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Multivariable Nonadaptive Controller Design
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Abstract—Although proportional-integral-derivative con-
trol remains one of the most common control schemes
used in industry, its tuning still remains inadequately un-
derstood in many applications. This task becomes much
more challenging when applied to multi-input multi-output
(MIMO) systems. This article presents the design of a
discrete-time robust multivariable (nonadaptive) tracking
controller that comes with a simple structure, requires very
limited information on the plant model, and is relatively
easy to tune. In addition to being easy to tune and imple-
ment, an objective of this controller is to deal with a class
of large-scale systems with complex dynamics. We analyt-
ically demonstrate the robustness and convergence of the
closed-loop system for a class of MIMO linear time-varying
systems. The overall superiority of the proposed controller
is experimentally validated on a Barrett robot arm in a lab-
oratory environment. The article also provides a stochastic
framework of the general setting of the controller. Within
this framework, two minimum mean square error optimal
solutions of the controller are provided; one is designed
for the case where the number of inputs is not greater than
the number of outputs, and the other is for the antithesis.

Index Terms—Multivariable control, robot manipulator.

I. INTRODUCTION

O PTIMAL control design generally requires a dynamical
system model of the underlying plant. This requirement

also applies to identification of optimal gains of the multivariable
output-feedback controller(s) (e.g., see [1]–[3]). In general, an
output-feedback control law requires a state estimator including
a model of the plant dynamics, which may degrade robustness of
the control system. On the other hand, among the common con-
trol strategies, standard proportional-integral-derivative (PID)
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controllers have shown to be sufficiently robust and are widely
used in industry. From the perspectives of industrial applications,
it is desirable to adopt a control strategy that is robust, yet simple
enough to implement while achieving the specified tracking
performance.

It is noted that tuning the parameters of a PID controller may
pose a challenging task, especially in multivariable systems.
Several PID tuning methods have been developed for single-
input single-output (SISO) systems, where the gains are sys-
tematically or adaptively tuned [4]. A large amount of work has
also been reported for tuning multivariable controllers. These
methods include multiobjective optimization tuning design for
nonlinear systems (e.g., see [5]), PID tuning using techniques
based on Lyapunov stability analysis (e.g., see [6] and [7]),
and constraint optimization (e.g., see [8]). A sampling-rate-
dependent controller is proposed in [9], which selects gains by
stabilizing an augmented system where a solution is obtained
by treating the augmented system as static output feedback.

There are many methods available to control uncertain sys-
tems. A precise tracking estimator-based controller with an
observer-based estimator is developed for a class of uncertain
nonlinear systems with mismatched uncertainties [10]. This
method involves rigorous tuning due to parameters related to
the estimator gains and the control gains. In addition, its im-
plementation, which is based on the measurement of the states,
requires high quality sensors with minor measurement noise.
Adaptive tracking control is proposed for a class of constrained
Euler–Lagrange systems with unknown linearities [11]. How-
ever, this controller is restricted to one specific class of systems,
and it involves many parameters; e.g., in their implementation on
a two-joint planar robotic manipulator, there are fifty parameters
that require some tuning. In the presence of unknown kinematics
and dynamics, an adaptive robot control/identification scheme
with enhanced convergence rate is developed [12]; however, pe-
riodic and band-limited excitation joint reference trajectories are
required. Another method that does not require any knowledge
of the plant model and works without using system identification
is proposed in [13] for two-input two-output systems. However,
the design of the PID controller aims at stabilizing the close-
loop system based on open-loop frequency data of the transfer
matrix.

Another approach that deals with uncertain systems is time-
delayed control (TDC), which employs a time-delayed esti-
mation (TDE) technique to cancel out complex uncertainties.
The performance of TDC is affected by the errors in TDE.
For example, such errors become substantial in cases, where
Coulomb friction is significant. Different approaches have been
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proposed to suppress the contribution of TDE errors by inte-
grating TDC with auxiliary controls such as adaptive sliding-
mode control (e.g., see [14] and [15]). A fast adaptive law is
developed [16] that better treats the undesirable side effects of
TDE without imposing restrictions on the control gains. An-
other PID tuning method is implemented on an industrial plant
without any knowledge of the plant model [17] by perturbing
the initial conditions of the servocompensator; however, the
system under consideration is linear time invariant (LTI) and
is assumed to be asymptotically stable with constant reference
and disturbance signals. A modular-based method for a class of
uncertain nonlinear systems with the treatment of intermittent
actuator failures is provided in [18] by estimating the bounds
of uncertain jumping parameters. This adaptive fault-tolerant
control method requires the boundary information and signs of
the unknown parameters; it is limited to single-output systems,
and its effectiveness is justified numerically. In [19], a linear
parameter varying, continuous-time PID controller is proposed
with unknown control direction and actuation failures for a class
of uncertain feedback linearizable nonlinear systems. However,
the design requires some partial known information of the plant,
and the effectiveness of the proposed controller is only illustrated
numerically.

Data-driven algorithms use only the input/output data from
the process in order to compute, systematically in an algorith-
mic manner, the tuning parameters of the controller [20] using
indirect or direct controller design methods. The former group
of techniques first identifies a model, then a controller is tuned
based on such model, which is usually erroneous in practice.
For example, in [21], a multiple adaptive observer is used to ap-
proximate online the original unknown multi-input multi-output
(MIMO) nonlinear process from the input/output data. Next, the
controller is obtained from the identified observer model by the
inverse control law. However, the system under consideration
should satisfy a global Lipschitz condition with a bounded-input
bounded-output like assumption. The effectiveness of this ap-
proach is justified numerically on a two-input two-output plant.
In some applications, the physical system could be too complex
to use adaptation-based controllers, while achieving precise
control. To overcome this problem, the idea behind the latter
group of techniques is to map the experimental data directly on to
the controller, without any model to be identified in between. For
example, a PID tuning [22] method using an iterative learning
control (ILC) approach is proposed where the local controls are
designed by using PID, and the references for PID control were
optimized by ILC. However, this approach requires the input of
a periodic reference signal, typically used to execute a repetitive
sequence with repetitive dynamics. Another method of iterative
feedback tuning and ILC in combination with the extended
symmetrical optimum method and fuzzy control for PI-fuzzy
controllers is proposed in [23]. However, this approach is limited
to a discrete-time LTI SISO system, its implementation is rather
systematically involved, and it is computationally complex. A
neural network composite learning control approach with fric-
tion compensation is specifically designed for robotic systems
and implemented on a relatively small robot arm constraint to its

2-degrees-of-freedom (DoF) planar joints using a 17-b absolute
encoder. Such encoders are considered rather expensive when
implemented on industrial arm [24]. Naturally, during learning
phase, the tracking transient errors are large and after adaptation
of 100 s, the controller exhibits better tracking results.

