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Hidden Markov models (HMMs) have been widely used for anomaly and change point
detection due to their representation power and computational efficiency in capturing sta-
tistical dependencies in time series. However, often information is integrated over rela-
tively long observation windows, with detections made when the observed sequence’s
likelihood under the (null) HMM deviates significantly from its typical range. Three related
limitations are: i) use of long windows entails large decision delay, which may e.g. fail to
prevent machine failure/damage; ii) typical approaches do not narrowly identify an inter-
val within which the change point occurred. Such information could be useful e.g. for pro-
cess control, where one wants to know how long it takes for control inputs to induce
desired change points; iii) The decision statistic is usually the likelihood of the data in
the current window, without consideration of past observations. This is suboptimal – this
likelihood should be conditioned on past observations to optimally account for statistical
dependency in the time series. In this paper, we propose a framework for change point
detection which overcomes all of these limitations: i) it applies a standard HMM
Forward recursion, but used to evaluate the likelihood of an observation subsequence con-
ditioned on the subsequence’s entire past. This approach is used to efficiently evaluate the
conditional likelihoods of all intervals of fixed length (hence with fixed delay, d), until a
change point is first detected. Here d is a design parameter whose proper value (needed
to have a quick response/mitigate damage) may be known for a given application domain;
ii) the algorithm narrowly estimates the interval within which a detected change point lies;
iii) we propose a novel performance criterion well-matched to low-delay, narrowly local-
ized change point detection – the true detection interval rate (TDIR) – and also evaluate the
false positive rate (FPR) and the bias and variance of the estimated change point, all as a
function of d. The proposed method is shown to outperform a CUSUM algorithm, symbolic
time series analysis (STSA) methods, and a standard HMM method (evaluating the uncon-
ditioned likelihood) for instability onset in combustion systems and fatigue failure initia-
tion in a material.
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1. Introduction

1.1. Detection literature review

Change point detection [1] has important applications e.g. to speech recognition, radar systems, condition-based main-
tenance, fatigue failure detection, geology signals, and even to DNA analysis and malware detection (see, e.g., [2,3] and ref-
erences therein). If the distribution of observations before a change point occurs (the null distribution) and the distribution
after a change point are both known, the problem can be treated e.g. as a standard (two-class) hypothesis testing problem.
However, as is more realistic in practice, the distribution after change is typically unknown. In this case, change point detec-
tion involves choosing a cost function that measures goodness-of-fit of the generated time series to the null model, and iden-
tifying signal segments for which the goodness of fit falls below a threshold. One of the standard methods is the cumulative
sum (CUSUM) technique, developed by Page [4], which has been widely used [5–7]. CUSUM is a sequential method which
involves the calculation of a cumulative statistic, thresholded to decide whether a change has occurred or not. The decision
threshold can be chosen to fix the false alarm rate based on a collection of time series for which it is known that no change
point has occurred. In another approach, Bai and Perron [8] considered a time series generated by a linear regression model
that undergoes multiple structural changes (breaks) at unknown times with the goodness of fit the sum of squared residuals
between the regression model outputs and the observed time series. Later, in [9] they addressed the problem of estimating
the change points, introducing a computationally-efficient algorithm that finds the global minimum of the sum of squared
residuals using dynamic programming. Bai [10] also proposed a likelihood-ratio model that can detect multiple structural
changes in (generally non-stationary) regression models based on hypothesis testing. The null hypothesis is that there are
l (known or estimated) breaks in the time series, while the alternative hypothesis is that there are lþ 1 breaks. When
l ¼ 0 a single break/change point is sought.

The approach in [9] considers the entire time series in making change point detections and thus imposes no constraint on
the amount of allowed delay in making detections. In many applications, detection needs to be achieved with low delay and/
or using short observation windows, e.g. in order to trigger machine damage mitigation. If the true change point occurs at
time s, detection should occur using observations only up to time sþ d, where d, a delay tolerance design parameter, is cho-
sen sufficiently small that detection can result in e.g. expedient damage mitigation. The maximum tolerable value of d may
in fact be known for a given application based on past experience [11]. While some detection algorithms such as CUSUM
possess optimality properties in minimizing the expected detection delay (given a fixed false positive detection rate)
[6,12], this is not the same as the strict delay requirement (d) considered here – achieving an average detection delay of
d, or even a value significantly below d, does not ensure that the probability of detection delay exceeding d is small. More-
over, such optimality results assume something is known about the distribution after change, e.g. that the distribution para-
metric form is the same, post-change, but with a change in the mean parameter, or the variance parameter. More generally,
nothing is known about the post-change distribution. Moreover, since d may be very small, a generalized likelihood ratio
detection framework, where one estimates the putative distribution post-change and uses it in a likelihood ratio test,
may not be feasible, since there will in general be too few observations (d) post-change to accurately estimate the post-
change distribution.

Various scenarios are considered in the change point detection literature. First, as aforementioned, one may have knowl-
edge of the observed data distribution both before and after a change has occurred [6]. We do not assume such information
here. Second, there may be at most one change point or possibly multiple change points (each possibly to different states,
with different data distributions). In the latter case, if there is no delay requirement, one can view the problem as signal seg-
mentation given the whole observed time series [6], as is done in [9]. In [11], the authors distinguish a quickest change
detection (QCD) problem and a transient change detection (TCD) problem. In the former, the duration of the change state
is infinite, whereas in the latter, the duration of the change state is finite, before a return to the null/normal state or perhaps
to a failure state. In this latter (TCD) problem setting, for particular applications, strict detection delay tolerance is needed,
while strict delay tolerance is not usually considered in the QCD setting. Some works that establish theoretically optimal
detectors, minimizing average detection delay, again based on knowledge of what statistics are changing, include [13,14].
In this work, we address detection problems where the change state duration may be finite or infinite; regardless, we impose
strict delay tolerance in order to ensure that true detections will allow damage mitigation. More specifically, we consider a
non-Bayesian scenario1 that well-captures certain machine/process failure for condition-based maintenance applications: the
machine is first operating in a normal state and may continue to do so for its entire operating cycle. Alternatively, at some point,
there may be a change to an abnormal state. This abnormal state may itself be a system fault/failure state or it may be a tran-
sient state prior to entering fault/failure. Either way, there is no transition back to the normal state. The former case is a QCD
problem and the latter essentially a TCD one because the duration of the (transient) change state is finite.2 Irrespective, strict
detection delay tolerance may be needed to ensure that damage mitigation (or recovery of normal state) is possible.
1 The change point treated as deterministic but unknown, i.e. even if the change point is random we have no knowledge of its distribution.
2 It may be possible to force the system back to the normal state if a proper control action is made in a timely fashion (although in this paper we are not

addressing such control actions, and therefore in our case the final transition is to a failure state, not back to the normal state).
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1.2. STSA-based detection

