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Abstract: This paper proposes a methodology for automated assessment of fatigue damage, which has
been tested and validated with polycrystalline-alloy (A`7075-T6) specimens on an experimental
apparatus. Based on an ensemble of time series of ultrasonic test (UT) data, the proposed procedure is
found to be capable of detecting fatigue-damage (at an early stage) in mechanical structures, which is
followed by online evaluation of the associated risk. The underlying concept is built upon two neural
network (NN)-based models, where the first NN model identifies the feature of the UT data belonging
to one of the two classes: undamaged structure and damaged structure, and the second NN model
further classifies an identified damaged structure into three classes: low-risk, medium-risk, and
high-risk. The input information to the second NN model is the crack tip opening displacement
(CTOD), which is computed by the first NN model via linear regression from an ensemble of optical
data, acquired from the experiments. Both NN models have been trained by using scaled conjugate
gradient algorithms. The results show that the first NN model classifies the energy of UT signals with
(up to) 98.5% accuracy, and that the accuracy of the second NN model is 94.6%.

Keywords: fatigue damage; crack tip opening displacement; detection and classification; linear
regression; neural network

1. Introduction

Structural integrity of large-scale systems (e.g, aircraft, large-scale transport vehicles, and power
plants) deteriorates over time due to damage in their mechanical components. According to Farrar and
Wonden [1], the damage is the cumulative effect of changes that are initiated in a system and potentially
degrades the system reliability; these phenomena may lead to both anticipated and unanticipated
failures unless appropriate timely actions are taken. Damage in mechanical structures may evolve
either at a micro-scale level from inherent local defects (e.g., voids and inclusions) in materials, or at a
macro-scale level from global defects (e.g., corrosion and existing cracks). The fatigue damage, which
belongs to a special class of structural damage, is caused by fluctuating stresses that can be well below
the respective yield points. It is well known [2–4] that ∼90% of the structural failures occur due to
fatigue damage. In general, failures due to fatigue damage evolve through the following three stages.

• Defect generation: Defects may exist in the structural materials from which the machinery parts are
manufactured, or defects may occur during the manufacturing process itself.

• Damage evolution: Fatigue damage in the structures of machinery components is an evolutionary
process during the course of its operation.
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• Crack propagation: As the damage in machinery components evolves, their cumulative effects may
give rise to cracks that could propagate and directly affect the machinery operation, possibly
leading to a complete failure and shutdown.

This paper focuses on assessment of the evolving fatigue damage in machinery structures,
which plays a critical role in planning and management of machinery operation, via detection
and characterization of the damage. Furthermore, the risk of health degradation of machinery
components is evaluated from the assessed damage along with the estimation of a time schedule
for (possibly condition-based) maintenance. Thus, damage assessment is considered to be one of
the fundamental tasks that are directly related to the safety of both plant operating personnel and
equipment. In general, the task of damage assessment is applicable to a variety of industrial equipment
(e.g., boilers, turbines, and pumps), transport vehicles (e.g., vehicles, ships, and airplanes), and civil
engineering infrastructures (e.g, buildings and bridges) [5–7].

Identification of occurrence, location, and severity of the damage in mechanical structures is
considered to be one of the difficult tasks in damage assessment. For example, structural health
monitoring (SHM) is used widely in civil infrastructures such as bridges to identify and evaluate the
damage, evolving over time. Another example is condition monitoring (CM) that is used in rotating
machinery for a similar purpose as SHM, but the impact of the environment on CM is limited as
compared to that of SHM [8–11].

In many industries, the expertise of (human) inspectors is essential for damage assessment
(e.g., making a decision on when a critical structure should be taken out of service for
maintenance), which is expensive and error-prone. Therefore, various automated methods of
fatigue-damage assessment have emerged for the dual purpose of damage detection and assessment
(i.e., quantification). To this end, the work reported in this paper develops an automated method of
fatigue-damage assessment to assist the maintenance team in making timely and feasible decisions.