The literature is swamped with sound control schemes that
deal with uncertainties derived from complex systems. However,
the approach adopted in the corresponding literature is very
much based on different direct or indirect data-driven adaptation
techniques. Most of the sophisticated multivariable controllers
are tailored for a specific class of systems and/or reference
trajectories, lacks experimental justification, and/or may not be
adequately tuned by novice engineers.

It follows that the presence of such challenges in dealing with
uncertain complex systems raises an important question: Is there
a nonadaptive multivariable tracking controller that can deal
with a class of large-scale systems with complex dynamics that
is robust, computationally inexpensive, easy to tune, and simple
to implement?

To address this issue, the article proposes a discrete-time
multivariable (nonadaptive) PI-like controller that is recursively
updated based on the returned error. Two gains are associated
with the controller to essentially weigh the current and previous
errors. We provide two different methods for selecting the con-
troller gains. One method is designed for systems that require
very limited information about the physical plant model and that
do not employ any adaptive scheme. The controller architecture
is composed of a single gain matrix and a scalar, making the
controller implementation easy to tune, and computationally
inexpensive. The other method is designed for systems, where
the two controller-gain matrices are automatically and optimally
generated. The optimal gains are synthesized by making use
of the available limited information on the plant model and is
based on a recursive algorithm that minimizes a stochastic cost
functional in the presence of erroneous initial conditions, white
measurement noise, and white process noise.

The proposed controller is described as: u(k + 1) = u(k) +
γKe(k + 1)−Ke(k), where k is the discrete time index, u(k)
is the control input, e(k) is the output error, and 1 < γ � 2. An
augmented system representative of the input and state errors
is formulated using the proposed control law, including output
error and state disturbances. For a class of linear time-varying
systems, we show that there exists a (controller) matrix K such
that the closed-loop system is stable. In addition, for discretized
stable plants, we show that the steady-state error can be made
arbitrarily small for sufficiently small sampling period. Fur-
thermore, for square MIMO systems, we show that a diagonal
constant gain matrix, K, can guarantee the aforementioned
results.

In order to examine the potential of the proposed controller
beyond the analytical setup considered in this article, we test
it experimentally on a 4-DoF Barrett robot arm while using a
diagonal gain matrix and Euler method to estimate the angular
rates. Robot manipulators are known to have nonlinear dynamics
and are prone to chattering problems. Such problems can excite
unmodeled high-frequency plant dynamics, resulting in either
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severe vibrations in the arm or instability of the control system.
The proposed control scheme is validated by comparing its
performance to four other recent control schemes, namely a
deterministic PD controller [25], a stochastic PD controller [24],
a proportional-double derivative (PDD) controller [26], and a
sliding mode controller [27]. In this way, the proposed controller
is implemented with a decaying scalar gain, K, to a quadruple
tank process. We compare the performance of the proposed
controller to that of three optimal PID controllers that use
full knowledge of the system model. We study the transient
response of the controllers and their performance in the presence
of measurement errors while reflecting the advantages of the
proposed controller.

To go one step further, we consider the general structure
of the proposed two-gain control law, i.e., u(k + 1) = u(k) +
K1(k)e(k + 1)−K2(k)e(k) and derive the optimal gains that
minimize the covariance of the augmented error system, which
makes use of the system model and the statistics of the measure-
ment and process noise. The convergence characteristics of the
proposed controller is shown to be similar to those of the optimal
PID controllers in [1] and [2], where the control law in [1]
and [2] is u(k + 1) = u(k) +K1(k)e(k + 1) +K2(k)e(k) +
K3(k)e(k − 1). We also build on the results, provided in [1]
and [2], to present similar necessary and sufficient conditions
for convergence of all trajectories. The latter results provide
a framework aimed at rejecting measurement noise without
incorporating any external filters.

The main contribution points of this article are in the devel-
opments that follow.

1) New PI-like discrete-time multivariable tracking control
of square and nonsquare systems: A simplified, robust
and easy-to-tune, version of the controller is suitable for
uncertain dynamical systems.

2) Controller design with specifications of boundedness and
zero-error convergence in probability: A framework con-
sisting of necessary and sufficient conditions of the spec-
ifications is established.

3) Recursive algorithms for automatic generation of opti-
mal controller gains for certain systems: One algorithm
addresses the case when the number of outputs is not
less than the number of inputs, and the other for the
antitheses.

4) Vanishing steady-state error of the control system: The
steady-state errors can be made arbitrarily small for suf-
ficiently small sampling periods even in the presence of
measurement noise.

The remainder of the article is organized as follows. Section II
defines the systems and formulates the problems under con-
sideration for linear time-varying (LTV) and LTI systems. The
proposed controllers and their convergence characteristics are
presented in Section III. Section IV provides our numerical and
experimental studies. Lastly, Section V concludes this article.

Nomenclature: The expectation operator is denoted by E[·],∏k
i=0 Mi = M0M1 . . .Mk, and

∏k
i=k+1 Mi = I , Im ∈ Rm×m

is the identity matrix, 0n×m ∈ Rn×m is the zero matrix, λ(M)
denotes eigenvalues of M , ρ(M) denotes the maximum eigen-
value of M , and tr(·) is the trace operator.

II. PROBLEM STATEMENT AND SYSTEM DESCRIPTIONS

This section presents two scenarios for the control system
under consideration. The first scenario considers a discrete-time
linear time-varying system with the number of outputs greater
than or equal to the number of inputs. In the second scenario,
a discrete-time LTI system is considered where the number
of inputs is greater than or equal to the number of outputs.
The problem formulations associated with the model-dependent
controller adopted in the first scenario and the second scenario
follow similar formulations as in [1] and [2], respectively.

A. Linear Time-Varying Systems

The system under consideration is a discrete time-varying
system described by the following state-space equation:

x(k + 1) = A(k)x(k) +B(k)u(k) + w(k)

y(k) = C(k)x(k) + v(k) (1)

where k ∈ N is the discrete time index, x(k) ∈ Rn is the state
vector, w(k) ∈ Rn is the state disturbance, y(k) ∈ Rp is the
system output, v(k) ∈ Rp is the output error, and u(k) ∈ Rq is
the system input. The system is assumed to be discretized with
sampling rate Ts > 0. Here p ≥ q, i.e., the number of outputs is
greater-than-or-equal-to the number of inputs.

