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A B S T R A C T

This paper proposes an autonomous method for detection and classification of fatigue crack
damage and risk assessment in polycrystalline alloys. In this paper, the analytical and compu-
tational tools are developed based on convolutional neural networks (CNNs), where the execu-
tion time is much less than that for visual inspection, and the detection and classification process
is expected to be significantly less error-prone. The underlying concept has been experimentally
validated on a computer-instrumented and computer-controlled MTS fatigue testing apparatus,
which is equipped with optical microscopes for generation of image data sets. The proposed CNN
classifier is trained by using a combination of the original images and augmented images. The
results of experimentation demonstrate that the proposed CNN classifier is able to identify the
images into their respective classes with an accuracy greater than 90%.

1. Introduction

Fatigue damage is a major source of failures in mechanical structures; the main factors, which induce such failures, include: a
large number of applied stress cycles, maximum tensile stress, and fluctuations in the applied stress. In general, the maximum stress
accrues from discontinuities in both external surfaces (e.g., notches and fillets) and internal microstructures (e.g., inclusions and
voids). These defects are often produced during the manufacturing process, and they are randomly distributed in polycrystalline alloy
(e.g., metallic) structures.

Fatigue damage in ductile materials (e.g., polycrystalline alloys) can be classified into three consecutive stages [1]. The first stage
is the crack initiation, where the actual crack growth rate may not be significant (e.g., ~1 nm per cycle); therefore, the fatigue damage
risk is low. The second stage is the crack propagation, and it starts after the first stage and propagates in a direction approximately
normal to the applied load. Here, the crack growth rate is low at the beginning and becomes high at the end of the stage. Thus, the
fatigue damage risk is considered to be low at the beginning and gradually becomes high at the end of the stage. The third stage is
defined when the crack becomes sufficiently long, where the remaining cross-section area othe stressed component may not be able to
sustain the applied load, and the fatigue damage risk is very high [2,1,3].

Damage estimation in mechanical structures belongs to the class of engineering maintenance. Two approaches provide damage
measurements in metallic structures. The first approach is to identify the maximum applied load that would prevent the structure
from failing immediately, where the crack geometry (e.g., length, location, and orientation) is known in addition to boundary
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conditions. The second approach is to determine the maximum length of a crack that would not cause the structure to fail im-
mediately. The second approach is defined as damage tolerance. From the perspectives of damage tolerance, once a crack length is
determined, the damaged component must be periodically inspected with appropriate non-destructive testing (NDT). However, when
a crack length becomes critical, the structural part must be fixed or replaced where further crack growth could cause catastrophic
failure of the fatigued component [4].

This paper defines the damage tolerance based on the crack tip opening displacement (CTOD) , instead of the crack length (CL) a.
Fig. 1 shows how CTOD is dependent on CL that increases with expanding CTOD. Therefore, in this paper, CTOD has been used as the
source of information for determining the damage risk of the fatigued component [5].

In this paper, the defined damage risk of the fatigued component may belong to two classes. The first class is the non-risk class,
where the component surface is apparently crack-free, as shown in Fig. 2a. The second class is the risk class, and it is divided into two
subclasses. Fig. 2b represents the first subclass, which is the low-risk damage class. The crack growth rate in the low-risk class is slow,
and the crack tip opening displacement is small. Furthermore, the shape of the cracked surface, after the failure of a fatigued
component, is a noticeable “thumbnail,” as illustrated in Fig. 3. The second subclass is defined as high-risk damage class, where the
crack growth rate is high and the crack opening size is significant, as shown in Fig. 2c. The region of high-risk damage starts after
“thumbnail” as illustrated in Fig. 3 [5]

According to some investigators (e.g., [6]), more than two-thirds of all inspections in aviation industry are essentially made by
visual inspection. Although the visual inspection is capable of detecting a variety of defects (e.g., fatigue cracks) in machinery
components, damage detection accuracy may vary from person to person, depending on the vision of the inspector, in addition to
various other factors, such as poor access, lighting, geometry, and size of the area being inspected. Furthermore, determining the
damage-risk of the fatigued component depends on the inspector’s experience; in most of the cases, it is a time-consuming task. Thus,
automated crack detection is deemed very necessary.