Two models have been developed on the principle of neural networks, hereafter abbreviated as
NN. These NN-based models, reported in the paper, have been developed, tested, and validated on
laboratory-scale experimental apparatuses, where the most effective failure factor is the applied fatigue
loads on the test specimens; and other less significant factors (e.g., environmental effects) are not
addressed in this paper [12–14]. The first model is built upon NN analysis of an ensemble of ultrasonic
testing (UT) signals, which is used to identify the onset of fatigue damage in the test specimens.
The second NN model is developed based on optical images from a confocal microscope and a digital
microscope, which measure the surface topography and the crack tip opening displacement (CTOD) to
define three levels (i.e., low, medium, and high) of damage risk. The data base for CTOD is augmented
as a function of the measurements of crack length from a digital microscope. In summary, the reported
work focuses on real-time assessment of fatigue damage and the associated risk analysis for structural
materials, made of polycrystalline alloys.

Contributions of the paper: The major contributions of this paper are delineated below.

1. Extraction of relevant features: The extracted features are used for detection of structural damage
and classification of damage risk.

2. Development of an analytical model relating the crack length with the CTOD: The information on the
estimated CTOD data (which are derived from the measured data of crack length) is used as
input data for NN models.

3. Construction of a neural-network-based pattern classifier: The first stage of the neural network
classifies the features of ultrasonic data into the categories of undamaged structure and damaged
structure in the first stage of the proposed method, while the second stage classifies the
information on CTOD into low-risk, medium-risk, and high-risk.

Organization of the paper: The paper is organized into five sections. Section 2 describes the laboratory
apparatus that serves as the data generator for validation of the reported method of fatigue-damage
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assessment. Section 3 illustrates the methodology adopted in this paper, including an overview of linear
regression and neural networks; this section consists of the following three subsections: the concept of
curve fitting by linear regression; an overview of neural networks; and online damage assessment in
mechanical structures. Section 4 discusses the results generated from the proposed method. Section 5
summarizes and concludes the paper along with recommendations for future research.

2. Description of the Experimental Apparatus

This section describes the experimental apparatus, as shown in Figure 1a, which is built upon a
computer-instrumented and computer-controlled fatigue testing machine (Manufacturer: MTS Systems
Corporation, Berlin, NJ, USA), equipped with ultrasonic testing probes (Manufacturer: Olympus,
Tokyo, Japan), a confocal microscope (Manufacturer: Alicona Imaging GmbH | Dr.-Auner-Strasse
21a | 8074 Raaba/Graz, Austria), and a digital microscope (Manufacturer: QUESTAR®, New Hope,
Pennsylvania, USA). The main objective here is to acquire ensembles of fatigue test data for evaluation
of the damage state of the structure under consideration (e.g., test specimens in the experiments).
In general, under medium-cycle to high-cycle fatigue loading of (ductile-alloy) machinery structures,
a good part of the service life is consumed before reaching the crack onset stage. Therefore, the
knowledge on the onset of fatigue cracks is necessary to reduce the probability of unanticipated
failures as well as to maintain the machinery performance, which enhances both reliability and
availability of machinery operation at a mitigated maintenance cost.

(a) ultrasonic sensors and Confocal and digital microscopes (b) CAD drawing of a test specimen.

Figure 1. The fatigue testing apparatus and ancillaries; in (b), all dimensions are in mm.

Results from 18 typical experiments have been reported to help formulating a strategy of structural
health management in terms of the fatigue-damage properties of polycrystalline alloys. Figure 1b
shows the CAD drawing of a notched test specimen (made of A`7075-T6 alloy), where each specimen
is 3 mm thick with a 50 mm wide gauge section and the flanges with three holes on both ends are
76.5 mm wide to fix the specimens on the test apparatus by using custom-made grips. Table 1 presents
the mechanical properties of A`7075-T6 alloy.

Table 1. The mechanical properties of A`7075-T6 alloy.