Assumptions:
(AI1) The system matrices A(k), B(k), C(k) are assumed

bounded ∀k and as k → ∞.
(AI2) The desired reference trajectory has a solution. That

is, for any desired trajectory or reference signal, yd(k) =
[y1,d(k), y2,d(k), . . . , yp,d(k)]

T and an appropriate initial con-
dition x(0), there exists a control input ud(k) generating
the desired output trajectory, yd(k), for the nominal plant.
That is xd(k + 1) = A(k)xd(k) +B(k)ud(k) and yd(k) =
C(k)xd(k), where xd(k) is the state response due to ud(k) with
a given xd(0) such that yd(0) = C(0)xd(0).

(AI3) w(k) and v(k) are zero-mean white noise pro-
cesses, mutually uncorrelated with each other and with x(0).
E[w(k)w(k)T ] = Q(k) ≥ 0, and E[v(k)v(k)T ] = R(k) > 0.

(AI4) The system in (1) is stable with relative degree 1 with
no more inputs than outputs.

The general setting of the proposed control law is given by

u(k + 1) = u(k) +K1(k)e(k + 1)−K2(k)e(k) (2)

where the matrices K1,2(k) ∈ Rq×p are the learning gains,
and e(k) ≡ yd(k)− y(k) is the output measurement error
due to control action u(k). For compactness, we will denote
A ≡ A(k), B ≡ B(k), C ≡ C(k), C± ≡ C(k ± 1), A− ≡
A(k − 1), B− ≡ B(k − 1),K1,2 ≡ K1,2(k), K

±
1,2 ≡ K1,2

(k ± 1).
Define the state and input errors as δx(k) = xd(k)− x(k)

and δu(k) = ud(k)− u(k), respectively. The input error model
corresponding to the control law is derived as

δu(k + 1) = δu(k)−K1e(k + 1)−K2e(k) + Δud(k) (3)

where Δud(k) = ud(k + 1)− ud(k). In addition,

δx(k + 1) = Aδx(k) +Bδu(k)− w(k). (4)
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Furthermore, the errors can be expanded as follows:

e(k) = CA−δx(k − 1)

+ CB−δu(k − 1)− Cw(k − 1)− v(k) (5)

e(k + 1) = C+Bδu(k)− C+w(k)− v(k + 1)

+ C+A(A−δx(k − 1)

+B−δu(k − 1)− w(k − 1)). (6)

Inserting (5) and (6) in (3), we get

δu(k + 1) =
(
I −K1C

+B
)
δu(k)

− (K1C
+AB− −K2CB−) δu(k − 1)

− (K1C
+AA− −K2CA−) δx(k − 1)

+K1C
+w(k) +

(
K1C

+A−K2C
)
w(k − 1)

+K1v(k + 1)−K2v(k) + Δud(k). (7)

Equation (7) can be reformulated as an augmented system by
first defining

X ≡

⎡
⎢⎣ δu(k)

δu(k − 1)

δx(k − 1)

⎤
⎥⎦, X+ ≡

⎡
⎢⎣δu(k + 1)

δu(k)

δx(k)

⎤
⎥⎦, Ω ≡

⎡
⎢⎣Δud(k)

0

0

⎤
⎥⎦

V ≡

⎡
⎢⎣v(k + 1)

v(k)

v(k − 1)

⎤
⎥⎦, W ≡

[
w(k)

w(k − 1)

]
.

The resulting augmented system is then derived by combining
(4) and (7) to yield

X+ = ΦX + ĪK̄V +
(
ĪK̄Γ1 + Γ2

)
W +Ω (8)

where Φ = H − ĪK̄E, K̄ ≡ [K1,K2]

H ≡

⎡
⎢⎣ Iq 0q 0qn

Iq 0q 0qn

0nq B− A−

⎤
⎥⎦, Ī ≡

⎡
⎢⎣ Iq

0q

0nq

⎤
⎥⎦, Γ1 ≡

[
C+ C+A

0pn C

]

E ≡
[
C+B C+AB− C+AA−

0pq CB− CA−

]
, Γ2 ≡

⎡
⎢⎣0qn 0qn

0qn 0qn

0n In

⎤
⎥⎦ .

The covariance of the augmented system is P+ = E[X+X+T ]
and P = E[XXT ], which statistically represents the input error
and state error covariances.

We present three different problems under consideration for
the system in (1) employing the controller (2) under Assump-
tions (A1)–(A4).

Problem I1 Statement: Establish a framework for the design
of the control law in (2) for boundedness, and zero convergence
of the error covariance, P (k).

Problem I2 Statement: Develop optimal gains that satisfy the
framework established in Problem I1. In addition show that
limk→∞ ||P (k)|| can be made arbitrary small for sufficiently
small sampling period in presence of measurement noise and
initialization errors.

Problem I3 Statement: Simplify (2) so that the tuning is made
easy. The simplified control law should not use the knowledge of
the system model or implementation of any adaptation scheme.
In addition, show that such a controller is robust, and small
steady-state errors for sufficiently small sampling period can be
achieved.

B. Linear Time-Invariant Systems

The system under consideration in this scenario is a discrete
time-invariant system.

Assumptions:
(AII1) w(k) and v(k) are zero-mean white noise pro-

cesses mutually uncorrelated with each other and with x(0).
E[w(k)w(k)T ] = Q(k) ≥ 0, and E[v(k)v(k)T ] = R(k) > 0.

(AII2) CB is full-row rank (implies that the number of inputs
is greater than or equal to the number of outputs).

The plant is not assumed to be stable. Assumptions (AII1)
and (AII2) hold throughout the parts of the article addressing
the scenario with LTI systems.

The same control law in (2) is proposed for the LTI system.
With the output measurement error as e(k) ≡ yd(k)− y(k), we
define the output error as ê(k) ≡ C(xd(k)− x(k)) (i.e., e(k) =
ê(k)− v(k)).

Denote η(k) ≡ x(k)− x(k − 1), Δyd(k) ≡ yd(k)−
yd(k − 1), Δu(k) ≡ u(k)− u(k − 1), Δw(k) ≡ w(k)−
w(k − 1), and Δv(k) ≡ v(k)− v(k − 1). From (2), we can
write

Δu(k) = K−
1 [ê(k + 1)− v(k + 1)] +K−

2 [ê(k)− v(k)]. (9)

From (9), we get

ê(k + 1) = (I − CBK−
1 )ê(k)− CBK−

2 ê(k − 1)− CAη(k)

+ Δyd(k + 1)− CΔw(k) + v(k + 1)

+ (CBK−
1 − I)v(k) + CBK−

2 v(k − 1) (10)

η(k + 1) = Aη(k) +BK−
1 ê(k) +BK−

2 ê(k − 1) + Δw(k)

−BK−
1 v(k) +BK−

2 v(k − 1). (11)

To formulate the augmented system of difference equations,
we first let Ω̃ ≡ [ Δyd(k+1)

w(k)−w(k−1)
],

X̃ ≡

⎡
⎢⎣ ê(k)

ê(k − 1)

η(k)

⎤
⎥⎦, X̃ ≡

⎡
⎢⎣ê(k + 1)

ê(k)

η(k + 1)

⎤
⎥⎦, Ṽ ≡

⎡
⎢⎣v(k + 1)

v(k)

v(k − 1)

⎤
⎥⎦

The resulting augmented system is then derived by combining
(4) and (7) to yield

X̃+ = ΨX̃ + Γ̃1Ṽ + Γ̃2Ω̃ (12)

Authorized licensed use limited to: Penn State University. Downloaded on April 15,2021 at 16:51:44 UTC from IEEE Xplore.  Restrictions apply. 



