for
that regime. The values of M1 and M2 largely determine how long
the algorithms will consider a given detected regime as untrained.
Low values of M1 and M2 may degrade the quality of training. On
the other hand, high values of M1, and M2 would enhance learning
in general; however, it may cause poor learning in the presence of
an unknown regime (e.g., a rare event) occurring for a short dura-
tion, because of insufficient data.

In the event that a feature vector of an observed segment (vobs)
lies in the intersection of two or more yet untrained regimes, the
segment is assigned to the regime, in which it has a higher proba-
bility of belonging to, as described below:

classified regime ¼ arg max
j

jjCj � vobsjje
qj

 !
(9)

After the classifier has seen most of the typical regimes, it can
decide on one of these regimes or detect a new regime. These
algorithms are capable of learning and augmenting the regime
library, and the operation can be executed in real-time for simulta-
neous learning and classification.
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The pseudo-code of Algorithm 1 describes the first phase of
base regime training, which is repeatedly followed by the second
phase of discovery and classification for each new segment of
time series as described in the pseudo-code of Algorithm 2.

Remark 6. The proposed method is also capable of merging
regimes when they are too close to each other. This task of merging
is achieved by checking if the new centroid of an untrained regime
lies within the neighborhoods of any trained regime. In that case, all
morph vectors corresponding to the untrained regime are assigned to
the trained regime and the new values of centroid and radius of the
amalgamated regime is recomputed using Eqs. (4)–(8).

Algorithm 1 Base regime training from ensemble of data

Input: Time series dataset corresponding to the base regime
Initialization: (#segments in base regime dataset) N1; (#untrained
regimes) U¼ 0; (#trained regimes) T¼ 1

User-set parameters: b, c, and ða1Þmin

Output: Base regime information: Centroid C1; Neighborhood radius
q1; (#Segments) N1; Parameters a1 and a

1: for i¼ 1 to N1 do

2: Symbolize time series segment i and generate PFSA

3: Store morph vector vi
1 as the extracted feature

4: end for

5: C1 ¼
1

N1

XN1

i¼1

vi
1

6: for i¼ 1 to N1 do

7: di
1 ¼ jjC1 � vi

1jje % Euclidean norm

8: end for

9: q1 ¼
1

N1

XN1

i¼1

di
1 þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN1

i¼1

ðdi
1Þ

2

N1 � 1

vuuut

10: a1 ¼ max ða1Þmin;

1
N1

PN1

i¼1

di
1
þb

ffiffiffiffiffiffiffiffiffiffiffiffiPN1

i¼1

ðdi
1
Þ2

N1�1

s

1
N1

PN1

i¼1

di
1
�b

ffiffiffiffiffiffiffiffiffiffiffiffiPN1

i¼1

ðdi
1
Þ2

N1�1

s
0
BBBBBB@

1
CCCCCCA

11: a ¼ a1

12: return C1, q1, N1, a1, a

Algorithm 2 Regime identification from time series window

Input: Time series data segment windowed from the process

Initialization: (# Untrained regimes) U; (# Trained regimes) T;
Parameter a1 generated in Algorithm 1; Parameter a generated in
Algorithm 1 and possibly updated in a previous execution of Algo-
rithm 2; (# Segments) Nj, Centroid Cj, and neighborhood radius qj,
j ¼ 1;…;U þ T

User-set parameters: b, c, M1 and M2

Output: Regime that the time series data belong to (i.e., the classified
regime); (# Untrained regimes) U; (# Trained regimes) T; Centroid Cj