Mechanical Properties The Value

Ultimate Tensile Strength (MPa) 572
Tensile Yield Strength (MPa) 503
Modulus of Elasticity (GPa) 71.7
Fatigue Strength (MPa) 159
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2.1. Ultrasonic Testing

In the ultrasonic testing (UT) probes (see Figure 1), high frequency acoustic pulses (i.e., 15 MHz
ultrasonic waves) are injected into each specimen by a piezo-electric transducer, called the transmitter,
and are received by another piezo-electric transducer called the receiver, which is located on the other
side of the transmitter. The strength of the signal is measured after it has propagated through the
material. The strength of the signal at the receiver is influenced by the material features (e.g., grain
boundaries, voids, and inclusions) that exist on the path of the propagated signals. While the effects
of the pre-existing flaws such as voids, inclusions, or grain boundaries on the signal strength are
assumed to be very gradually evolving and stable over the crack onset stage of the structure, the
strength of the signal decreases dramatically once the crack propagation starts through the material
because significant parts of the signals are reflected back and thus do not reach the receiver.

2.2. Optical Metrology Device

The optical metrology device (Infinite-Focus Alicona) (see Figure 1) provides 3D surface images.
In the Focus-Variation system of Alicona, the topographical (colored) information is created from
variations in the focus, where the small depth of the focus in an optical system is combined with vertical
scanning. The vertical resolution of the Infinite-Focus system can be as low as 20 nm. The size of the
generated image using Alicona is 0.4 mm by 0.4 mm, and each image has 4,161,600 pixels. Thus, the
Alicona optical metrology device has the ability to detect very small cracks that are significantly less
than 0.25 mm; these crack lengths are considered in this paper to belong to the crack onset regime.
In the experiments, Alicona images have been taken (approximately) synchronously with ultrasonic
testing (UT) data in order to provide a ground truth for the results of analysis from UT signals. Since the
Alicona metrology also provides information on surface topography, they have been used to measure
both the surface average roughness (Sα,the arithmetical mean height of a surface) and crack tip opening
displacement (CTOD) [15,16].

2.3. Digital Microscope

Measurements from the Quester digital microscope (QDM) (see Figure 1), were taken
synchronously with the measurements of average roughness (Sα) and crack tip opening displacement
(CTOD) to provide the corresponding crack length α. The image resolution of the QDM is 640 × 480
pixels and the images are taken with 10-200X variable magnification.

3. Methodology of Damage Analysis

This section briefly introduces the methodologies, adopted in this paper for analysis of the
experimental data (see Section 2), including overviews of linear regression, neural networks, and online
damage assessment.

3.1. Curve Fitting by Linear Regression

Curve fitting by linear least squares is a method of identifying the model that delivers the best fit
to the particular curves of the available (e.g., experimental) data set, where the error of the model is the
least in some sense. The least-square method is the simplest and most widely used statistical technique
for minimizing the error of the model (i.e., the summed square of residuals). The residuals (ri) are
defined as the differences between the observed responses (yi) and estimated results, (ŷi). [17,18].

ri = yi − ŷi f or i = 1, 2, ...n. (1)

The residual vector r is the length of the n-array of ri values. The summed square of residuals is
estimated as follows:

S =
n

∑
i=1

r2
i =

n

∑
i=1

(yi − ŷi)
2 (2)
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For linear least squares, the summed square of residuals in Equation (2) is estimated as:

S =
n

∑
i=1

(yi − (a + bxi))
2 (3)

where the parameters a and b need to be estimated, such that S is minimized. Hence, S in Equation (3)
is differentiated with respect to each parameter a and b, and the results must be identically equal zero
at an extremal point.

∂S
∂a

= −2
n

∑
i=1

(yi− (a + bxi)) = 0 (4)

∂S
∂b

= −2
n

∑
i=1

xi(yi− (a + bxi)) = 0 (5)

The parameters a and b are obtained by simultaneously solving Equations (6) and (7) as:

b =
n ∑ xiyi−∑ xi ∑ yi

n ∑ x2
i − (∑ xi)2 (6)

a =
1
n
(∑ yi− b ∑ xi) (7)

3.2. Neural Network

Neural network (NN) is a computational method that attempts to mimic the logic of a human
brain. The neural network, in its simplest form, is composed of a set of nodes and a set of connections
that link the neurons layerwise. Hence, an NN tends to imitate the most vital mechanism of the brain,
which is the neural association. In essence, an NN works by building connections between nodes,
and different types of connections create different types of NN. The feed-forward neural network is
considered to be one of the most common types of NN.