SAID SAAB et al.: MULTIVARIABLE NONADAPTIVE CONTROLLER DESIGN 6185

where Ψ = H̃ − Ẽ ˜̄K− ˜̄I , ˜̄K− ≡ [K−
1 ,K

−
2 ]

H̃ ≡

⎡
⎢⎣ Ip 0p −CA

Ip 0p 0pn

0np 0np A

⎤
⎥⎦, Ẽ ≡

⎡
⎢⎣CB

0pq

−B

⎤
⎥⎦, Γ̃2 ≡

⎡
⎢⎣I −C

0 0

0 I

⎤
⎥⎦

Γ̃1 ≡

⎡
⎢⎣Ip CBK−

1 − Ip CBK−
2

0 0 0

0 −BK−
1 BK−

2

⎤
⎥⎦, ˜̄I ≡

[
Ip 0p 0pn

0p Ip 0pn

]
.

Consequently, we get

X̃+ = H̃X̃ − ẼK̃− ˜̄IX̃ + Γ̃1Ṽ + Γ̃2Ω̃. (13)

We present the following problem statement under consideration
for the LTI system employing the controller (2) under Assump-
tions (AII1) and (AII2).

Problem II1 Statement: Find the optimal gains for K1,2(k)
that minimize the mean-square state error of the augmented
system at every time-step.

Problem II2 Statement: Develop binding conditions associ-
ated with the optimal control law pertaining to the boundedness
and convergence of E[X̃X̃T ].

III. MAIN RESULTS

This section addresses the problem statements defined above.

A. Linear Time-Varying Systems

In order to address Problem I1, we first formulate the covari-
ance P (k) of the system in (8). Since the augmented system in
(8) follows the same augmented system of the PID control law
in [1], with E being also full-row rank, then all results in [1]
apply while following the same proofs. For convenience, we
only list the main results.

From assumption (AI3) we have that w(0), v(0), and δx(0)
uncorrelated and are zero-mean white noise, then (8) leads
to P+ = ΦPΦT + ĪK̄R̄(ĪK̄)T + (ĪK̄Γ1 + Γ2)Q̄(ĪK̄Γ1 +
Γ2)

T + E[ΩΩT ] where

R̄ =

[
R(k + 1) 0

0 R(k)

]
and Q̄ =

[
Q(k) 0

0 Q(k − 1)

]
.

The augmented system state covariance matrix can be re-
written as P (k) = P̄0 + P̄T for k > 0, where

P̄0 =

(
k−1∏
i=0

Φ(k − 1− i)

)
P (0)

(
k−1∏
i=0

Φ(k − 1− i)

)T

(14)

P̄T =
k−1∑
i=0

⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠T (i)

⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠

T

(15)

with T (i) = ĪK̄R̄(ĪK̄)T + (ĪK̄Γ1 + Γ2)Q̄(ĪK̄Γ1 + Γ2)
T +

E[ΩΩT ].
Theorem A.1: Let the system (1) satisfy Assumptions

(AI1)− (AI4) with R̄(k) > 0, Q̄(k) = 0, ∀k ≥ 0 and P (0) >
0, with K̄ full-row rank. The boundedness of all trajectories is

guaranteed if and only if ∃cpi > 0, cΣ > 0 such that ∀k > 0∥∥∥∥∥∥
(

k−1∏
i=0

Φ(k − 1− i)

)(
k−1∏
i=0

Φ(k − 1− i)

)T
∥∥∥∥∥∥ ≤ cpi (16)

∥∥∥∥∥∥∥
k−1∑
i=0

⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠ ĪK̄(ĪK̄)T

⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠

T
∥∥∥∥∥∥∥

≤ cΣ. (17)

Proof: Same proof as the one of Theorem 1 in [1]. �
Theorem A.2: Let the system (1) satisfy Assumptions

(AI1)− (AI4) with R̄(k) > 0, Q̄(k) = 0, ∀k ≥ 0 and P (0) >
0, with K̄ full-row rank. If limk→∞ Δud(k) = 0, then
limk→∞ P (k) = 0 if and only if

lim
k→∞

k−1∏
i=0

Φ(k − 1− i) = 0 (18)

lim
k→∞

k−1∑
i=0

⎡
⎣
⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠ ĪK̄(i)(ĪK̄(i))T

·
⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠
T
⎤
⎥⎦ = 0. (19)

Proof: Same proof as the one of Theorem 2 in [1]. �
Corollary A.1: If (18) and (19) hold, then limk→∞ K̄(k)=0.
Proof: Same proof as the one of Corollary 1 in [1]. �
Theorems A.1 and A.2, along with Corollary A.1, establish the

framework of the design of the gain matrices in order to ensure
the boundedness of all trajectories, and zero convergence of
P (k) in presence of measurement noise and initialization errors.
In order to develop optimal gains that satisfy the framework
established in Problem I1, we provide the following theorem
that presents a recursive algorithm for generating the optimal
gains.

Theorem A.3: The gains, represented in K̄(k) that minimize
the mean-square of the input and state errors, i.e., minimizing
the tr(P (k + 1)), at each kth instant are given in the following
recursive formulas for all k > 0:

K̄ = ĪTPET
(
EPET + R̄+ Γ1Q̄ΓT

1

)−1
(20)

P+ = (H − ĪK̄E)P ((H − ĪK̄E))T + ĪK̄R̄
(
ĪK̄
)T

+
(
ĪK̄Γ1 + Γ2

)
Q̄
(
ĪK̄Γ1 + Γ2

)T
+ E[ΩΩT ]. (21)

The optimality of (20) is based on the minimization of tr(P (k +
1)) at every sampling instance. The following theorem addresses
the first part of Problem I1.