Recently, much research on image-based algorithms has been reported around the theme of crack detection [7–9]. From these
perspective, tools of digital image processing (e.g., edge detection and thresholding) are capable of crack detection in images, where
the properties of crack images are analyzed based on photometric and geometric hypotheses [10]. For example, the location of a
crack can be defined based on the photometric property, where crack pixels have distinct values from other pixels. Thus, a threshold
value can be defined to separate cracks from the background [10–12]. One of the major disadvantages of these methods is that the
noise on the image could affect the accuracy of crack detection. To overcome this problem, mathematically techniques (e.g., discrete
wavelet transforms) are used to remove noise from the images. The discrete wavelet transform can distinguish between crack regions
and crack free regions based on their scales, where scales of the crack regions be different from those of crack-free regions [13].
Although the above-mentioned techniques can detect cracks on material structure, they do not have the capability to classify crack
images.

Fig. 1. The location of the investigated area, the crack tip opening displacement (CTOD) , and the crack length (CL) a.

Fig. 2. (a) Crack free surface, (b) small-crack, and (c) large crack.
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Recent years have witnessed a growing academic interest in detecting fatigue cracks using machine learning methods [7]. In
addition to the capability of crack detection, the machine learning methods are able to classify the images to their proper classes.
Some investigations have proved that machine learning methods are able to classify non-crack images and crack images, and the
performance of these methods was excellent, their accuracy exceeded 90% [14]. However, most of these investigations have not used
the image pixel data directly for classification, nor they have classified the crack images into further sub-classes. For example, one
study used the histogram of the image as the input data for classification instead of the original image pixels data [14]. Another study
used a convolutional neural network (CNN) to detect the crack based on the classification of the image, which means that this study
has only two classes, crack-free images and cracked images [10]. Along this line, this paper proposes the concept of CNN to classify
the status of fatigued surfaces into their proper classes by using image features.

Convolutional Neural Networks (CNNs) belong to a special class of artificial neural networks that are used for object detection and
classification in images [15,16]. They are also referred to as deep neural networks due to the presence of a large number of hidden
layers. Therefore, a CNN can be viewed as a deep learning network that takes an input image and classifies the image into a particular
class. In any artificial neural network, layers are made up of a fundamental unit called the neuron. A neuron in a CNN is simply a
kernel, or in other words a filter with which the input image is going to be convolved with. These kernels are stacked in a cascaded
way to form a layer called the convolutional layer. Multiple such layers form a deep network. Since the input image is convolved with
the filters to produce feature maps, such a network is called a Convolutional Neural Network. It is noted that CNNs are capable of
classifying a large number of classes [16], and they may also be very efficient for image recognition [17,18]. Owing to the high
performance of CNNs, there are now being used not only for image classification, but also for object detection. Apparently Girshick
et al. [19] first proposed the use of CNNs for object detection within images. Later, efficient and fast performing models for visual
object detection were developed [20–22]; CNNs are also capable of sub-pixel accurate segmentation of objects [23].

In this paper, all images have been generated using an optical metrology device. A major concern here is the low number of
images, where operations of deep convolutional neural networks have to be performed well on a big data set by alleviating the
problem of overfitting. Image augmentation is a possible solution to this problem, where the generated images need to be augmented
by applying image processing techniques such as image translation, image rotation, image scaling, and image reflection [24]. The
total of 255 images have been selected from those that were generated by an optical metrology device (Alicona). These images are
then split into a training set and a testing set. Moreover, a part of the training set is further split into two subsets, i.e., training subset
and cross-validation subset. The training set is used to generate parameters to build a problem model. In contrast, the cross-validation
subset is used to evaluate the performance of the developed model from the training subset; thus, the entire learning phase consists of
these two subsets. When the learning phase is finalized, the test set is used to compute the accuracy of the learning phase. Data from
several studies suggest that the distribution for limited data should be as follows: 60% of the available data for training; 20% for
cross-validation set; and the remaining 20% is for testing [25].

The novelty of the paper includes: (i) development of an autonomous method for detection and classification of fatigue crack
damage in polycrystalline alloy structures (e.g., machinery components); and (ii) experimental validation of the associated risk
assessment algorithms that are applicable to remaining life prediction in various types of machinery. Although the underlying al-
gorithms are validated on a test apparatus for a polycrystalline alloy, which is a ductile material (in the room temperature), they are
expected to be functional for other types of materials (e.g., brittle) when trained with appropriate data sets with the same or a similar
CNN architecture. This is suggested as topic of future research in Section 5.

From the above perspectives, the main contributions of the work reported in this paper with respect to those in the existing
literature are delineated below.