3.2.1. Feed-Forward Neural Network

The sequence of processes in a feed-forward neural network (FFNN) is simple and unidirectional,
where the sequence starts from input nodes and ends at the output nodes. While the complexity of
FFNN may vary from a simple architecture to more complex architectures, the simplest architecture of
FFNN is a single-layer neural network as seen in Figure 2a that is composed of an input layer (which is
not counted as an NN layer) and an output layer. The second type of neural network architecture is a
Shallow or Vanilla multi-layer neural network as seen in Figure 2b that consists of an input layer, one
(or a few) hidden layer(s), and an output layer. If there are several hidden layers, the neural network
architecture is called a deep neural network [19] as seen in Figure 2c. The rationale for defining
the architecture in terms of hidden layers is that these layers are not accessible from outside of the
neural network.

Figure 2. Three different types of neural network architecture.
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Figure 3 illustrates the basic operation of an artificial neuron, where the input data (x1, x2, x3) are
multiplied by weights (w11, w12, w13), respectively, and added with a bias b before leaving the node.
By transforming the above result by a (nonlinear) activation function φ, then the output y is:

a = w ∗ x + b = w11x1 + w12x2 + w3x13 + b (8)

y = φ(a) = φ(wx + b) (9)

One of the popular activation functions that are used in neural networks is the (smooth and
nonlinear) sigmoid function that generates an analogue output that is limited between 0 and 1,
as shown in Figure 4. The sigmoid function is described by:

y =
1

1 + ea (10)

Figure 3. An artificial neuron.

Figure 4. The sigmoid function.

Another function that is used in neural networks is the softmax function, which is usually applied
at the last layer in the NN architecture. This layer is used to convert the output of the hidden layer into
normalized class probabilities. The softmax function is defined as:

fj(z) =
ezj

∑k ezk
(11)

In essence, the softmax layer delivers the probabilities of each output class, where it takes in a vector
with real values and produces a vector with elements between zero and one that sum to one.

The information in neural networks is stored in terms of weights. These weights are adjusted
during the training of the neural network based on the error that is the difference between the output
of the neural networks and the correct output [20–23].

3.2.2. Back Propagation

In the training/learning phase, the connection weights (wij) are adjusted to improve the
performance of the NN model. From the perspectives of NN, an epoch refers to one cycle of the
training/learning phase. At each epoch, a set of input data are passed through the NN architecture



Machines 2020, 8, 85 7 of 19

producing outputs, and these outputs are compared with the target set of the output. Based on the
computed error, the back-propagation algorithm is applied, where the measured error is passed in the
reverse direction of the architecture, from the output layer to the input layer, to re-adjusted weights.
This procedure is repeated continuously for the next epochs until the desired error is admissible.
The mean squared error of the NN is expressed as:

JNN =
1
N

N

∑
t=1

O

∑
e=1

(TNN (t, e)− yNN (t, e))2 (12)

where
N: Number of trained data (input, output).
e: Index identifying the output.
t: Index identifying training data.
O: Number of the NN outputs.
T: The NN target values.

3.2.3. Gradient Descent (GD)

The gradient descent method (also called steepest descent) is used to adjust the weights in
the direction of the performance function that declines most rapidly (e.g., the most negative of the
possible gradients). Equation (13) presents the adjustment of one of the network weights by using the
GD algorithm:

wn+1 = wn− 2αJnEn (13)

where
n: Number of iteration.
J: Jacobian matrix of JANN .
E: The computed error between ANN outputs and the target.

Although the GD algorithm is a well-known optimization method, it has the following four main
disadvantages [24,25]:

• The learning rate is low.
• The direction is not perfectly scaled (i.e., convergence depends on the scale of the problem).
• The local minimal point could be missed.
• The results are sensitive to exogenous noise.