Proof: Same proof as the one of Theorem 3 in [1]. �
Theorem A.4: Let R̄(k) > 0, ∀k ≥ 0 and P (0) > 0. If C+B

is full-column rank and the system in (1) is asymptotically stable,
then the optimal recursive algorithms (20) and (21) guarantee
the following:

1) K̄ is full-row rank and 0 ≤ ρ(Φ) < 1, ∀k ≥ 0;
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2) The conditions (16) and (17) of Theorem 1 hold, andP (k)
is bounded ∀k, while Q̄(k) ≥ 0, ∀k ≥ 0;

3) The conditions (18) and (19) of Theorem 2 are satis-
fied, limk→∞ P (k) = 0 and limk→∞ K̄(k) = 0whenever
Q̄(k) = 0, ∀k ≥ 0 and limk→∞ Δud(k) = 0.

Proof: Same proof as the one of Theorem 4 in [1]. �
Definition 1: A trajectory ud(k) is said to be smooth if

for any given sampling period Ts and any consistent norm
|| · ||, ∃cu > 0 such that ∀k ≥ 0, ||ud(k + 1)− ud(k)|| ≤ cuTs.

The subsequent theorem addresses the second part of
Problem I2 without assuming that limk→∞ Δud(k) = 0.

Theorem A.5: Consider the optimal recursive algorithm pre-
sented in (20) and (21). If C+B is full-column rank, the system
in (1) is asymptotically stable, the trajectory of ud(k) is smooth,
R̄(k) > 0, and Q̄(k) = 0, ∀k ≥ 0, then ∃cp(cdTs) such that
limk→∞ ||P (k)|| ≤ cp(cdTs) where cp(cdTs) decreases as cdTs

decreases, and limcdTs→0 cp(cdTs) = 0.
Proof: Same proof as the one of Theorem 5 in [1]. �
Remark 1: Although the assumption that limk→∞ Δud(k) =

0 may be considered restrictive, we have limk→∞ K(k) =
0 and limk→∞ P (k) = 0 (Theorem A.4). Therefore, the
latter indicates the capability of the controller rejecting
random measurement noise. If limk→∞ Δud(k) �= 0, then
limk→∞ E[ΩΩT ] �= 0, and from (20) and (21), we have
limk→∞ K(k) �= 0 and limk→∞ P (k) �= 0. On the other hand,
for the case where limk→∞ Δud(k) �= 0, Theorem A.5 implies
that limk→∞ ||P (k)|| decreases as the sample period Ts is made
smaller. That is, the error can be made arbitrary small (in
probability) for sufficiently small sample period.

To address Problem I3, we begin by reducing the number of
gain matrices to one by setting K1 = γK2. We then show that
there exists a gain matrix that can still achieve bounded trajec-
tories (Theorem A.6) while achieving arbitrarily small errors in
the absence of measurement and process noise (Theorem A.7).

Theorem A.6: Let the system (1) satisfy Assumptions
(AI1), (AI2), and (AI4)with bounded measurement errors and
bounded process noise. Consider the control law

u(k + 1) = u(k) + γK(k)e(k + 1)−K(k)e(k) (22)

with1 < γ � 2. There existsK(k) such thatX in (8) is bounded
∀k ≥ 0.

Proof: We choose K(k) = αD with D = ((C+B)T

(C+B))−1(C+B)T , we get

Φ = H − ĪK̄E =

⎡
⎢⎣(1− αγ)Iq Dq Dqn

Iq 0q 0qn

0nq B− A−

⎤
⎥⎦ (23)

where Dq = −αγDC+AB− − αDCB− and Dqn =
−αγDC+AA− − αDCA−.

Boundedness of X(k) requires that Φ is Schur stable. The
eigenvalues of Φ can be found by computing the roots of
det(λI − Φ) as follows:

det(λI − Φ) = det ((1− αγ)Iq)

× det

[
λIq − Dq

λ−1+αγ − −Dqn

λ−1+αγ

−B− λIn −A−

]

= det

[
λ(λ − 1 + αγ)Iq −Dq −Dqn

−B− λIn −A−

]

= det (λ(λ − 1 + αγ)Iq −Dq)

× det
(
λIn −A− −B− (λ(λ − 1 + αγ)−1 Dqn

)
.

For sufficiently small α we have Dq = −αγDC+AB− −
αDCB− ≈ −(αγ + α)Iq . With Dqn = −αγDC+AA− −
αDCA−, we have A− −B−(λ(λ − 1 + αγ)−1Dqn =
A− + αB−(λ × (λ − 1 + αγ)−1 × (γDC+AA− −DCA−).

For 0 < α << 1 we get A− −B−(λ(λ − 1 + αγ)−1Dqn ≈
A−. This means

det(λI − Φ) = det (λ(λ − 1 + αγ)Iq

+ (αγ + α)Iq)× det
(
λIn −A−) .

Therefore, the eigenvalues of λ(Φ) are the roots of (λ2 −
(1− αγ)λ + (αγ + α))q ∪ λ(A−). Since the system in (1) is
asymptotically stable, the eigenvalues of A− are inside the
open unit circle. The roots of λ2 − (1− αγ)λ + (αγ + α) are
λ1,2 = 1

2 (1− αγ ±√(1− αγ)2 − 4(αγ + α)).
For 0 < α << 1 we get |1− αγ ±√
(1− αγ)2 − 4(αγ + α)| < 2. Then since 1 < γ < 2

and 0 < α << 1, we have
√

(1− αγ)2 − 4(αγ + α) =√
1 + (αγ)2 − 6αγ − 4α ≈ 1 + 1

2 ((αγ)
2 − 6αγ − 4α).

Therefore, |1− αγ ±√(1− αγ)2 − 4(αγ + α)| ≈
|1− αγ ± 1± 1

2 ((αγ)
2 − 6αγ − 4α)| < 2, thus Φ is Schur

stable. Next, consider the augmented system in (8). Using
Assumptions (AI1) and (AI4), then K̄ is bounded. Since Φ is
Schur stable and disturbances are assumed to be bounded, then
X is bounded ∀k. �

In what follows we show that, if the number of inputs is equal
to the number of outputs, then there exists a positive and constant
diagonal matrix, such that the results in both Theorems A.6 and
A.7 are applicable.

For example, we consider the state-space representation of
the Euler–Lagrange model describing the dynamics of a rigid
n-link robot manipulator, with all actuated revolute joints. De-
noting ẋ1 � q, ẋ2 � q̇, and u � τ , where q ∈ Rn represents
the joint angles, and M(q) ∈ Rn×n is a symmetric positive
definite inertia matrix. It can be shown that the plant dynamics
can be written in as ẋ1 = x2, ẋ2 = −M−1(x1)[C(x1, x2)x2 +
b(x2) + g(x1)] +M−1(x1)u, and y = x2. Therefore, the state
vector becomes [q, q̇]T and the input coupling matrix, B(q) =
[0,M−1(q)]T . In addition, if we have the system output as
q̇, then the output coupling matrix becomes C = [0, I], hence
CB(q) = M−1(q).