Symbolic time series analysis (STSA) has been efficiently used for anomaly detection [15–19]. In STSA, the time series is
converted to a symbol sequence from a finite-cardinality alphabetA. The resulting discrete-valued sequence is modeled as a
Probabilistic Finite State Automata [20] (PFSA) that mirrors (tracks) the original discrete-time dynamical system [21]. The
PFSA states are concatenations of symbols from A. Anomaly detection using STSA is done by first training a null PFSA on
data generated from the nominal phase. The resulting states’ stationary probability vector is used as a null phase ”reference”.
Once new data arrives, a new PFSA is constructed, whose states’ stationary probability vector is computed and compared
with that of the null. Based on the Kullback–Leibler ”distance” between these two vectors, an anomaly is declared if this dis-
tance exceeds a user-defined threshold. One main drawback of STSA anomaly detection is that it discards information in the
initial discretization (quantization) step that yields a (finite cardinality) symbol sequence.

1.3. HMM-based detection

Alternatively, Hidden Markov models (HMMs) have been widely used for both change point and anomaly detection (AD)
in diverse applications (see e.g. [22–35]). In contrast to STSA, HMMs exploit a latent discrete symbol sequence representation
that does not require (hard, information-lossy) quantization of the time series. Moreover, in HMMs one sums over all pos-
sible discrete state sequences, in evaluating the log-likelihood fit of the observed data to the (null) model, unlike in STSA – an
HMM’s joint probability (or joint likelihood) for an observation sequence xn:nþM ¼ xn; xnþ1; . . . ; xnþMð Þ, starting at time n, is
found by marginalizing over the set of all possible hidden state sequences. This computation is made efficiently via the iter-
ative Forward algorithm [36], which can be used to assign likelihoods to observation sequences in an on-line manner, as each
observation arrives. In an AD setting the (null) HMMmodel is trained using observed time series known to represent normal
behavior (using the same (null phase) data used to estimate a null STSA model). Then, when the HMM is applied opera-
tionally, if a change point occurs within an observation sequence, the likelihood under the HMM of an observed subsequence
that contains the change point is expected to deviate significantly from the typical likelihood [37], once enough observations
following the change point are included in the subsequence.3 Based on a properly chosen threshold (fixed e.g. to a specified
false detection rate), one can decide whether change has occurred within a given subsequence. Using HMM inference to narrow
down the change point in a long time series to within a small interval requires computing the joint-likelihoods of many possible
observation subsequences. However, these many evaluations can be efficiently made by exploiting the standard HMM Forward
recursion. Therefore, HMMs have been efficiently used for anomaly detection with the observation subsequence likelihood the
decision statistic [22,38].

1.4. Low-delay detection

In this paper, we introduce a detection algorithm specifically designed to make strictly low-delay detections and to accu-
rately identify a narrow interval within which the true change point is estimated to lie. The algorithm exploits the standard
Forward recursion for HMM inference to successively evaluate the likelihoods of the observation subsequences
xn:nþd�1 ¼ xn; . . . ; xnþd�1ð Þ, conditioned on x1; x2; . . . ; xn�1ð Þ;n ¼ 1;2; . . ., until a change point is detected, where d is a detection
delay parameter that controls the subsequence size and which is user-chosen, based on the delay tolerance of the applica-
tion. Note that there is a tradeoff in the choice of d – if d is very small, only very low delay detections are tolerated, but the
true detection rate may be too low (due to an insufficient number of post-change samples in the window). On the other
hand, choosing larger d tends to increase the true detection rate, but may introduce an unacceptable delay in making detec-
tions. Note that past works such as [25–28,34,35] use HHMs with a sliding window for detection. However they do not con-
dition on the past, in evaluating an observation subsequence’s likelihood, for detection/inference purposes. In Appendix A,
we theoretically support our use of the conditional likelihood for detection by proving that use of the true Bayes class pos-
terior, conditioning on all available observations, is optimal not only in the well-known sense of minimum expected classi-
fication error but also in the sense of maximum true detection rate given a fixed false positive rate. Moreover, we prove that
the true detection rate for such a detector, given fixed false positive rate, is non-decreasing as d is increased. Note also that
evaluating likelihoods for a fixed window size, d, rather than for a growing window starting at the beginning of the time
series, is expected to yield both quicker detection (many ‘‘normal” samples will ‘‘contaminate” a growing window’s anomaly
decision statistic, which should lead to delayed detections) and narrow identification of the change point interval.

1.5. Novel performance criteria

Furthermore, for our strictly low-delay setting, care is needed in defining detection events. Specifically, suppose the true
change point occurs at time tc. Then, we define a true detection interval event as one wherein the change is detected at a
time t (based on observations up to t) such that t P tc and t 6 tc þ d, i.e. detections that are either too premature or too late
3 Note that this use of a time-domain window of observations is commonly applied, both for detection as well as for estimation, i.e. Wiener filter smoothing,
to estimate one random process given a window of observations from a statistically related process.
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are not considered to be true. Also, consider a time series (corresponding to a machine cycle) that does not contain a change
point. If a change point is detected anywhere in this time series (which is finite-length for a given machine’s cycle, but may
still be quite long), this we consider to be a false positive detection event. This is in contrast to a definition of false positives
that includes events involving time series that do contain a change point, but where the detection is made too prematurely,
or too late. Our false positive rate is meaningful in real applications because detection of even a single change may lead to a
(costly) interruption of the machine’s cycle, which is warranted only if the detection is likely to be that of a true change point.