1. Damage classification: The damage tolerance of a fatigued component is classified using convolutional neural networks (CNNs) into
three categories, namely, non-risk, low-risk, and high-risk.

2. Data augmentation: The ensemble of original input data is augmented using digital image processing methods such as translation,
rotation, and reflection.

3. Model performance evaluation: The performance of the CNN model is evaluated using the Soft-Max algorithm and loss function.

The paper is organized into five sections including the present section. Section 2 describes the methodology adopted in thsi paper,
including the information on convolutional neural networks (CNNs) that form the backbone of the work presented in this paper; this
section consists of the following three subsections: descriptions of CNN methodologies; concepts of CNN architectures; and de-
monstration of data bank augmentation. Section 3 describes the experimental procedure on a test apparatus and the associated
instrumentation. Section 4 discusses how the proposed CNN architecture evaluates test images and illustrates the accuracy of the
proposed CNN architecture. Section 5 summarizes and concludes the paper with recommendations for future research.

Fig. 3. Low risk region (thumbnail), and high-risk region.
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2. Methodology

This section develops the methodology for determination of different levels of risk resulting from fatigue crack failures in ma-
chinery. Three essential steps are considered to determine the risk level of the fatigued component for structural damage, as described
below.

1. The first step is determination of the critical crack length (CCL), which can be calculated using the following equation:

=a K
Yc

IC

max

2

2
1
2 (1)

where ac is the critical crack length (CCL); KIC is the fracture toughness (for aluminium 7075, KIC =20.0 MPa-m0.5); max is the
maximum applied stress;and the dimensionless parameter Y1 is a function of the crack length a and width w of the tested specimen.
For edge cracks, loaded in tension, Zahavi et al. [26] proposed the following equation to calculate Y1.
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where the CCL in all specimens (see Eq. (1)) is ac 9.6 mm. As shown in Figs. 4 and 5, the crack growth behavior before CCL (red
dashed line) is slow and almost stable while, after CCL, the crack growth rate is higher and unstable. Therefore, all measurements
before CCL are considered to be at the low-risk level while, after CCL, any measured value is considered to be at the high-risk
level.

2. The second step is to measure the crack tip opening displacement (CTOD) , synchronized with the crack length (CL) a, because
CTOD is illustrated in all generated images of the cracked tested specimen. Fig. 6 represents the relationship between CL and
CTOD in the crack propagation regime. As Fig. 6 indicates, the relationship between the crack tip opening displacement and the
crack length is strongly correlated. This correlation is determined using the following equation:
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where a and are the average CL and the average CTOD, respectively.

Fig. 4. Crack length in the propagation regime.

Fig. 5. The crack growth behavior of low-risk and high-risk.
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The correlation coefficient r=0.96 using Eq. (2), which means that CL and CTOD have a very strong positive correlation.
Therefore, the decision on risk category determination of CL can be applied to CTOD, where CTOD before critical crack length
(CCL) belongs to a low-risk category, and it belongs to a high-risk category after the CCL.
Since CTOD is illustrated in all generated images of cracked component, these images can be evaluated to determine the damage
risk category.

3. The third step is data preparation. The generated images are split into three categories based on damage risk. The non-risky
category contains crack-free images; the low-risk category represents generated images before the critical crack length; and, the
high-risk category includes generated images after the critical crack length. The classification hierarchy of this section is illu-
strated in Fig. 7.

In this study, the essential condition that must be considered during the experiment is that the fatigue load must be at the
maximum capacity (e.g., 11,000 N) for all images because the applied load has a significant effect on the crack (e.g., Eq. 1) and the
crack length and CTOD have a positive correlation. Hence, the maximum applied load causes the largest crack tip opening dis-
placement. For example, Fig. 8 and Fig. 9 represent two different classification cases. In the first case, the crack tip opening dis-
placement is 80.54 µm at 29,602 loading cycles, which is considered to be a high-risk class because it is after the critical crack length.
On the other hand, in the second case, at 30,096 loading cycles, the crack tip opening displacement is 44.39 µm which could be
considered to be a low-risk class while in fact, it is a high-risk class because it is measured after the critical crack length. In the second
case, CTOD should be greater than 80.54 µm. The reason for the miss classification between Fig. 8 and Fig. 9 cases is that during
generating the image, the applied load in the first case was more significant than the applied load in the second case.