3.2.4. Conjugate Gradient

One of the methods that are established to improve the performance of the above GD algorithm
belongs to the class of conjugate gradient (CG) algorithms. The CG algorithms are executed by
searching in the steepest descent direction on the first iteration. Subsequently, a line search is
implemented to find the optimal point to reach along the current search direction. Then, the next search
direction is established such that it is conjugate to prior search directions. Generally, determining the
new search direction requires a trade-off between the new steepest descent direction and the previous
search direction as explained below:

p0 = −g0 , where g = JT E (14)

wn+1 = wn + αn pn (15)

pn = −gn + βn pn−1 (16)

where the parameter (βn) at each iteration is calculated to force the successive directions to be conjugate.
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Different types of CG algorithms are distinguished by the method in which the parameter βn is
calculated. Most of the conjugate gradient algorithms involve a line search at each iteration. The line
search technique is computationally expensive because the network response to all training data
are processed various times for each search. Moller [26] established a method that overcomes the
time-consuming line search. This method is known as the scaled conjugate gradient algorithm (SCG).
The basic concept of this method is to combine the model-trust region approach, where the maximum
distance is selected first, followed by the direction, with the CG approach [26–28].

In this paper, the SCG algorithm is used to set ANN weights, and Equations (17) and (18) present
iterative computations of the parameter βn and the direction of the new search:

βn =
|gn+1|2− gT

n+1gn

gT
n gn

(17)

pn+1 = −gn+1 + βn pn (18)

3.3. Online Damage Assessment in Mechanical Structures

This subsection proposes a neural network-based (NN)-based method for online damage
assessment in mechanical structures. The proposed method consists of two cascaded NN models.
The first NN model assesses the structural integrity of the system, which is comprised of two classes:
the undamaged structure and the damaged structure. The second NN model evaluates the risk level
of the damaged structure, which is further identified to belong to one of the following three classes:
low-risk, medium-risk, and high-risk. Figure 5 presents the classification hierarchy of the proposed
damage assessment method.

Figure 5. The classification hierarchy.

3.3.1. Feature Extraction for Machine Learning

In this paper, the task of feature extraction [29] provides pertinent information (i.e., UT signal
attenuation) for detection and classification of fatigue crack damage. The rationale is based on the
fact that, for the UT signal, attenuation is a consequence of partial reflection due to the damage
evolution (e.g., crack onset). For example, the maximum signal strength implies the undamaged
structure (e.g., the fresh test specimen), while the minimum signal strength denotes the damaged
structure at the end of its service life (e.g., fully cracked specimen). In the reported work, UT data have
been generated synchronously with the images obtained from the digital microscope and confocal
microscope (see Figure 1) to provide ground truth for UT signal attenuation; and the signal energy is
computed as:

Eα =
∫ ∞

−∞
| x(t) |2 dt (19)

As shown in Figure 6 beyond the vertical red dashed line, the signal energy is significantly attenuated
as a consequence of crack evolution. This phenomenon is chosen to be the feature that is used for the
classification for the first NN model.
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Figure 6. The UT signals energy for one experiment, where the x-axis presents 19,029 UT energy
measurements during each experiment; and the y-axis shows the value of measured signal energy.

3.3.2. Classification of Damage Patterns

In this paper, the concept of pattern recognition [29,30] has been used for damage detection and
classification based on experimental data. In NN, a pattern is a pair of variables {φ, λ} , where φ is
a feature vector constructed from measurement data and λ is the corresponding label of the feature
vector. Along this line, in the reported work, classification procedures have been used for defining
pattern allocation criteria for damage assessment. The following two NN models have been constructed
for damage detection and risk identification, respectively:

1. The first NN model for detection of structural damage: The state of the stressed structure
(e.g., a specimen) is classified based on the energy, EUT , of UT signals. As seen
in Figure 7, before fatigue crack onset (i.e., to the left of the vertical solid line), EUT is labeled to
belong to an undamaged class while, after the fatigue crack onset (i.e., to the right of the vertical
solid line), EUT is labeled to belong to a damaged class.