Accordingly, we propose to evaluate several criteria that give a rich characterization of low-delay tolerant change point
detection performance. Specifically, as a function of delay tolerance, d, we propose to evaluate: 1) bias of the estimated
change point; 2) variance of the estimated change point; 3) We define the event that an estimated interval contains the true
change point. Accordingly, we then evaluate a novel criterion proposed here, the true detection interval rate (TDIR), the prob-
ability that the true change point lies in the estimated interval. TDIR is a more demanding measure of performance than the
true detection rate (TDR), which for successful detection would simply require a detection to be made after the change point
has occurred; 4) Finally, we evaluate the false positive rate (FPR), the probability that a detection is made when in fact there
is no change point in the given time series.

Contributions of the paper: The main contributions of the paper are:

� Detection algorithm: A novel HMM-based detection algorithm is developed that makes strictly low-delay change point
detections and identifies a narrow interval within which the true change point is estimated to lie. The algorithm applies
the standard HMM Forward recursion, but to evaluate the conditional likelihoods of all successive observation subse-
quences of length d, given the entire past of the time series relative to the subsequence, with the algorithm terminated
either when a detection is first made or when the observation sequence has been exhausted with no detection made.
� Detection evaluation criteria: Criteria for evaluating performance in our strict delay setting, with at most one change
point, are proposed, including the novel TDIR, FPR, and bias and variance in estimation of the change point, all as a func-
tion of delay tolerance (d) and the associated observation window length (also d).
� Evaluation on real-life application domains: Performance of the proposed algorithm is experimentally validated and com-
pared with a CUSUM, STSA, and standard HMM detection techniques [38,22] on two different applications: detection of
combustion instability onset and detection of fatigue failure start in polycrystalline alloys. The results for both applica-
tions show excellent performance of the proposed scheme to detect and estimate the change point and to define a narrow
interval within which the change point lies. Substantial performance gains, with respect to all four criteria, are achieved
compared with the abovementioned detection methods.

Organization of the paper: Section 2 introduces an algorithm for change point detection and performance criteria suitable
for low-delay detection. Section 3 experimentally validates the proposed scheme in comparison with several popular meth-
ods. Section 4 summarizes and concludes the paper along with recommendations for future research. Appendix A presents a
proof that theoretically supports our use of the conditional likelihood for detection and that detection performance improves
with increasing d.

2. A conditional likelihood based HMM change point detection algorithm

2.1. Conditional likelihood calculation

Consider a null first-order HMM (learned using the standard Baum-Welch re-estimation algorithm for HMMs [39] based
on a null time series, containing ‘‘normal” observations with no change point), described by K ¼ pif g; aj=i

� �
; bj xð Þ
� �� �

, where
pif g is the initial state probability vector, aj=i

� �
is the state-transition probability matrix, and bj xð Þ

� �
are the state-

conditional observation densities. Consider a new time series x1:N ¼ x1; . . . ; xNð Þ being operationally interrogated for possible
detection of a change point. Let s1:N ¼ s1; s2; . . . ; sNf g be a particular hidden state sequence realization that could have been
used to generate the given observed time series, under the null HMMmodel. Recall the standard Forward variable for HMMs
[39], i.e. an i½ � ¼ P x1:n; Sn ¼ i;K½ �; i ¼ 1; . . . ; L; L the number of HMM states. Here, Sn is a random variable representing the state
at time n and i is its (state) realization. These Forward variables can be recursively computed and used to evaluate the joint
likelihood of an observation sequence, as follows [39]4:

� Initialization:
a1 i½ � ¼ pibi x1ð Þ; i ¼ 1; . . . ; L ð1Þ
� Recursion:
4 To a
in comp
void numerical underflow, we apply the scaling procedure for the Forward algorithm suggested in [39], which does not introduce any loss in precision,
uting the log-likelihood.
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anþ1 j½ � ¼
XL

i¼1
an i½ �aj=i

" #
bj xnþ1ð Þð2Þ

j ¼ 1; . . . ; L; n ¼ 1; . . . ;N � 1

� Termination:

P x1; x2; . . . ; xN;K½ � ¼
XL

i¼1
aN ið Þ ð3Þ

Now consider the potential application of this Forward algorithm to detection of a change point within a given subse-
quence xn:nþd�1. An approach that has been commonly applied in prior works [38,22] is to make the approximation that
the time series in fact begins at time n. Thus, the Forward recursion above is run, but with the initialization step replaced
by: ân i½ � ¼ pibi xnð Þ; i ¼ 1; . . . ; L. Here, we use ^ to denote the fact that an approximate Forward variable is being computed.
The result of running the Forward recursion starting from this approximate initialization at time n is an approximation of

the joint likelihood: bP xn:nþd�1;K½ � ¼PL
i¼1ânþd�1 i½ �. Use of this in making detections will be referred to as standard HMM infer-

ence for detection.

There are in fact two limitations of this standard approach. First, bP xn:nþd�1;K½ � is clearly only an approximation of the joint
likelihood – the true joint likelihood can only be obtained by marginalizing out the random variables X1; . . . ;Xn�1 from
P X1; . . . ;Xn�1; xn; xnþ1; . . . ; xnþd�1;K½ �. In general, this is analytically intractable. Second, it would in fact be suboptimal to per-
form such marginalization (see Appendix A). Rather, it is optimal to account for the observed past by conditioning on it, i.e.
evaluating the conditional likelihood P xn:nþd�1jx1:n�1;K½ �. This conditional likelihood can in fact be efficiently evaluated. Note
in particular that
Fig. 1.
P xn:nþd�1jx1:n�1;K½ � ¼ P x1:nþd�1;K½ �
P x1:n�1;K½ � ¼

PL
i¼1anþd�1 i½ �PL
i¼1an�1 i½ � ; ð4Þ
The latter equality is achieved simply by realizing that the joint likelihoods in the numerator and denominator are effi-
ciently computed by running the Forward HMM recursion described above in (1)–(3), i.e. starting from the beginning of the
time series, and terminating at the appropriate times for the numerator and denominator likelihood calculations, respec-
tively. We have seen little prior work using the conditional likelihood for HMM-based inference and HMM-based anomaly
detection.