It can be noted that one of the model properties is as fol-
lows [24]: there exist positive scalars, β1 and β2 such that 0 <
β1 < λm(M(q)) ≤ ||M(q)|| ≤ λM (M(q)) < β2 < ∞, where
λm(M) and λM (M) are the minimum and maximum eigen-
values of the matrix M , respectively, where ||M || is the in-
duced Frobenius norm. Equivalently, there exist positive scalars,
α1 and α2 such that 0 < α1 < λm(M−1(q)) ≤ ||M−1(q)|| ≤
λM (M−1(q)) < α2 < ∞.
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Corollary A.2: Assume that C+B is a symmetric positive
bounded matrix, then there exists a positive diagonal gain matrix
K = K(k) such that X in (8) is bounded ∀k ≥ 0.

Proof: Since C+B is positive and bounded for all k, there
exist positive scalars c1 and c2 such that c1I ≺ C+B ≺ c2I ,
where ≺ means that U ≺ V ⇐⇒ V − U is a positive definite
matrix.

If K is a diagonal positive matrix, then c1K ≺ KC+B ≺
c2K or I − c2K ≺ I −KC+B ≺ I − c1K. Let Kii be the ith
diagonal entry of K. By selecting maxi Kii ≤ 1

c1
, one has I −

KC+B ≺ I − c1K ≺ I . Therefore, 0 < λ(I −KC+B) < 1
and 0 < λ(I − αKC+B) < 1, where 0 < α � 1. The rest of
the proof follows similar steps as in Theorem A.6. �

Theorem A.7. Let the system (1) satisfy Assumptions
(AI1), (AI2), (AI4) and consider (22). Ifud(k) is smooth, then
there exists aK(k) and sufficiently small Ts such that arbitrarily
small steady-state errors can be achieved in the absence of
measurement and process noise.

Proof: In absence of measurement and process noise we have
X+ = ΦX +Ω. Thus, X(k) = (

∏k−1
i=0 Φ(k − 1− i))X(0) +∑k−1

i=0 (
∏k−1−i

j=0 Φ(k − j))Ω(i). Given ε > 0

||X(k)|| ≤
∥∥∥∥∥
(

k−1∏
i=0

Φ(k − 1− i)

)
X(0)

∥∥∥∥∥
+

∥∥∥∥∥∥
k−1∑
i=0

⎛
⎝k−1−i∏

j=0

Φ(k − j)

⎞
⎠
∥∥∥∥∥∥max

i
||Ω(i)||.

From Theorem A.6, we have Φ is Schur stable.
As k → ∞, ||(∏k−1

i=0 Φ(k − 1− i))X(0)|| → 0 and
||∑k−1

i=0 (
∏k−1−i

j=0 Φ(k − j))|| → C, where C > 0 is a positive
scalar. Since ud is smooth, then there exists a sufficiently small
Ts such that maxi ||Ω(i)|| ≤ ε

C . Thus, as k → ∞, ||X(k)||
≤ ε. �

Corollary A.3: Assume that C+B is a symmetric and posi-
tive bounded matrix andud is smooth, then there exists a positive
diagonal gain matrix K = K(k) and sufficiently small Ts such
that arbitrarily small steady-state errors can be achieved in the
absence of measurement and process noise.

Proof: Follows same steps as Theorem A.7, thus omitted. �
Remark 2: In order to motivate the selection of γ > 1, we

consider the single-loop control (22) with gain, K = K(k),
being a positive scalar, i.e., u(k + 1) = u(k) +K[γe(k + 1)−
e(k)]. We map the controller to the time domain with Ts be-
ing the sampling period. We have u(k+1)−u(k)

Ts
= (γ−1)K

Ts
e(k +

1) +K[ e(k+1)−e(k)
Ts

]. We can approximate the latter with u̇ ≈
(γ−1)K

Ts
[e(t) + Tsė(t)] +Kė(t). The transfer function of the

controller becomes U(s)
E(s) ≈

γK(s+
(γ−1)
γTs

)

s . The proposed con-
troller can be approximated by a PI-type control where its zero
should be relatively close to the origin or, practically, γ < 1

1−Ts

where 0 < Ts � 1, or γ should be selected in the neighborhood
of1 + Ts otherwise the relative stability or stability of the system
can be compromised.

The controller (22), u(k + 1) = u(k) + γK(k)e(k + 1)−
K(k)e(k), where K(k) = μ(k)K̂(k), involves adequate selec-
tion of γ, K̂(k), and μ(k). In what follows, we suggest few tips
for the selection of γ, K̂(k), and μ(k).

Selection of γ: As suggested in Remark 2, the value of γ
should be selected in the neighborhood of 1 + Ts, where Ts is
the sample period.

Selection of K̂(k):
1) If a rough estimate of the product of the input/output

coupling matrices, C+B, say Ĉ+B̂, is available, then,
K̂(k) = βD, where D is the Moore–Penrose inverse of
Ĉ+B̂, and 0 < β � β̂ < 1 (as in the proof of Theorem
A.6). The less accurate the estimate Ĉ+B̂ is available the
smaller β̂ is chosen.

2) If C+B is a symmetric positive bounded matrix, then
K̂(k) can be set to a positive diagonal gain matrix,
K̂(k) = K, as shown in Corollary A.2. The values of
the diagonal entries can be intuitively selected based on
the capacity of the plant (e.g., see, experimental imple-
mentation on a robot arm of Section IV-B).

3) In a black-box type of applications, simply set K̂(k) = c,
where c is a positive scalar (e.g., see the quadruple tank
process example of Section IV-A). Some tuning is needed
to select the proper magnitude of c.

Selection of μ(k):
1) In case measurement noise is negligible, set μ(k) ≡ 1.
2) Otherwise, μ(k) should be a decreasing function of pos-

itive scalars starting with μ(0) = 1 and decreasing to

a positive lower bound; e.g., μ(k) = { 1
kα
1

k̄α

k≤k̄
k>k̄

, where

0 < α ≤ 1, and 1
k̄α ≈ 0.1. The latter is aligned with the

comments in Remark 1.

B. Linear Time-Invariant Systems

In order to address Problem II1 and Problem II2, we first for-
mulate the error covariance P̃ (k) of the system in (12). Since the
augmented system in (12) follows the same augmented system
of the PID control law in [2], withE being also full-column rank
where the latter follows from (AII2), then all results in [2] apply
while following the same proofs. For convenience, we only list
the main results.