2.1. Data augmentation

The size of the generated image by Alicona is × ×2040 2040 3, which means each image contains ×pixels4, 161, 600 3. As a result,
the input data to CNNs classifier is 12,484,800, which means the computation process for classifying each image becomes compli-
cated. Thus, each image should be resized such that the main image features (e.g., cracks and scratches) are still illustrated in the
image, and the time for the computation process is acceptable.

In this study, three techniques were applied to all images before using the CNN method. The first technique is reducing the
channel number of the generated images where all images are converted from RGB scale to grayscale. As shown in Fig. 10a, all

Fig. 6. The relationship between the crack length and the crack tip opening displacement.

Fig. 7. The classification hierarchy.
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generated images are RGB (red, green, and blue) images, which means that all images have three channels, while images in grayscale
have only one channel, as shown in Fig. 10b.

The reason for reducing channel number is to minimize the image data from 12,484,800 pixels to 4,161,600 pixels. In this study,
the unique property of crack images is those crack pixels are brighter than the surrounding pixels. As shown in Fig. 10b, the crack
path is noticeable because crack pixels intensity values are higher than the intensity values of the surrounding area. The second step is
reducing image size. Determining the optimal image size is a difficult task, and it is not part of this study. However, our objective for
the second step is to minimize the image data by reducing image pixels resolutions where the main features, such as the cracks, are
still visually illustrated in the image because we need to distribute images into different classes. As shown in Fig. 11a and Fig. 11c, it
is difficult to distinguish between the tiny crack, which is shown in the bottom of the image and the scratches, but small cracks could

Fig. 8. The crack tip opining displacement at 29,602 loading cycles.

Fig. 9. The crack tip opining displacement at 30,096 loading cycles.

Fig. 10. (a) RGB image, (b) grayscale image.
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be seen when image size is ×150 150. Thus, all grayscale images are resized from ×2040 2040 to ×150 150 (see Fig. 11b). Fig. 12
presents the original image.

The third step is the image augmentation. Four different methods augmented all images. The first method is the rotation; every
image produced 37 different images by rotation, where each image has its unique rotation angle. Fig. 13 represents the rotational
method where the locations of original image pixels were rotated by almost 90 °. The second method is the transition; every image
was augmented 21 times by transition, where the original image was shifted by a distinct distance. As shown in Fig. 14, the locations
of original image pixels were moved into the right by a distance equivalent to 14 pixels. Fig. 15 represents the third method, which is
the reflection, where every image generated its reflected image. The fourth method is called the scaling; this method creates 31
different images. As shown in 16, the original image was scaled by 6%. In the scaling method, the output image must be lie within its
class. For all augmented images, main image features (e.g., crack) must be illustrated.

2.2. The Convolutional Neural Network (CNN)

This subsection briefly introduces the underlying concept of convolutional neural network (CNN) that is comprised of various
layers, such as convolution layer (CL), pooling layer (PL), activation layer (AL), fully connected layer (FCL) and Softmax layer (SML).
Different CNN networks can be created by several combinations of these layers.

Fig. 17 represents a CNN with five layers, which takes an input image of size × ×128 128 1, representing height, width, and
channel, respectively; here, channel = 1 implies that the considered image is of grayscale. As the input image passes through
different layers of the CNN before classification, the spatial dimension of the image reduces. In this example, a × ×128 128 1 reduces
to × ×11 11 1 image. Due to the presence of a number of filters several such low resolution images called feature maps are formed
before passing through the fully connected layer (FCL). These images are “flattened” to form a D1 column vector as an input to the
FCL. The output scoring for each particular class which is finally converted to probability scores by the softmax layer, which re-
presents final out of the network. The details of individual layers are explained in the next subsections.

Fig. 11. (a) Image size is ×150 150, (b) image size is ×128 128, (c) image size is ×64 64.

Fig. 12. The original image.
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2.2.1. Convolution Layer (CL)
The CL is the most important layer in the CNN, which is also the most computation-intensive. A CL consists of several learnable

filters that are spatially small of size × ×h w n where h and w represent the height and width of the filter and n is the channel number
of in the input image. Typical choices of h w( , ) for filters are ×3 3 or ×5 5. The forward pass convolves the image with the filter to
create a D2 activation map. This D2 convolution of two signals is defined as:

=

=
= =

f m n

f i j g m i n i

h(m, n) g(m, n) ( , )

, ,
i k

k

j k

k

where the operator represents the convolution product of two functions; h m n( , ) is the convolved; g m n( , ) is the input image; and
f m n( , ) is the filter. Fig. 18 exemplifies the convolution operation. The filter f slides over the entire image g to create the convolved
output h. The corner cases are handled by padding zeros to the borders along the height and width; a stride determines how much
does the filter slides during a step of the convolution operation. The stride is one of the hyperparameters, which can be used to fine
tune the network. The initial values of the filters can be chosen arbitrarily and the filter values are updated during the training phase
[16]. The network is trained using stochastic gradient descent method. As shown in Fig. 17the proposed network architecture consists

Fig. 13. The rotated image.