2.2. Detection algorithm based on the conditional likelihood

Consider a time series x1:N , and assume there is at most one change point. Such an assumption is reasonable in many real-
life applications, such as fault and machine failure detection. In these examples, it is valuable to be able, with low delay, to
detect the beginning of the change from nominal behavior so as to make a proper action to avoid further consequences of
such change. Therefore, we want to detect the start of the change, which corresponds to a single time point within the time
series.
Schematic representation of the sliding window in Algorithm 1, illustrating d subintervals of length d containing a given candidate change point, n.
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To do so for allowed delay tolerance d, we consider intervals of length d that contain a candidate change time point, n.
There are d such intervals, as indicated in Fig. 1. We evaluate the conditional log-likelihood of each such interval, using
(4), and make a detection at time point n if the minimum absolute deviation from a (null) reference log-likelihood value,
over all the d intervals, exceeds a threshold. Thresholding the minimum deviation is a conservative detection rule, with
the resulting algorithm called HMM(2)-min. At the other extreme, an aggressive detection rule would be to threshold the
maximum of the d deviations, with the resulting algorithm called HMM(2)-max. Both such detection rules are in fact eval-
uated in the sequel. If a detection is made, the detection interval is chosen as n� dþ 1;nþ d� 1½ � and the change point itself
is estimated as n. If no detection is made, the window (in Fig. 1), centered on n, is slid one position to the right, with the new
candidate change point as nþ 1. Pseudocode for our detection procedure is given below in Algorithm 1.

Algorithm 1 Proposed Detection Approach

Input: Time series x1:N , a null HMM K, delay tolerance d, null (reference) normalized (by d) log-likelihood L, and
threshold d.

Output: Either a ‘‘no change point” decision (zd ¼ 0) or a ‘‘change point detected” decision (zd ¼ 1) and the estimated
change point n̂, which determines the estimated interval n̂� dþ 1; n̂þ d� 1½ �.

1: zd  0, n d;
2: Run the Forward recursion to compute a1 i½ �; . . . ;a2d�2 i½ �; i ¼ 1; . . . ; L.

3: Set
PL

i¼1a0 i½ � ¼ 1.
4: do
5: Take one Forward recursion step to compute anþd�1 i½ �; i ¼ 1; . . . ; L.

6: Compute logP xn�dþ1þj:nþjjx1:n�dþj;K
� � ¼ log

PL

i¼1anþj i½ �PL

i¼1an�dþj i½ �

� �
; j ¼ 0;1; . . . ; d� 1.

7: D minj2 0;1;...;d�1f gj 1d log P xn�dþ1þj:nþjjx1:n�dþj;K
� �� Lj.

8: if D > d then
9: n̂ n
10: Estimated interval is: n̂� dþ 1; n̂þ d� 1½ �.
11: zd  1
12: end if
13: n nþ 1
14: while n < Nð Þ AND zd ¼¼ 0ð Þð Þ

Comments:

1. The algorithm starts by considering the candidate change point n ¼ d, with associated observation window 1; . . . ;2d� 1½ �.
The first interval evaluated for this window is 1; . . . ; d½ �. For this interval, there are no past observations. Thus, the ‘‘con-
ditional” likelihood is actually the unconditioned likelihood P x1:d;K½ �. The algorithm computes this likelihood by usingPL

i¼1a0 i½ � in the denominator term in (4), which in fact equals 1.
2. For each candidate change point, just one new forward recursion step is needed. Thus, the detection algorithm complexity

scales with the complexity of the Forward algorithm which, for a sequence of length M, is O L2M
� 	

.

3. The reference normalized log-likelihood L can be computed in different ways, customized to the application domain of
interest: i) We can simply set L ¼ 0 if we expect the conditional likelihood of the sliding interval to significantly change
once the change point is involved in the interval, ii) We can compute an ensemble average L from multiple ‘‘normal” time
series that are known to contain no change point. Moreover, since this reference average log-likelihood may be a function
of both n and d, we can compute an ensemble average value for each n; dð Þ pair; iii) L can be time series realization depen-
dent and can again be a function of n and d (for example, it can be evaluated by locally, temporally averaging the log-
likelihoods for each of the d time intervals of length d in the window n� dþ 1;nþ d� 1½ �), for all values n that are ‘‘early
enough” such that it is known that 1; . . . ;n½ � does not contain a change point; iv) It can again be time series dependent and
a function of d but not a function of n. In this case, we assume that L does not change much, as the past context (as n)
increases; v) For each time series and at any given time n, we can compute L as the time-average of the conditional like-
lihoods of all intervals of length d up to (but not including) time n (i.e., including all times up until the present that have
been rejected as change points). In the sequel we will exposit how we chose L in our experiments.

4. We use the absolute deviation from a null reference log-likelihood because for some applications anomalies will be asso-
ciated with lower likelihoods than typical under the null whereas, for others, anomalies will actually yield higher likeli-
hoods than are null-typical. This will be seen in our fatigue failure experiments.

5. The detection threshold d can be set in one of several ways, e.g. to control the FPR for a given d.
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3. Experimental results

In this section we validate the proposed HMM-based detection method using experiments from two different domains:
instabilities in combustion systems and fatigue failure in a polycrystalline alloy material. In both cases we have time series
generated from experiments with failures (instabilities) and with no failures (no instabilities). For simplicity, we assume
there are two hidden (null) HMM states and we use Gaussian mixtures for the state-conditional density functions. The num-
ber of mixture components for each state is selected using the Bayesian Information Criterion (BIC) [40]. We also apply a
CUSUM algorithm and the symbolic time series analysis technique (STSA) [41] with K-means and maximum entropy parti-
tioning (MEP) [42] used to perform the symbolization (quantization) required by STSA. Finally, we compare with standard
use of HMMs for detection, evaluating the joint likelihood of observations in the window [38,22], as described in 2.1, rather
than the conditional likelihood. We will compare the results for these methods with our proposed method.