We consider the augmented system (12) and we find the
optimal K̃ by minimizing tr(P̃ (k + 1)), where P̃ (k + 1) ≡
E[X̃+X̃+T ].

Denote P̃ ≡ P̃ (k) and K̃− ≡ K̃(k − 1). From Assump-
tion (AII1) we have that w(0), v(0), and δx(0) are mutually
uncorrelated and zero-mean white noise, then (12) leads to

P̃ (k + 1) = ΨP̃ΨT + Γ̃1
˜̄RΓ̃T

1 + Γ̃2E[Ω̃Ω̃T ]Γ̃T
2 . (24)

The results in the subsequent theorem provides a recursive
algorithm that automatically generates the optimal gains of (2).

Theorem B.1: Let the system satisfy Assumptions (AII1) and
(AII2), and consider the update law in (2). The gainsK1,2(k) that
minimize the mean-square output errors and η(k), i.e., minimize
tr(P̃ (k + 1)), at each kth instant are given in the following
recursive formula ∀k > 0:

˜̄K− = (ẼT Ẽ)−1ẼT H̃P̃ ˜̄IT
(
˜̄IP̃ ˜̄IT + ˜̄R

)−1

(25)
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P̃ (k + 1) = ΨP̃ΨT + ẼK− ˜̄R(ẼK−)T + E[Ω̃Ω̃T ] (26)

where P̃ (1) is selected to be a positive-definite matrix.
Proof: Same proof as the one of Theorem 1 in [2]. �
The following theorem provides necessary and sufficient con-

ditions for convergence of the error covariance P̃ (k).
Theorem B.2: Consider the update law given in (2) and

the recursive algorithm presented by (25) and (26). Then,
limk→∞ P̃ (k) exists if and only if |λ(Θ1)λ(Θ1) �=1| < 1, where

Θ1 ≡ BMBT + (In −BMBTMTCTC −BMBT )A

M ≡ (ETE)−1 = [(CB)TCB +BTB]−1.

Proof: Same proof as the one of Theorem 2 in [2]. �
The next theorem provides necessary and sufficient conditions

for bounding the steady-state error, in absence of process noise
where the bound decreases as the measurement error decreases
and the sample rate increases. These characteristics are justified
numerically in [2].

Theorem B.3: Consider the update law given in (2)
and the recursive algorithm presented by (25) and (26).
Assume that yd(k) is a smooth function and w(k) =
0, ∀k > 0. Therefore, |λ(Θ1)λ(Θ1) �=1| < 1 if and only if
limk→∞ P̃ (k) ≤ c(R, Ts)cΣI , where cΣ > 0 and c(R, Ts) ≡
supk(ρ(R(k))ρ(UH̃H̃TU) + cyTs.

Proof: Same proof as the one of Theorem 3 in [2]. �

IV. NUMERICAL AND EXPERIMENTAL RESULTS

In this section we illustrate the performance capabilities of
the proposed simplified controller given by (22).

A. Numerical Implementation on a Quadruple Tank
Process

In this example we compare the performance of the pro-
posed controller (22) with the optimal stochastic PID controller
in [1], [2], and [3]. The multivariable PID gains of the former
two controllers are obtained by minimizing the error covariance
matrix of different augmented systems, and the latter considers
the problem of designing a multivariable PID controller via
direct optimal linear quadratic regulator.

We consider the continuous-time system of a quadruple tank
process with nonminimum phase setting as described in [3], with
ẋ(t) = Acx(t) +Bcu(t) and y(t) = Cx(t), where

Ac =

⎡
⎢⎢⎢⎣
−0.0159 0 0.0256 0

0 −0.011 0 0.00179

0 0 −0.0256 0

0 0 0 −0.0179

⎤
⎥⎥⎥⎦

BT
c =

[
0.0482 0 0 0.0178

0 0.035 0.0236 0

]

C =

[
0.5 0 0 0

0 0.5 0 0

]
.

TABLE I
TRANSIENT RESPONSE OF FOUR MULTIVARIABLE CONTROLLERS

Fig. 1. Output response in the presence and absence of measurement
noise.

TABLE II
PERFORMANCE IN PRESENCE OF NOISE, N(0, 0.052)

The reference signals are given by [3]

yref
1 (t) =

{
0, t < 0

1, t ≥ 0
, yref

2 (t) =

{
0, t < 1000

2, t ≥ 1000
.

We discretize the system with sampling period Ts = 0.1 s. The
proposed controller parameters used in both settings (with noise
and without noise) are K(k) = 1

k0.2 500I and γ = 1.1. As per
the tuning tips provided in Section III-A, we divide the gain by
k0.2 so that the controller can partly reject measurement noise.

The transient performance is illustrated in Table I where
we compare the percentage overshoot, OS%, and the settling
time, ts (s), for the four different multivariable controllers. By
examining Table I, it is observed that the general performance
of the proposed controller is superior to that PID of [3], and
superior to [1] and [2] in absence of measurement noise. The
corresponding steady-state errors are about 10−10.Unlike our
simplified proposed controller, these three optimal PID con-
trollers use the system model to obtain their gains. We also
examine the performance of our proposed controller in the pres-
ence of measurement noise. We add zero-mean Gaussian noise to
both outputs with standard deviation σ = 0.05. Fig. 1 shows the
outputs in absence and presence of measurement noise. Table II
lists the standard deviation of the error during the first 100 s, over
the entire range, and during the last 100 s. One can observe that
the error values during the last 100 s are significantly smaller than
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the ones corresponding to the first 100 s. Although the proposed
controller settles much faster than the one in [1], it does not
completely reject measurement as in [1]. The reported results
in [2] on the output error standard deviations, std(yref

1 − y1) =
0.033 < σ and std(yref

2 − y2) = 0.018 < σ, which resembles
the performance of the proposed controller are illustrated in
Table II.

Remark 3: The magnitude of the control signals is not con-
strained to any threshold at which the signal must be truncated in
practical application. Consequently, we implement the following
saturation function to the controller output: sat(u(k + 1), ū) �
sign(u(k + 1))min(|u(k + 1)|, ū). For illustration, we set a
threshold of ū = 5, and we find the corresponding settling time,
ts, to be about 12 s for the first output, and 25 s for the second
output. In addition, the overshoot drops down to zero for both
outputs.