Fig. 14. The translated image.

Fig. 15. The reflected image.

Fig. 16. The scaled image.
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of 2 convolution layers.

2.2.2. Pooling Layer (PL)
The PLs are commonly placed between successive layers of a CNN. It plays a key role to progressively reduce the spatial size of the

respective input images, i.e., the spatial size as the number of parameters is reduced, and therefore, the computational cost going
ahead in the network. This is also referred to as downsampling. By performing pooling overfitting of the network can be controlled.
Two major pooling techniques are mean pooling and max pooling. Given an ×m n matrix, the max pooling takes the maximum of all
the values, whereas the mean pooling takes the average of the matrix. Mean pooling and max pooling are explained in Fig. 19. In this
example, the a stride of 2 is considered. That is, max is considered over matrices of size ×2 2. It can be seen that a ×4 4 matrix is now
downsampled to a matrix of ×2 2. However, the depth of the output remains unchanged. In [27] Scherer et al. proved that max
pooling outperforms mean pooling for image datasets. In our architecture, after each convolution layer a max pooling layer is used.
The first pooling layer has a stride of ×3 3 and the second layer has a stride of ×2 2.

Fig. 17. Convolution Neural Network architecture used for classification. It consists of 2 convolutional layers with corresponding ReLU activation
layers, 2 max pooling layers, 2 fully-connected layers and a softmax output layer.

Fig. 18. The above figure represents an example of convolution. The kernel is slid over the entire image to produce a feature map. The stride length
is a hyper parameter which can be used to tune the network. In this example the stride length is 1.

Fig. 19. In the above figure, the pooling example on the left represents max pooling and the pooling example to the right represents mean pooling. It
can be seen that the pooling process downsamples the image to reduce the number of parameters and therefore the number of computations going
ahead in the network.
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2.2.3. Activation layer
Activation layers are used to bring non-linearity into the network since the data that is being classified can have a non-linear

distribution. The most common activation layer used is the sigmoid function. A sigmoid function is defined as

=
+

x
e

( ) 1
1 x (4)

It squashes the real numbers into a range between [0, 1]. Fig. 20 represents the sigmoid function. But the major drawbacks of the
sigmoid function are that they kill gradients by saturating and their outputs are not zero-centered. The other option is to use the
tanh () function. But this is also known to kill gradients.

Nair et al. [28] introduced Rectified Linear Unit (ReLU) as a non-linear activation function. ReLu is defined as

= >f x x x x( ) {0 if 0 if 0 (5)

Or, in other words, =f x max x( ) ( , 0). It can be seen that ReLU has no bounded output on the positive side and also that the
gradients of ReLU are always zeros and ones. Fig. 21 represents ReLU activation function. Activations layers are usually placed
adjacent to convolutional layer. In our architecture, ReLU is used for both the convolutional layers.

2.2.4. Fully connected layer
A fully connected layer consists of neurons, also called perceptrons. Fig. 22 represents a perceptron. A perceptron takes several

inputs and produces a single output. As shown in the figure, x x x, ,1 2 3 are inputs and Y is the output of the single perceptron. In general
it could have more or fewer inputs. Each input is associated with real number called the weight, that signifies the importance of the
respective input to the output. The neuron’s output, 0 or 1, is determined by whether the weighted sum w xi i is less than or greater
than some threshold value. These perceptrons are stacked to form the fully-connected layer. All the features maps obtained at the last
convolutional layer are flattened and are connected to the fully-connected layer.

2.2.5. Softmax layer
Softmax layer is usually the last layer in the CNN architecture. This layer is used to convert the output of the fully connected layer

into normalized class probabilities. The softmax function is defined by the equation given below

Fig. 20. Sigmoid function.

Fig. 21. ReLU.
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It takes in a vector with real-values and outputs a vector with elements in the range [0, 1], which sum to one. In other words, a
softmax layer outputs the probabilities of each output class.