In this paper, we evaluate an STSA change point algorithm that mimics the structure of Algorithm 1. Specifically, a null
time series (known to contain exclusively ‘‘normal” observations) is quantized into a discrete symbol sequence (e.g., using
the K-means algorithm), which is then used to estimate a null PFSA. Then, operationally, for any new (test) window of obser-
vations, a new PFSA is estimated using the same quantizer partition as was used to construct the null PFSA. Therefore, we
have a null PFSA (and its steady state probability vector), which was estimated based on an observation window for which it
is known no anomaly is present, and a new PFSA, which is estimated based on a test observation window. The states’ sta-
tionary probability vector at a given time n is obtained from the new PFSA at time n, and a surrogate for the log-likelihood
deviation defined in Algorithm 1 is obtained by computing the Kullback–Leibler (KL) divergence between the new probabil-
ity vector at time n and the probability vector obtained from the null PFSA. Then, mirroring the HMM-based algorithm, we
find the minimum KL value over all dwindows of length d that contain the point n and compare this to a detection threshold.
Hence, for STSA, we apply the proposed Algorithm 1 structure (unlike previous change point detection algorithms based on
STSA), but based on the KL measure rather than the absolute log-likelihood deviation. The KL measure is expected to increase
when an anomaly occurs.

3.1. Detection of thermoacoustic instability onset in combustion systems

Thermoacoustic instabilities (TAI) in combustion systems are usually caused by spontaneous excitation of one or more
natural modes of acoustic waves [43]. TAI are typically manifested by large-amplitude self-sustained chaotic pressure oscil-
lations in the combustion chamber [44], which may lead to damage in mechanical structures if the pressure oscillations
match one of the natural frequencies of the system. Traditional techniques of pressure-oscillation measurement for TAI
detection, reported in the literature [45,46], attempt to extract the growth-rate information using the entire envelope of
pressure oscillations. These techniques thus observe the entire acoustic time series and may not be suitable for online esti-
mation of transient growth of oscillations and early detection of instability. Moreover, the time scales of TAI are on the order
of milliseconds, which, given practical sampling rates, mandates an algorithm that can accurately detect an onset of TAI
based on short-length sensor data.

The detection approach given by Algorithm 1 is our proposed candidate for such detection. The performance of this
method is compared here with CUSUM and STSA techniques based on K-means and MEP [42] partitions. We also evaluate
the standard HMMmethod, in which the conditional likelihood P xn�dþ1þj:nþjjx1:n�dþj;K

� �
used in Algorithm 1 is replaced by the

unconditioned likelihood bP xn�dþ1þj:nþjjK
� �

. This approach is consistent with the HMM detection approaches in [38,22]. In the

sequel, HMM 1ð Þ stands for the conventional HMM-based method, and HMM 2ð Þ stands for our conditional-likelihood HMM-
based method.

For each experiment, the null HMM K is estimated by the Baum-Welch algorithm [36] using the first 1/10-th of the obser-
vations generated in the stable phase. Since the observations’ variance increases as the system becomes unstable, the log
conditional likelihood is expected to significantly decrease. Therefore, we set L ¼ 0. The threshold d is computed as
d ¼ max
n2 1;...;df g

D nð Þ þ � ð5Þ
where D nð Þ is the anomaly measure, at time n, used in Algorithm 1, and � is a hyperparameter chosen by splitting the exper-
iments into two equal-sized sets; training and test set experiments. We evaluate a grid of candidate � values and pick the one
which achieves the best TDIR performance over the training experiments. Then, the performance of the proposed algorithm
is evaluated (for this � choice) using only the time series in the test set. For fair comparison, the same method is used for
computing the threshold for the STSA techniques. Moreover, for each specimen, the same observations used to train the null
HMM are also used to train the STSA null model.

3.1.1. Description of the experimental apparatus
Experiments in this subsection are obtained by using an electrically heated Rijke tube apparatus shown in Fig. 2 (see [34]

for more details), where the process starts with a stable combustion that gradually becomes unstable. Experiments have
been conducted by varying the air flow rate (Q) and the power input to the heater (Ein). A time series of pressure oscillations
is collected over 30 s for each experiment, sampled at 8192 Hz and high-pass-filtered to attenuate the effects of low-
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frequency environmental acoustics. For each experiment, the setup is heated to steady state with a power input of 200 W to
the heater. Then the power input is abruptly raised to a high value, which eventually showed a limit cycle behavior in each
experiment. A sample pressure signal is shown in Fig. 3, where instability is indicated by a large amplitude limit cycle. As
shown in the figure, the pressure signal starts with a relatively small amplitude, and once the process starts becoming unsta-
ble the amplitude starts growing due to the onset of a Hopf bifurcation in the system [47,45]. This is a TCD problem (as indi-
cated from the figure), with a short transient stage between the stable and unstable stages. Thermoacoustic instability is
triggered by changing Q (ranging between 130 LPM and 250 LPM at increments of 20 LPM) and Ein (ranging between
800 W and 2000 W at increments of 200 W). For some values of Q and Ein, instability does not set in, which is depicted
in the stability map of the system, as described in the work by Mondal et al. [34].

The onset time of Hopf bifurcation (m) changes from one experiment to another. To visually identify a unique change time
as ground truth, against which we compare our method’s estimate, we remove a small block of the time series that includes
the point xm. By doing so, we remove visual uncertainty, creating certitude that all the points in the time series up to the
beginning of the removed block are from the stable phase, with points after the removed block from the unstable phase.
However, the block removed is on the order of 100 points, while the total transient block is on the order of 10;000 points;
thus the removed block does not significantly change the gradual transition from stable to unstable combustion. Therefore
we consider the time point immediately after the removed block as the true change time. Since each original pressure signal
has millions of sample points, we consider the last 1=10-th of the signal before the transition from stable to unstable com-
bustion, the whole transient zone, and the first 1=10-th of the signal after the end of the transient zone. The resulting signal is
further downsampled by 100 so that the signal length is reduced while maintaining the main shape and features of the orig-
inal signal. This is for signals that do contain a transition from stable to unstable combustion. For signals with purely stable
combustion, we consider a 1=10-th segment of the signal and downsample by 100. We use the same process for the ultra-
sonic signals considered in the next subsection. Fig. 4 shows samples of the resulting pressure signals after downsampling.
Fig. 5 shows a sample pressure signal after downsampling, and a magnification of the transient part, which shows that the
transition from stable to unstable combustion is gradual, not abrupt.
3.1.2. Experimental validation
We conducted 145 experiments. In each, there is a single change from stable combustion to the unstable phase, with the

change time not fixed across the experiments. Then for each experiment we extract two pressure time series. One is safely
confined to cover a sub-interval of the stable phase, with the second one consisting of the full time series. Therefore, we have
290 time series: 145 with transitions from stable to unstable combustion (72 used in the training set for setting � and 73 in
the test set), and 145 with purely stable combustion (all in the test set). For each time series, we attempt to make a single
change point detection. By applying a detection algorithm to each of the time series, we can measure the TDIR, FPR, and bias
and variance of the estimator, for increasing values of the sliding window length d.