Figure 7. The The classification of the first stage, the damage initiation.

2. The second NN model for classification of damage risk: The risk of the structural damage (in the
damaged class identified by the first NN model) is evaluated based on two criteria. The first
criterion is the roughness average (Sα) of the investigated area, and the second criterion is the
critical crack length αcr . As seen in Figure 1, a confocal microscope is used to measure the crack
tip opening displacement (CTOD) and the roughness average (Sα), while the digital microscope is
used to measure the crack length α. The observations from the confocal microscope and the digital
microscope are synchronized such that measurements can be taken simultaneously when the
fatigue testing machine is in operation. Following these experimental observations, the damage
risk is identified in the following three classes:

(a) High-risk damage class: In this class, the critical crack length (CCL) method is applied to
determine the damage, in which all measured data after exceeding CCL (αcr) are considered
to be of high risk. The critical crack length is computed as:

αcr =
K2

IC
πσ2

maxY2
α

(20)



Machines 2020, 8, 85 10 of 19

where KIC is the fracture toughness (for the A`7075-T6 alloy, KIC = 20.0 MPa-m0.5); αcr is
the critical crack length (CCL); σmax is the maximum applied stress; and the dimensionless
parameter Yα is computed from the crack length α and specimen width w of the test
specimen. For edge cracks in tension, Zahavi et al. [31] introduced the following formula to
calculate Yα.

Yα = 1.12 − 0.231(
α

w
) + 10.55(

α

w
)2 − 21.72(

α

w
)3 + 30.39(

α

w
)4 (21)

The CCL in all tested specimens is αcr ≈9.6 mm, as seen in Figure 8, where all
measurements were taken after reaching CCL and are labeled to belong to
the high-risk class.

Figure 8. Determining the high-risk region using the crack length and CTOD.

(b) Medium-risk damage class: As the crack length reaches a certain level, the roughness average
(Sa) of the investigated area changes dramatically and the crack growth process tends to
become unstable; and the effect of the crack on the surface topography becomes noticeable.
This change is often called as the Sα_alert. In all experiments, the Sα_alert occurred between
the crack onset and CCL. Therefore, all observations of the damage after the Sα_alert and
before CCL are classified to belong to the medium-risk class.

(c) Low-risk damage class: The damage observations before CCL are considered to be non-risky.
However, this consideration might be ambiguous because the damage risk of observations
just before CCL is not similar to that at the damage initiation. Therefore, identifying the
damage risk of non-risky damage is very necessary. In the reported work, the roughness
average Sα has been used to quantify the low-risk damage because the effects of tiny cracks
on the external surface are, in fact, negligible. In addition, as shown in Figure 9, readings of
Sa before the crack onset are stable, and they are also still stable after the crack onset.

Figure 9. The average surface roughness, Sa, measurements of one experiment.
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Figure 10a–d present the surface topographies of typical (non-damaged), (low-risk),
(medium-risk), and (high-risk) damaged specimens, respectively.

(a) Typical undamaged specimen. (b) Typical (low-risk) damaged specimen.

(c) Typical (medium-risk) damaged specimen. (d) Typical (high-risk) damaged specimen.

Figure 10. Illustration of fatigue-damage evolution in a typical test specimen.

3.3.3. Data Preparation and Neural Networks Procedure

This subsubsection provides the necessary steps for building an NN model with a shallow
architecture, as delineated in Figure 11.

Figure 11. The neural network analysis procedure.