and neighborhood radius qj, j ¼ 1;…;U þ T; Parameter a

1: Symbolize time series and generate D-Markov Machine

2: Extract morph vector vnew to serve as a feature

3: for j¼ 1 to ðT þ UÞ do

4: if jjCj � vjje � qj then

5: if Nj > ðM1 þM2Þ then

6: Classified regime¼ j % as trained regime j

7: else

8: Cj¼ 1
Njþ1

XNj

i¼1

vi
j þ vnew

0
@

1
A

9: d
Njþ1

j ¼ jjCj � vnewjje and v
Njþ1

j ¼ vnew

10: for i¼ 1 to Nj do

11: di
j ¼ jjCj � vi

jjje % Euclidean norm

12: end for

13: if Nj � M1 then

14: qj  
qjNjþa d

Njþ1

j

Njþ1

15: Nj ¼ Nj þ 1

16: else if M1 < Nj < M2 then

17: Nj ¼ Nj þ 1

18: qj ¼
1

Nj

XNj

i¼1

di
j þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXNj

i¼1

ðdi
jÞ

2

Nj � 1

vuuuut
19: end if

20: if Nj � M1 þM2 then

21: T  T þ 1 %#trained regime increased by 1

22: U  U � 1 %#untrained regime decreased by 1

23: for ~j ¼ 1 to T do

24: a~j ¼

1

N~j

XN~j

i¼1

di
~j
þ b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN~j

i¼1

ðdi
~j
Þ2

N~j � 1

vuuuut

1

N~j

XN~j

i¼1

di
~j
� b

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN~j

i¼1

ðdi
~j
Þ2

N~j � 1

vuuuut
25: end for

26: a ¼ min a1;
1

T

XT

~j¼1

a~j

0
@

1
A

27: end if

28: Classified regime¼ j % as untrained regime j

29: end if

30: else

31: NTþUþ1 ¼ 1 ZNTþUþ1 ¼ 1; CTþUþ1 ¼ v; qTþUþ1 ¼ a� 1

T

XT

j¼1

qj

32: Classified regime¼T þU þ 1 % as a new regime

33: U ¼ U þ 1 %#untrained regime increased by 1

34: end if

35: end for

36: return Classified regime

4 Results and Discussion

This section addresses testing and validation of the proposed
algorithms, where time series data have been obtained from two
sources. The first source is synthetically designed using the
(unforced) Van der Pol equation [22], wherein the change-points
are very firmly defined. The second source generates an ensemble
of experimental data of pressure oscillations, collected from an
electrically heated Rijke tube apparatus [11,23], where the opera-
tional regimes of the physical process are changed from stable to
unstable and vice versa through various stages of transience.

4.1 Synthetic Data. The synthetic time series consist of data
points of length 50,000 corresponding to an observation period of
10,000 s at a sampling frequency of 5 Hz. This ensemble of data-
sets is constructed from the standard unforced Van der Pol oscilla-
tor whose governing equation is given below:

d2y

dt2
þ l y2 � 1
� � dy

dt
þ y ¼ 0 for l > 0 (10)

The generated dataset comprises of four regimes, each corre-
sponding to a distinct value of the damping parameter l, where l
takes the values of 0:1; 1:0; 1:5, and 2.5. The change-points have
been randomly selected for each time series that has at most nine
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sections, where each section has any one of the above regimes
randomly assigned to it. Sixty such time series have been gener-
ated. This ensemble of time series serves as the ground truth for
testing the proposed algorithms, because it is generated by a
known algorithm with specified regimes and the associated
change-points. In order to verify whether an algorithm is working
as expected, the ensemble of time series is split into three parts:
(i) the first part (30% of total data) for training the base regime,
which is randomly chosen as any one of the above-mentioned four
regimes, (ii) the second part (60% of total data) to learn the other
regimes online, and (iii) the third part (the remaining 10% of total
data) to test whether the regimes have been learned correctly by
verification against the ground truth.

For conversion of the time series into online data, individual
datasets are windowed, with the windowing occurring every 100
data points and each window having a size of 1000 data points. In
this analysis, the PFSA has an alphabet size jRj ¼ 16 and depth
D¼ 1. Values of the parameters M1 and M2 have been chosen as
50 and 250, respectively. The average error has been computed
over 20 different runs, where each of these runs is executed on a

newly generated dataset, a new randomly selected base regime,
and newly trained algorithm centroids and radii.

The results are presented in Table 1 as a confusion matrix,
where the failure to correctly identify a classified regime (i.e., the
algorithms erroneously deciding that the given data belongs to
none of the four actual regimes) is called an error (regime 5), with
the algorithms having an overall average error-rate below 10%.
This is considered to be a low error because the assigned regimes
are very close to each other in the feature space. While the algo-
rithms could have identified more than four regimes in the first
few trials, it has been capable of refining the results to the four
true regimes by merging of regimes in subsequent runs.

4.2 Experimental Rijke Tube Data. This subsection demon-
strates the efficacy of the proposed methodology by showing its
capability to perform on an emulated real-life problem. To this
end, the underlying algorithms have been tested and validated on
experimental data of pressure time series from an electrically
heated Rijke tube apparatus [11,23]. The Rijke tube [14] is a
commonly used experimental apparatus that emulates the phe-
nomena of TAI [15] encountered in real-life gas-turbine combus-
tors. It is known that occurrence of TAI can be detrimental to the
safe operation and health of a combustor. Thus, there is a need to
be able to detect and identify the regime that the combustor is
presently operating at and identify the transient regime,
wherein the combustor is expected to move either from a stable
regime to an unstable regime or vice versa. Regime identification
is also the first step to perform monitoring and control on the
combustor system. Several techniques have been suggested
for detection of TAI using different algorithms (e.g., Refs. [5],
[11], [24], and [25] to name a few). However, as mentioned in
Sec. 1, all these techniques need the assistance of a human expert

Table 1 Confusion matrix: regime classification using syn-
thetic data

Classified As

True regime Regime 1 Regime 2 Regime 3 Regime 4 Regime 5 (error)

Regime 1 89.14% 0.1% 3.66% 0.1% 7.00%
Regime 2 0.19% 84.27% 7.18% 0.23% 8.13%
Regime 3 0.06% 0.67% 93.11% 0.34% 5.82%
Regime 4 0.11% 0.11% 2.75% 93.95% 3.08%

Fig. 1 Detection and classification from Rijke tube data: (a) time series 1 with separate transient regimes, (b)
time series 1 with amalgamated transient regimes, (c) time series 2 with separate transient regimes, and (d) time
series 2 with amalgamated transient regimes
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for classifying the training samples and to create appropriate
labels.