B. Experimental Implementation on 4-DoF Robot
Manipulator

We consider the Euler–Lagrange model describing the
continuous-time dynamics of rigid n-link serial nonredundant
robot manipulator, with all actuated revolute joints, which is
given by τ = M(q)q̈ + C(q, q̇)q̇ +G(q) + F (q, q̇), where q, q̇,
and q̈ ∈ Rn represent joint angles, velocities, and accelerations,
respectively. M(q) ∈ Rn×n is the symmetric positive definite
inertia matrix, C(q, q̇) ∈ Rn×n denotes the Coriolis and cen-
tripetal matrix, G(q) ∈ Rn is the gravity vector, F (q, q̇) ∈ Rn

represents the joint friction, and τ ∈ Rn denotes the joint torque
input.

The experiments are conducted on a cable-driven 4-DoF
Barret WAM, with a reach of 1 m and 4 kg payload with a
12-b position encoder for each joint; a picture of the same
experimental setup is given in [24]. The Barrett WAM is operated
using MATLAB-SIMULINK on a host PC through an external
target PC, which is connected to the robotic arm through Barrett
CAN bus. The two PCs are connected via an Ethernet cable. The
target PC is a core i7. The host PC is a core i5. The target PC is
booted using a MATLAB kernel.

The sampling rate of the controller is set at 1000 Hz.
The proposed controller gain in (22) is given by

K(k) =
1

kα

⎡
⎢⎢⎢⎣
25 0 0 0

0 25 0 0

0 0 2.5 0

0 0 0 2.5

⎤
⎥⎥⎥⎦

and γ = 1.1. We choose the same value of γ used in the
quadruple tank process example. The diagonal entries of K(k)
are intuitively selected based on the capacity of each joint and
the limit torque limits of the arm. Simple values are chosen to
show that not much tuning has been exercised. The tracking
performance of our proposed method is illustrated in Fig. 2,
where the actual outputs and reference trajectories are displayed.

We compare performances for three values of α ∈
{0, 0.1, 0.2}. We estimate the velocity error using backward
Euler method. That is, ei(k + 1) =

qi,d(k)−qi,d(k−1)
Ts

, where qd,i

Fig. 2. Output response of the robot manipulator. The actual outputs
are in black and the reference in dashed red.

TABLE III
PE AND MAXIMUM ABSOLUTE ERROR OF CONTROLLERS (C1)–(C5)

is the reference trajectory of the ith joint. Throughout this
work, we use the percentage of error (PE), which is defined as

PEi � AVGt∈[0,5]|qi−qd,i|
AVGt∈[0,5]|qd,i| ; and the maximum absolute error over

the duration of the reference trajectory.
We report experimental validation by comparing the perfor-

mance of: (C1) the stochastic PDD controller in [26], (C2)
the stochastic PD controller in [24], (C3) the deterministic PD
controller in [25], and (C4) the sliding mode controller coupled
with dirty derivative filter in [27], and (C5) our controller (22).

The description of each controller is presented in [26]. It is
important to note that there are other sliding mode controllers
such as the adaptive sliding mode controllers [14] and [15].
However, such controllers require extensive tuning. Although
experimental results are reported in [27], without integrating a
dirty filter to estimate angular rates, intolerable vibrations in the
arm and torque saturation are realized and even with the use of
dirty filter, the torque signals are not smooth. In addition, it is the
opinion of the authors that better tracking and smoother torque
signals can be achieved with better tuning using the adaptive
sliding mode controllers. For the latter reasons we have not
reflected on such controllers in this work.

We report the resulting percent error (PE) and maximum
absolute error of our proposed controller for α ∈ {0, 0.1, 0.2},
and of the controllers (C1)–(C5) in Table III, where the average
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TABLE IV
PERFORMANCE COMPARISON OF CONTROLLERS (C1)–(C5) USING

METRICS (M1)–(M5)

performance across all four joints are presented in bold. By
examining Table III one can conclude that smaller values of
α lead to higher accuracy, yet experimentation revealed that the
accuracy was at the cost of the smoothness of the torque signals.
Although no arm vibrations are noticed during experiments, the
torques corresponding to α = 0 caused some audible noise in
the arm, which may harm the arm in the long run.

We employ the following five ranking metrics to intuitively
assess the pros and cons of each controller while assigning five
points to the best performer, four points to the second, three
points to the third, two points to the fourth, and one point to the
fifth.

(M1) Overall output tracking performance: Evaluation is
based on values in Table III where our controller comes second.

(M2) Ease of tuning: (C1) involves tuning of five covariance
matrices and a Kalman filter. (C2) involves tuning of one covari-
ance matrix. (C3) and (C4) involve tuning of its two controller
gains and dirty filter parameters. (C4) also includes tuning of
saturation function. (C5) involves tuning of one gain matrix.

(M3) Smoothness of torque signals: Evaluation of controllers
are based on torques observed during experiments.

(M4) Model requirement: Unlike our controller (C5), the
controllers (C1)–(C4) all use the knowledge of gravity vector
and inertia matrix. (C1) and (C2) requires some knowledge of
statistical errors.

(M5) Computation complexity: (C1)–(C4) compute and in-
vert the inertia matrix and (C1) converts a larger innovation
covariance matrix than the one in (C2).

Table IV lists the points attained by the five controllers
corresponding to metrics (M1)–(M5). As a recap, we find the
proposed controller and (C2) attaining the highest average;
however, for a novice engineer, our controller is the easiest to
implement.

V. CONCLUSION

This article proposed a nonadaptive multivariable tracking
controller that required very limited information on the plant
model and dealt with a class of large-scale systems with complex
dynamics, which was robust and was easy to tune. The potential
of the proposed controller was shown numerically on a quadru-
ple tank process and displayed its transient response superiority
over three different optimal PID controllers that used the system
model. Furthermore, efficacy of the proposed controller was
demonstrated on experimental data from a 4-DoF Barrett robot
arm. The overall performance of the control scheme was com-
pared with four recent controllers, namely, a deterministic PD
controller, stochastic PD controller, stochastic PDD controller,

and sliding mode control (SMC) integrated with a dirty filter.
The four controllers used knowledge of the gravity vector and
inertia matrix. The proposed approach was shown to be the least
computationally expensive, easiest to tune, easiest to implement,
and did not require knowledge of the plant model. The pro-
posed controller achieved uniform output tracking performance,
outperforming three schemes and very comparable with the
stochastic PDD controller. However, the resulting torque signals
were not as smooth as the other four controllers. In addition, a
framework for selecting optimal gain matrices was provided for
two different discrete-time systems where knowledge of system
model was required. In both cases, necessary and sufficient
conditions were provided for boundedness of all trajectories and
convergence of the error covariance matrices. The framework
associated with the first system achieved complete rejection of
measurement noise in probability. To extend the scope of this
work, the authors suggested: 1) performance comparisons with
other control schemes including adaptive control strategies that
handle the constraints outlined in the article, and 2) experimental
validation on real-life plants such as power generation systems.
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