We start with the CUSUM method. One standardized version of the CUSUM algorithm returns the first index of the time
series x1:N that has drifted k standard deviations outside the nominal mean. This detection approach is suitable for a devia-
tion in mean. However, as shown in Fig. 3, our data shows a change in variance. Therefore, we use a CUSUM variant suitable
for change due to variance deviation. Inspired by [48] we introduce the modified CUSUM algorithm described by the follow-
ing stopping rule:
Ts ¼ inf n : jq nð ÞjP df g ð6Þ

q nð Þ ¼
Xn
k¼1

x2k � nr2
0 ð7Þ

r2
0 ¼

1
N0

XN0

k¼1
x2k ð8Þ
where Ts is the stopping time at which change detection is declared, N0 is the number of samples taken from the nominal
state to compute r2

0, and with the data shifted to have zero mean (so that r2
0 is a variance estimate). We tried different values

of the threshold d and picked the one with best TDIR performance. The results are shown in Fig. 6. At each value of the win-
dow size, d, the modified CUSUM is applied to the window xn:nþd�1 to make a detection, where the window xn:nþd�1 is slid from
the beginning until the end of the time series x1:N , until a detection is made. As shown in Fig. 6, the detection performance
generally improves with window size. Furthermore, TDIR achieves its maximum attainable value, 1.0, at d � 425, and FPR
achieves zero for the same value of d. These delay values are much larger than for the comparison methods, as will be seen
shortly.

Let us now apply STSA techniques. We consider two STSA methods; the first uses K-means clustering for partitioning and
the second uses the maximum entropy partition (MEP) [40,42]. The results for K-means are given in Fig. 7, and for MEP in
Fig. 8, both evaluated for different values of the symbol alphabet size (number of clusters, K). As shown in these two figures,
STSA performance is much better than modified CUSUM. We notice for both STSA methods how the TDIR converges close to
one with window size� 120, much less than � 425 required for the modified CUSUM. A comparison between the two figures
for K-means and MEP shows a little improvement for MEP in TDIR performance. However, the opposite is true for FPR, where



Fig. 2. Rijke Tube combustion apparatus.

Fig. 3. A pressure signal showing the transition from a stable combustion to unstable limit cycle.
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MEP converges to zero at window size P 80 with alphabet sizes 3 and 4, while K-means achieves zero FPR at window size
P 60 (with alphabet sizes 3, 4, and 5), both having much better FPR performance compared to the modified CUSUM.

Next, we pick the K-means and MEP solutions with best TDIR performance (i.e., alphabet size = 5 for K-means and 3 for
MEP), and compare them with the results obtained for the proposed HMM-based detection method (Algorithm 1), denoted
by HMM 2ð Þ. The results are given in Fig. 9, which shows excellent results of the proposed HMM scheme for all performance
measures: TDIR, FPR, bias and variance of the estimated change time, with consistent improvement achieved over the STSA
techniques. Note also that the STSA results in Figs. 7 and 8 are much better than CUSUM in Fig. 6. Thus, the HMM method,
which dominates the STSA methods, is also substantially better than CUSUM, with respect to all four performance measures
Fig. 4. Samples of pressure signals after downsampling.



Fig. 5. A sample pressure signal after downsampling, showing the gradual transition from a stable combustion to unstable limit cycle.

Fig. 6. Detection of thermoacoustic instabilities using modified CUSUM.

Fig. 7. Detection of thermoacoustic instabilities using STSA with K-means.
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Fig. 8. Detection of thermoacoustic instabilities using STSA with MEP.

Fig. 9. Detection of thermoacoustic instabilities using K-means (alphabet size = 5), MEP (alphabet size = 3), HMM 1ð Þ (number of states = 2), and HMM 2ð Þ

(number of states = 2).
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evaluated. The HMMmethod’s FPR goes to zero much faster than the STSA methods; the HMMmethod dominates at all win-
dow sizes. But most notable is the much better variance characteristic of the HMM method. Also, the figure shows the per-
formance of the standard HMM-based method, HMM 1ð Þ, which uses the approximate joint subsequence likelihood, i.e. which
ignores the past when evaluating the likelihood of a subsequence. Note that the conditional likelihood based approach out-
performs the joint likelihood based variant for all window sizes, d, with respect to all four performance measures, but espe-
cially with respect to TDIR.

Fig. 10 shows the performance of the proposed HMM-based method with the anomaly measure obtained by using the
min (denoted as HMM 2ð Þ-min) and max (denoted as HMM 2ð Þ-max) operators (over all subsequences of length d for the cur-
rent candidate change point). The figure shows generally comparable results, with HMM 2ð Þ-max giving better performance
for TDIR and HMM 2ð Þ-min giving better performance for FPR, the bias, and variance of the estimated change point. These
results are not surprising since ‘max’ is expected to be a more sensitive (but less specific) statistic than ‘min’. Note also in
Figs. 6–10 that, for all the methods, TDIR increases, and FPR decreases, with increasing window size, d. This experimental
observation is theoretically supported in Appendix A. This suggests one might want to choose d quite large. However, for
a given application, d must be restricted in order to achieve low-latency detection and the potential for damage mitiga-
tion/response.