In the first NN model, the energy of UT signals is normalized because the response of the signal
energy for all tested specimens is of similar texture, but the values of the energy may differ from one
to another. The normalization is called a z-score, and it transforms UT signal energy to have a mean of
zero and a standard deviation of one. The UT signal energy is normalized as:

zn =
xn− x̄

σ
(22)
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where x̄ is the mean and σis the standard deviation.
In the second NN model, a linear regression model is created relating the relationship between

CTOD and CCL to fit the experimental data. The rationale for creating a linear regression model in
this paper is as follows:

1. Taking CTOD measurements is experimentally expensive, especially at the high-risk level.
2. To ensure that the NN model is effective, the training data set must satisfy two conditions:

(i) Every group of data must be normalized so that each group pattern is represented in the data
set; (ii) statistical deviations must be effectively represented within each class, where both NN
models must contain the total range of (noise-corrupted) data [32].

4. Results and Discussion

This section presents and discusses the experimental results for validation of the proposed linear
regression and (neural network (NN) models. The first part of this section presents the results of linear
regression, while the second part covers the results of NN models.

4.1. Linear Regression Model

As stated in the previous section, before applying the tools of neural network, the amount of the
data must be considered, such that every group must contain enough data for training, validating,
and testing the neural network model. A selection of the percentage of splitting the dataset into train,
validation, and test set depends on the size of the dataset. A common splitting ratio, which is used in
this study, is 70% of the data for a train set, 15%for validation set, and 15% for the test set.

In the case of limited data available for training, a regression model that represents typical
measurement data can be used, instead of the actual measured data. As seen in Figure 12, a relationship
between the crack length (shown as the x-axis) and the crack tip opening displacement (CTOD) (shown
as the y-axis) is built by using a linear regression approach from the experimental data, where the dots
represent the actual measured data of an experiment, and the fitted straight line represents the linear
regression model.

Figure 12. The linear regression model of the crack length and the crack tip opening displacement.

In Figure 12, the green area presents the low-risk damage class, while the yellow and red areas
present the medium-risk and high-risk classes, respectively. Due to the limited amount of available
experimental data, it is difficult to have an accurate NN model using the actual measured data.
For example, since the medium-risk class has only three measured data, and if one uses the splitting
ratio (70% train, 20% test, and 20% validation), either the testing set or validation set will be empty.

Therefore, this problem has been alleviated by incorporating a linear regression model that
estimates the CTOD. The linear regression model of Figure 12 is constructed as:

CTOD = 11.88 a + 1.186 (23)

where CTOD is the crack tip opening displacement in micrometers, and a is the crack length in mm.
Furthermore, the size of the input data of the neural network is now increased from 13 measured
points to 986 estimated points by using the linear regression model.
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4.2. Results Generated from Neural Network Models

This subsection presents the results generated from the two NN models, where the pattern
recognition part is handled by the neural network toolbox of MATLAB, which consists of a two-layer
feed-forward network, with ten sigmoid hidden neurons (two softmax output neurons for the first
model and three softmax output neurons for the second model). The amount of the input data for
the first NN model is 19,029 samples, and 986 samples are the inputs for the second NN model.
Table 2 illustrates the splitting of data between the two NN models.

Table 2. Splitting of input data for training, validation, and testing of the NN models

The Input Data
(Total Samples)

The Training Data
(70% Samples)

The Validation Data
(15% Samples)

The Testing Data
(15% Samples)

First, NN model 19,029 13,321 2854 2854
Second NN model 986 690 148 148

The plates in Figure 13a,b show the confusion matrices of the first NN model and the second
NN model, respectively, for training, testing, and overall validation. The outputs of the NN models
appear to be very accurate; and the high percentages of correct responses are indicated in the green
squares, while the low percentages of incorrect responses appear in the red squares. The lower right
gray squares show the overall accuracy/error.

(a) Confusion matrices of the first NN model.

Figure 13. Cont.
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(b) Confusion matrices of the second NN model.

Figure 13. Performance of the first and second neural network models for all experiments.

The first NN model, which makes the (binary) detection of undamaged and damaged classes,
achieves an accuracy of 98.5% for the training data set, 98.7% for the validation data set, and 98.6% for
the testing data set; and the first NN model achieves an overall accuracy of 98.5%. The second NN
model, which makes the (trinary) classification of damaged class into high-risk, medium-risk, and
low-risk, achieves an accuracy of 95% for the training data set, 94.8% for the validation data set, and
92.8% for the testing data set; and the overall accuracy of the second NN model is equal to 94.6%.