The Rijke tube apparatus, described by Mondal et al. [11], has
been used to generate transient signals described above. In this
work, the detection algorithms are trained for the nominal stable
condition as the base regime. Using the methodology described
above, other transient and unstable regimes are identified as
shown in Fig. 1.

The ensemble of data consists of a total 40 time series that were
collected at a sampling rate of 8192 Hz and subsequently filtered
with a cut-off frequency of 40 Hz [11]. Then, data windowing has
been done at 	10 Hz, i.e., the length of each data window is
	800. The time series is split into three groups, 20% of total data
for training the base regime (i.e., regime 1), 70% for online iden-
tification, and the remaining 10% for testing.

The D-Markov machines (see Sec. 2.2) have been constructed
from the ensemble of above windowed data with an alphabet size
jRj ¼ 6 and depth D¼ 1. The parameters M1 and M2 (see Sec.
3.2) have been chosen as 20 and 180, respectively; the rationale
for choosing these low values is that transience occurs over a very
short time span and so the algorithms need to train quickly (e.g.,
within 36 datasets), and the reduced values of M1 and M2 achieve
the goal. In this process, there is no available ground truth as to
when the transient state begins and ends. Various researchers have
used different approximations for deciding the change-points for
similar events. For example, a cumulative sum approach has been
commonly used to approximately determine the change-points
([11]), for which the regimes identified by the algorithm have
been cross-checked.

The four plates in Fig. 1 show regime predictions for two sets
of time series of experimental data. The two left-hand plates, (a)
and (c), in Fig. 1 show the actual regimes (i.e., the a priori esti-
mated ground truth) for the time series 1 and 2, respectively. The
objective here is to identify the change of regime from stable to
transient and then to unstable. In this study, the algorithms also
identify a transient regime that is not apparent otherwise. In the
right-hand images in the plates, (b) and (d), of Fig. 1, the two pre-
dicted transient regimes have been amalgamated into a single
transient regime for ease of comparison with the estimated ground
truth, where it is seen that the ground truth and the predictions
match closely, but not perfectly, because the ground truth itself
may be flawed. However, the algorithms are capable of correctly
detecting the changes and still have good accuracy, especially in
identifying the learned unstable regime. This is seen in the confu-
sion matrix (computed as an average over four test series across
20 repeated runs) in Table 2. Figure 1 also shows that the algo-
rithms identify the most important change (i.e., from stable to
transient states nearly perfectly). This capability is very useful for
initiating a control action to prevent instability, because the tran-
sient regime is where the active controller should quench the pres-
sure oscillations as early as possible.

5 Summary, Conclusions, and Future Work

This technical brief has developed a (partially) unsupervised
methodology for online identification and classification of opera-
tional regimes in dynamical systems. An objective here is to dis-
cover new regimes in an online fashion, based on the a priori
knowledge of only a single selected regime. Although the pro-
posed method constructs centroids and regime-radii (in the feature
space) representing each regime, it is not iterative like the

standard K-means [1,2] and thus can be used for online discovery.
As a new time series from an unknown regime is observed, the
algorithm is updated online (without the need to iterate) until the
regime model converges. The underlying algorithms have been
tested and validated with synthetic data from an unforced Van der
Pol equation and also with experimental data from an electrically
heated Rijke tube apparatus that emulates pressure oscillations in
real-life combustors.

While there are many areas of theoretical and experimental
research, which must be investigated before the proposed method-
ology can be implemented in real-life applications, the following
topics of future research are suggested.

� Enhancement of the algorithms to accommodate smaller
data window lengths, i.e., faster detection and identification
of regimes.

� Modification of the algorithms for guaranteed robustness to
noise and uncertainties.

� Usage of other machine learning tools (e.g., hidden Markov
models, Gaussian process modeling or neural networks
[1,2]) as alternatives to symbolic dynamics.

� Verification of the algorithms’ efficacy to be able to classify
other standard dynamical systems, especially chaotic sys-
tems like the forced Van der Pol oscillator and the R€ossler
dynamical system.

� Autonomous learning of the algorithms’ hyper-parameters,
namely jRj, c, b, ða1Þmin, M1, and M2.

� Further investigation within a sensor fusion framework to
improve identification of unforeseen regimes that may
emerge under rare events.
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