Fig. 10. HMM-based method performance with min and max operators used to compute the anomaly measure.
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3.2. Detection of fatigue crack initiation in a polycrystalline alloy material

Modeling fatigue failure in mechanical structures has received great attention by many researchers, e.g. [49,50]. In any
mechanical structure, millions of initial materials’ defects (such as dislocations, voids, inclusions and slip bands) exist inside
the microstructure even before the structure is used. In general, fatigue damage is critically dependent on these initial
defects, from which cracks start to nucleate and merge together, generating bigger cracks, leading to the failure of the struc-
ture [51]. These initial defects are usually distributed in a highly random fashion, producing large uncertainties in the crack
initiation and propagation process even under identical loading. Therefore, fatigue failure is considered an unpredictable and
highly stochastic process. In the following, we give a brief description of the apparatus we use to get ultrasonic signals cor-
related with fatigue damage.
3.2.1. Description of the experimental apparatus
Although structural fatigue damage is not easily measured directly, damage may be correlated with signals that can be

measured and used for fatigue damage detection. In this work we use ultrasonic signals, which have been commonly used for
real time damage sensing in the aerospace and nuclear power industries to detect flaws in structures [52]. Fig. 11 shows the
experimental apparatus, built upon an MTS 831.1 fatigue testing machine, which can be used to apply external load to test
specimens with the desired cyclic properties: amplitude, frequency, and the shape of the force function; it is also capable of
applying random loading. The other component is the ultrasonic part, which functions by emitting high frequency ultrasonic
pulses by using a piezoelectric transducer. A Matec TB1000 Gated Amplifier PC add-in card drives the piezoelectric trans-
ducer with a gated sine wave with amplitude of 300 V. The generated signal consists of short bursts of a sine wave of con-
stant amplitude interrupted by relatively long periods of 0 V. This signal propagates through the specimen and is captured by
transducers arrayed on the other side of the notch. The received signal is routed through a high frequency selector switch to a
National Instruments NI5911 Oscilloscope card in the PC. The acquisition of the ultrasonic signal is synchronized with the
load applied to the specimen so that data is acquired at the low load and at the high load (see [53] for more details). When
cracks occur, part of the ultrasonic signal will be reflected, and hence the received signal is attenuated. This attenuation
increases as more cracks initiate and propagate, until the specimen breaks and only noise signal is left. In this paper, data
are collected at a sampling rate � 21;800 Hz.

As we did for the combustion signals, we remove a small block from the signal at the visually assessed change point. We
then consider the last 1=10-th of the signal just before the transition from healthy to damaged state, the whole transient
zone (except for the small removed block), and the first 1=10-th segment of the signal just after the end of the transient zone.
Then the resulting signal is further downsampled by 100 so that the signal length is reduced while maintaining its main
shape and features. This is for signals that contain a transition from a healthy to a damaged state. For signals with purely
healthy state, we only consider a 1=10-th segment of the signal, and then downsample by 100. Thus the data are collected
at an effective sampling rate � 218 Hz.

Fig. 12 shows such ultrasonic signals, after this segmentation and downsampling, for 12 sample specimens made of steel-
aluminum alloy. As shown in the figure, the signal begins to significantly attenuate at a certain time instant. Such time
instants roughly estimate phase transitions in fatigue damage, where cracks reach critical lengths and the damage process
starts growing aggressively (until the specimen breaks and only a noise signal remains). As the figure indicates, this is a QCD



Fig. 11. Apparatus for fatigue failure experiments.
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problem, with the system remaining in the transient (increasing damage, indicated by increasing signal attenuation) phase
until the specimen breaks (with the signal then flat). Although all the specimens used in this work have the same dimensions
and are made from the same material, the plots in Fig. 12 show that the change time is different from one specimen to
another. This difference is due to initial microstructural defects which are specimen-dependent.
3.2.2. Experimental validation
We conducted 17 experiments and proceeded in a similar way as for the combustion experiments to generate 34 ultra-

sonic time series – 17 with transitions from healthy to a gradually damaged state until the specimen breaks (8 used in the
training set for setting � and 9 in the test set); another 17 with healthy condition, for which there is no detectable fatigue
failure. As we mentioned, the ultrasonic time series obtained here are highly stochastic and highly noisy. Moreover, unlike
the pressure signals in the combustion experiments, the ultrasonic signals at the receiver tend to decrease in variance (ap-
proaching the null density mean value – zero) as damage accumulates in the specimens. In this situation, unlike for the com-
bustion experiment, the likelihood under the null is expected to (atypically) increase as the data variance decreases, because
after the change point the observations tend to hover close to the null mean – this is why we use the absolute deviation in
Algorithm 1. It covers both atypically small and atypically large log-likelihoods compared to the null (reference) log-
likelihood.
Fig. 12. Ultrasonic signals for sample specimens, with signal strength value on the y-axis and time on the x-axis.



Fig. 13. Detection of fatigue failure onset using K-means (alphabet size = 3), MEP (alphabet size = 4), HMM 1ð Þ (number of states = 2), and HMM 2ð Þ (number of
states = 2).
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We applied STSA methods using K-means and MEP for partitioning, and HMM 2ð Þ inference with the proposed forward
recursion, both combined with the proposed detection approach in Algorithm 1. We also applied the standard HMMmethod,
HMM 1ð Þ, which uses the approximate joint likelihood instead of the conditional likelihood. Again, for STSA, the surrogate
quantity for the deviation in log-likelihood in Algorithm 1 is the Kullback divergence between the current PFSA states’ sta-
tionary probability vector and the null PFSA states’ stationary probability vector [41,42].

We follow the same methods we used in the combustion experiments to compute the null models and the thresholds for
both HMM and STSA techniques. However, since the likelihood under the null is expected to increase as the data variance
decreases, it is not reasonable to set L ¼ 0, as we did in the combustion experiments. Alternatively, we compute L as follows.
For HMM 1ð Þ; L is the mean of the log-likelihoods of the first d intervals of length d, i.e.,
L ¼ 1
d

Xd

n¼1
L nð Þ ð9Þ
However, this choice of L is not plausible for HMM 2ð Þ. In this case, L should be time-varying, consistent with the condi-
tional log likelihood depending on the growing past. Therefore, we compute a time-varying L as
L nð Þ ¼
1
n

Xn

m¼1
L mð Þ; if n 6 T0

1
T0

XT0
m¼1

L mð Þ; otherwise

8>>>><>>>>: ð10Þ
for all n > 0, where T0 is chosen to be well within the normal phase (much less than the true change instant). We used T0 ¼ s
10