Figure 14a,b show that the best validation performance for the first NN model is achieved at
the epoch 12, while that for the second NN model is achieved at the epoch 45. Figure 15a,b illustrate
the respective error histograms of the first NN and the second NN models, respectively, for training,
validation, and testing. It is noted that the data fitting errors are distributed within a region that is
close to the zero-error point.

(a) Best validation performance of the first NN model.

Figure 14. Cont.
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(b) Best validation performance of the second NN model.

Figure 14. Best validation performance for all experiments.

(a) Error histogram of the first NN model.

(b) Error histogram of the second NN model.

Figure 15. Error histogram for all experiments.
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Figure 16a,b show ROC curves (The Receiver Operating Characteristic (ROC) curves [33] have been
used in this paper to assess the performance of both NN-based models for damage detection and
classification.) for the first NN model and second NN model, respectively, where the colored lines in
each figure represent the ROC curves. The ROC curves represent the relationship between the true
positive rate of detection (also called sensitivity) on the y-axis versus the false positive rate of detection
(also called specificity) on the x-axis as the threshold is varied. The optimal model (100% sensitivity
and 0% specificity) is achieved in the upper-left hand corner. As seen in Figure 16a,b, the performance
is excellent for both of the NN models.

(a) ROC plots of the first NN model.

(b) ROC plots of the second NN model.

Figure 16. Receiver operating characteristics (ROC) for all experiments.
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5. Summary, Conclusions, and Future Work

This paper has reported the development and experimental validation of a methodology for
fatigue-damage assessment in mechanical structures of machinery. The goal is to increase the structural
reliability of operating machinery and to avoid grave consequences of the damaged structure, such as
endangered safety of plant operating personnel and equipment as well as environmental protection,
especially in hazardous engineering applications. For example, real-time assessment of fatigue damage
should be applied on petrochemical reactors, where the non-destructive testing (NDT) sensors are
embedded in critical locations to provide an updated evaluation for the status of the reactor. Once the
fatigue damage is monitored and assessed, human experts should make the final decision on plant
operation and maintenance.

In this work, two neural network (NN)-based models have been constructed on the experimental
data, acquired from a computer-instrumented and computer-controlled fatigue testing apparatus,
equipped with ultrasonic test probes, a confocal microscope, and a digital microscope. It is noted that
delicate instruments like optical microscopes are to be used in the laboratory environments only to
calibrate the algorithms that make use of (relatively) inexpensive and rugged ultrasonic probes for
field applications.

Decision making on damage assessment relies on the outputs of the afore-mentioned two NN
models, where the the first model classifies the signal energy of ultrasonic test (UT) data into two
classes, namely undamaged class and damaged class; and the second NN model classifies the crack tip
opening displacement (CTOD) data into high-risk, medium-risk, and low-risk. Furthermore, a linear
regression model has been constructed to augment the amount of the data by estimating the CTOD as
inputs to the NN models.

The results of this investigation show that the classification accuracy of the first NN model reaches
98.5%, and that of the second NN model reaches 94.6%. Therefore, the proposed methodology of
fatigue-damage assessment systems has the potential of successfully detecting the fatigue damage
onset in mechanical structures of machinery and evaluating the associated risk of operation.

While there are many areas of theoretical and experimental research to improve the proposed
classification method so that it can be gainfully applied to real-life problems, the following topics are
suggested for future research:

• Development of a detailed simulation model of the operating machinery under consideration to generate
ample data for training and testing of deep neural networks: This model must be experimentally
validated at a few discrete operating points so that the interpolated (and also extrapolated) points
of operation are reasonably correct representations of the real-life situations.

• Usage of more advanced tools of neural networks (e.g., convolutional neural networks (CNN) [34] and
recurrent neural networks (RNN) [35]) for fatigue-damage assessment: Such advancements are expected
to yield wider ranges of applications at the expense of requiring extensive training data.
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