2.3. Backpropagation: Cross-entropy loss function and mini-batch gradient descent

In the training phase, the initial values of the filters are randomly chosen and hence the predictions usually tend to deviate from
the desired output. In order to calculate the amount of deviation, we define a loss function. The cross-entropy loss function of our
architecture is described in the below equation

=L y log p( )
i

i i
(7)

where, L is the loss function, yi is the desired output and pi is the probability of the ith class. It is generally used when the output of the
network is a probability distribution. In other words, when the output layer is a softmax layer. The intention behind training the
network is to minimize the loss function. In order to minimize the loss function with respect to the input, the loss function back-
propagates through the network. For this, we need to consider taking derivatives or gradients in each layer and update the weights in
the filters. There are several algorithms that can be considered for updating the weights in the filters. The gradient descent using
back-propagation is considered the most efficient and simplest way to minimize the deviations [29]. As explained earlier, gradient
descent using backpropagation involves finding gradients in each layer and passing it on to the preceding layer. In gradient descent
algorithm, the weights are updated after the entire dataset is shown to the network. A variant of the gradient descent called the
stochastic gradient descent (SGD) can be used for faster convergence of the loss function. Here, weights are updated after ever sample
is shown to the network. In order to speed up the process, weights are updated only after a batch of images are shown to the network.
For instance, if the dataset has about 1000 images, weights are updated after a batch of 100 images are shown to the network. These
batches are referred to as mini-batches and this variation is commonly known as the mini-batch gradient descent. Processing one
mini-batch through forward pass and backpropagation is called an iteration. An epoch is when all the mini batches are processed.
That is, once all images are processed one time. Our architecture uses the mini-batch mode of gradient descent algorithm. By taking
the gradient of the loss function ( L) with respect to the weights, we obtain the update equation.

= +L p y y yi i
k

k i
1 (8)

where, y is one-hot encoded vector for the labels, so =y 1k k and + =y y 1i k k1 . And therefore,

=L p yi i (9)

The weights os the network are updates as shown below,

=W W Lij ij (10)

where, Wij are the filter weights and is the learning rate.

3. The experimental apparatus and procedure

This section describes the experimental procedure on a fatigue testing apparatus that is computer-instrumented and computer-
controlled. The apparatus in Fig. 24, has been used to evaluate the damage risk of the cracked surface. Specimens were subjected to
tension–tension load cycles at 60 Hz, and the load was generated by MTS test machine. The target setpoint of the load was 8,000 N.
The applied loads fluctuated between 11,000 N and 6,000 N, where the amplitude load was 4,000 N. Five specimens of 7075-T6
aluminum alloy were used in this study. The dimensions of these specimens are 3 mm thickness, 50 mm width, and (1 mm ∗3.5 mm)
slot cut at the edge as shown in Fig. 23.

Infinite-Focus is the trade name of the confocal microscop manufacturer Alicona, which is an optical metrology device that is used
to provide 3D surface measurements, as shown in Fig. 25. The principle idea of the Focus-Variation system is that the topographical

Fig. 22. Neuron (Perceptron).
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and color information are generated due to the combination between vertical scanning and the small depth of focus of an optical
system. The vertical resolution of the Infinite-Focus system can be as low as 20 nm, and that improves the accuracy of surface
measurement data. Furthermore, Infinite-Focus can provide huge data for a minimal surface area. In this study, as shown in the
figure, the investigated area is ×0.4 mm 0.4 mm. This tiny area has 4,161,600 pixels. [30,31]. Table 1 shows technical specifications
of Infinite- Focus device features.

The investigated area of this study is the area behind the notch, as shown in Fig. 26. Looking at Fig. 27 illustrates that the middle
of the bottom frame line represents the location of the notch tip. The reason for not displaying the notch tip in the image is that the
notch tip covers a portion of the image, as shown in Fig. 26b, and this portion is worthless.. The optical metrology device is located

Fig. 23. Specimen geometry used for fatigue testing.

Fig. 24. The experimental apparatus used in this investigation.

Fig. 25. 3D surface generated using Infinite-Focus deceive.
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perpendicular to the investigated area, as shown in Fig. 28, and it measures CTOD by determining the distance between image pixels,
as shown in Figs. 8, 9. The investigated area was chosen based on the location of the maximum stress on the specimen. In this study,
the maximum stress exists on the notch of the specimen. The finite element analysis (FEA) using Soildwork was used to show the
location of the maximum stress on the specimen. As shown in Fig. 29, the maximum stress clearly appears on the notch tip. Fur-
thermore, the crack always propagates in the direction which is perpendicular to applied loads. Therefore, the investigated area of all

Table 1
Technical specifications of Alicona.