, where s is the true change instant.
Fig. 13 shows the results for STSA and HMM methods. For K-means and MEP, we used different values of alphabet size,

ranging from 2 to 5, and picked the one with the best TDIR performance. Specifically, we used alphabet size = 4 for MEP and 3
for K-means. The results show excellent performance of the HMM algorithms (HMM 1ð Þ and HMM 2ð Þ) in terms of TDIR, FPR,
and estimator bias and variance, with consistent improvement achieved over the STSA techniques. Again, it is seen that the
conditional likelihood based (proposed) method (HMM 2ð Þ) overall outperforms the joint likelihood based variant of our
approach (HMM 1ð Þ) with respect to TDIR and FPR. The bias of the two methods is comparable and the variance of HMM 1ð Þ

is smaller.
4. Conclusion

The proposed strictly low-delay, localizing, HMM conditional-likelihood based transient change detection algorithm has
been shown to achieve substantially improved performance over comparison methods with respect to appropriate perfor-
mance criteria proposed here: a novel TDIR, FPR, the bias in estimating the change point, and the variance of the change point
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estimate, all as a function of the delay tolerance parameter d. We also proved, within a supervised setting, that conditioning
(as we do) is required for optimal detection and that detection performance is monotonically non-decreasing with increasing
window size, d, consistent with our experimental results. Since many systems that involve change point detection involve
control inputs, in our future work we may consider the framework of input–output hidden Markov models (IOHMMs) [54] in
devising a scheme that chooses control inputs to e.g. maximize TDIR under strict detection delay given a fixed FPR. Such con-
trol inputs could also be used to induce desired change points (associated with improved performance, rather than with sys-
tem failure).
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Appendix A. Proof that i) conditioning on past observations is required for optimality in a (supervised) detection
setting and ii) detection performance is monotonically non-decreasing with increasing delay tolerance d

In this appendix, to simplify theoretical analysis, we consider detection based on a window of observations
xn ¼ xn; . . . ; xnþd�1f g. Further, solely for clarity’s sake, suppose that, if there is a change point in the time series, it is at xn,
i.e., in this case all the observations in xn; . . . ; xnþd�1f g were generated according to the new (change state) random process.
Also define the growing window vector xn ¼ x0; . . . ; xnþd�1f g. Denote the joint density of Xn under the null hypothesis by
f Xn=0

:;K0ð Þ. The alternative hypothesis is that x0; . . . ; xn�1f g was generated according to the nominal random process and

xn; . . . ; xnþd�1f g was generated according to the new process (starting with change point xn), f Xn=1
:;K1ð Þ, independent of past

observations. Suppose we wish to make optimal (minimum error rate) detection, given knowledge of f Xn=0
:ð Þ and f Xn=1

:ð Þ. The
error rate can be expressed as:
Pe n½ � ¼ P1

Z
R0

f Xn�d=0 zn�d;K0

� 	
f Xn=1

zn;K1ð Þdzn þ P0

Z
R1

f Xn=0
zn;K0

� 	
dzn; ð11Þ
where zn is a vector of dummy variables of integration and where R0 is the decision region assigned to the no-change state
and R1 is the decision region assigned to the change state. If the normal and changed state class priors P1 and P0 are
unknown, they can be set to 1=2; 1=2½ �. Using a standard simplification, this is re-expressed as:
Pe n½ � ¼ P0 þ
Z
R0

P1f Xn�d=0 zn�d;K0

� 	
f Xn=1

zn;K1ð Þ � P0f Xn=0
zn;K0

� 	� 	
dzn;
All the values for which the integrand is negative should be assigned to R0, to minimize Pe n½ �. All the values for which the
integrand is positive should be assigned to R1 (so that they do not make positive contribution to the integral). Thus, we have
the Bayes-optimal rule:
R0 ¼ x : P0f Xn=0
x;K0

� 	
P P1f Xn�d=0 xn�d

� 	
f Xn=1

xn;K1ð Þ
h i

;

with R1 the complement of this region in Rd. This can be rewritten, cancelling the common term f Xn�d=0 :;K0ð Þ, as
R0 ¼ x : P0f Xn=xn�d ;0 xn=xn�d;K0

� 	
P P1f Xn=1

xn;K1ð Þ
h i

:

Note that the minimum error rate rule is based on the (conditional) density, considering observations (from 0 to n� d)
outside the current window.
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Now, consider the more relevant (detection) problem, with the goal to minimize the missed detection rate given a fixed
false positive rate. That is, the problem:
min
R0

P1

Z
R0

f Xn�d=0

�
zn�d;K0

�
f Xn=1

zn;K1ð Þdzn
subject to
P0

Z
R0

f Xn=0
zn;K0

� 	
dzn ¼ c
The associated Lagrangian objective is:
L ¼ P1

Z
R0

f Xn�d=0 zn�d;K
� 	

f Xn=1
zn;K1ð Þdzn þ k P0

Z
R0

f Xn=0
zn;K0

� 	
dzn � c

� �

Now, dividing by P1 þ kP0, note that minimizing L with respect to R0 is equivalent to minimizing
P1

P1 þ kP0

Z
R0

f Xn�d=0 zn�d;K
� 	

f Xn=1
zn;K1ð Þdzn þ kP0

P1 þ kP0

Z
R0

f Xn=0
zn;K0

� 	
dzn � c0

� �
ð12Þ
where c0 ¼ c=P0. Now simply recognize, ignoring the c0 term which does not affect the solution, Eq. (12) can be reinterpreted

as a probability of error expansion, just as Eq. (11), but with class priors P1
P1þkP0

kP0
P1þkP0

h i
.

Thus, our previous probability of error analysis also holds for Eq. (12), i.e. the optimal decision rule, minimizing Eq. (12)
and thus achieving least missed detection rate given fixed false positive rate, must use the (conditional) density, conditioning
on Xn�d ¼ xn�d ¼ x0; . . . ; xn�1f g, just as one must do to achieve the Bayes-optimal minimum error rate classifier.

Moreover, consider two window sizes d and d0; d0 < d. Note that making decisions based on the window of observations
xn; . . . ; xnþd0�1

� �
is equivalent to observing xn; . . . ; xnþd�1f g but only using the observations up to time nþ d0 � 1 to make deci-

sions. But the above formulation shows that the optimal detection rule, determining R0, makes use of all the observations in
the window xn; . . . ; xnþd�1f g. Thus, given a fixed false positive rate c, the true detection rate of any detector using just the
window xn; . . . ; xnþd0�1

� �
cannot be larger than the true detection rate of the optimal detector making use of

xn; . . . ; xnþd�1f g. This proves monotonically non-decreasing detection performance, with increasing window size, d.
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