Technical feature Specifications

Vertical resolution can be as low as 10 nm
Range of the vertical scan 3.2 mm - 22 mm
Measured area × ×0.14 mm 0.1 mm 5 mm 4 mm

Fig. 26. (a) the location of the investigated area, (b) an image produced by an optical metrology device.

Fig. 27. The location of the notch tip on the image.

Fig. 28. Positions of the optical metrology device and the specimen.
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crack images is almost fixed. It is thus suggested that damage tolerance of a mechanical structure can be defined for real-world
applications in the following steps:

1. Creating a 3D model of the mechanical structure using computer aided design (CAD) software (i.e., Soildwork, Ansys, Abaqus).
2. Applying finite element analysis (FEA) on the created 3D model using one of CAD software.
3. Determining the critical locations (the maximum stress locations) on the 3D model.
4. Monitoring the condition of the critical locations in the real structure using an appropriate NDT method.
5. Asking a maintenance expert to evaluate the NDT results and to make a plan for the maintenance schedule.

4. Results and discussion

4.1. Data augmentation

From Table 2 and Table 3, the total number of original images is 255, while the total number of augmented images is 23,205
images, which means that each image has 91 distinct images.

4.2. Convolutional neural networks

In this paper a custom CNN was built to classify the images into three different classes namely, non-risky, low-risk, and high risk.
Table 4 summarizes our custom cnn. Each input image was of the size × ×(128 128 1). A total of 255 images were acquired using
Infinite-Focus device, Alicona. This database of 255 images were increased to a database of 23, 205 by image augmentation. Image
augmentation is a technique used to artificially create training images through different ways of processing or combination of
multiple processing, such as rotation, shifts and shear. Image augmentation is required to boost the performance of deep networks
when the available database has fewer images. Out of the 23, 205 images, 18, 837 images were used for training and 4, 368 were used
for testing the CNN. Among the training images, 9, 191 images were labelled as healthy, 4, 004 images were labelled as large and
5, 642 images were labelled as small. Similarly, among the testing images, 2, 093 images were labelled as healthy, 1, 092 images were
labelled as large and 1, 183 images were labelled as small. Table 5 summarizes configurations of the network and the outputs of the
experiment. Batch size represents the number of images shown to the network in a single iteration. If there are n images in the
database and the m is the batch size, then m images are shown to the network every iteration. Therefore, there are a total of n m/
iterations that constitutes 1 epoch.

Figs. 30 and 31 represent the confusion matrices for training and testing, respectively, where the rows correspond to the output
class or the predicted class and the columns correspond to the ground truth labels. The diagonal cells correspond to observations that
are correctly classified. The off-diagonal cells correspond to incorrectly classified observations. The right-most column of the matrix

Fig. 29. The stresses analysis using Soliwork for investigated specimen.

Table 2
Number of images before augmentation.

Class type Train folder Test folder Total (class)

Non-risky 101 23 124
Low risk 62 12 65
High risk 44 13 75

Total (folder) 207 48 255
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shows the percentages of all the examples predicted to belong to each class that are correctly and incorrectly classified. These metrics
are called the precision and false discovery rate, respectively. The last row of the matrix represents the percentages of all the
examples belonging to each class that are correctly and incorrectly classified. The cell in the bottom right of the plot shows the overall
accuracy. Fig. 32 represents the graphs of loss and accuracy vs number of epochs.

Closer inspection of Fig. 32 shows that all trained images are classified into their proper classes with an accuracy greater than
~90%. However, this level of accuracy may not be sufficient for some applications, where the presence of any data miss-classification
has serious consequences. For example, the damage miss-classification in a nuclear reactor could cause a massive disaster. In order to
improve the accuracy of the CNN model [32,33], the following points should be considered:

Table 3
Number of images before augmentation.

Class type Train folder Test folder Total (class)

Non-risky 9191 2093 11284
Low risk 5642 1183 6825
High risk 4004 1092 5096

Total (folder) 18837 4368 23205

Table 4
Architecture of our custom CNN.

Layer Activation Shape Activation Size #Parameter

Input (128, 128, 1) 16, 384 0
Conv1(f = 5, s = 2, p = 2) (64, 64, 50) 819, 200 1300

ReLU – – –
Max Pool (s = 2) (64, 64, 50) 204, 800 0

Conv2(f = 5, s = 2, p = 2) (22, 22, 50) 24, 200 1300
ReLU – – –

Max Pool (s = 2) (11, 11, 50) 6, 050 0
FC1 (25, 1) 25 151,250
FC2 (3, 1) 3 75

Table 5
Architecture of our custom CNN.

Parameter Network

Learning Rate ×1 10 4

No. of epochs 10
Batch Size 250

Training Accuracy 92.54%
Validation Accuracy 91.34%

Testing Accuracy 89.38%

Fig. 30. Training Confusion Matrix.
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1. Collect more useful data: mostly, deep learning algorithms have a better performance with more data.
2. Identify a suitable network structure: number of hidden layers and number of neurons can play a significant role in improving the

performance of the model.
3. Tune the parameters: CNN model performance can be improved by tuning some parameters such as epochs. Number of epochs has

a significant effect on the model performance, where for large number of epochs, the model performs better. However, deciding
the number of epochs depends on the improvement in the training accuracy. Once the improvement in the training accuracy
becomes almost stable, as shown in Fig. 32, the required number of epochs is achieved.

The results of this investigation provide important insights into damage measurements. Precisely, the damage tolerance. For
instance, when the tested images are classified into low-risk class, the damaged component should be inspected and evaluated
periodically. On the other hand, the damaged component must be fixed or replaced, when tested images are classified into high-risk
class.

5. Summary, conclusions, and future work

Visual Inspection is one of the current state-of-the-art techniques for detection of fatigue crack damage in machinery components;
however, visual inspection is known to be labor-intensive and is often error-prone for (quantitative) estimation of fatigue damage in
structural materials. Therefore, analyzing the risk of fatigue damage still remains a challenging task in industry. To address this issue,
the paper has proposed an autonomous method for detection and classification of fatigue crack damage and the associated risk
assessment in machinery components that are often made of ductile materials (e.g., polycrystalline alloys). The underlying algorithms
in the proposed method are built upon the concept of convolutional neural networks (CNNs), where the execution time is much less

Fig. 31. Testing Confusion Matrix.

Fig. 32. Loss and accuracy vs number of epochs in the CNN-based damage classification.
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than those for visual inspection, and the detection and classification process is expected to be significantly less error-prone than that
in visual inspection.

The above algorithms have been experimentally validated on a computer-instrumented and computer-controlled MTS fatigue
testing apparatus, which is equipped with an optical microscope for generation of image data sets. The size of the generated images is

×2, 040 2, 040 pixel resolutions. Since the image data is enormous, every generated image is modified by using gray-scale conversion
and pixel resolutions reduction. The modified image size becomes ×150 150 pixel resolutions instead of ×2, 040 2, 040 pixel re-
solutions. Thus, the processed image has been classified based on the status of the fatigued side-notch surface. The free-crack image
belongs to the non-risky class, while the image that exhibits a crack is classified as belonging to a risky class. Furthermore, the risky
class is divided into two sub-classes: low-risk class and high-risk class. The low-risk class represented all images that were generated
the critical crack length whereas generated images after the critical crack length are considered to be a high-risk class. The CNN
architecture consists of two major parts. The first part is used for feature extraction, while the second part is used for classification.
The feature extractor in this paper has four layers, of which there are two convolution layers and two pooling layers. The classifier has
one layer called a fully connected layer. The performance of the generated CNN model was excellent, where the accuracy of the CNN
model is 92.54% for training, 91.34% for validation, and 89.38% for testing. Therefore, it is concluded that the CNN-based algorithms
are capable of quantitative evaluation of damage risk in critical components of the operating machinery, where the optical micro-
scope generates the images of fatigued surfaces, as needed for training, validation, and testing.

While there are many areas of theoretical and experimental research, which must be investigated before the proposed metho-
dology can be implemented in real-life applications, the following topics of future research are suggested.

• Modification of the CNN-based algorithms for guaranteed robustness to noise and uncertainties in both process variables (e.g.,
random loading of machinery components) and measurements (e.g., noise-corrupted ultrasonic signals and disturbance-polluted
microscope images).

• Usage of other machine learning tools (e.g., hidden Markov modelling and Gaussian process modelling [34]) as alternatives to
neural networks.

• Enhancement of the CNN-based algorithms to accommodate other types of materials. An example is reinforced concrete in civil
infrastructures, which is a brittle material.
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