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Forecasting and Detection of
Fatigue Cracks in Polycrystalline
Alloys With Ultrasonic Testing Via
Discrete Wavelet Transform
Forecasting and detection of fatigue cracks play a key role in damage mitigation of mechan-
ical structures (e.g., those made of polycrystalline alloys) to enhance their service life, and
ultrasonic testing (UT) has emerged as a powerful tool for detection of fatigue cracks at
early stages of damage evolution. Along this line, the work reported in this paper aims to
improve the performance of fatigue crack forecasting and detection based on a synergistic
combination of discrete wavelet transform (DWT) and Hilbert transform (HT) of UT data,
collected from a computer-instrumented and computer-controlled fatigue-testing appara-
tus. Performance of the proposed method is evaluated by comparison with the images gen-
erated from a digital microscope, which are treated as the ground truth in this paper. The
results of comparison reveal that forthcoming fatigue cracks can be detected ahead of their
appearance on the surface of test specimens. The proposed method apparently outperforms
both HT and conventional DWT, when they are applied individually, because the synergistic
combination of DWT and HT provides a better characterization of UT signal attenuation for
detection of fatigue crack damage. [DOI: 10.1115/1.4049732]
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1 Introduction
Fabrication is a critical ingredient in the production of mechani-

cal machinery, which are often subjected to flaws in manufactured
components. When a machinery is in operation, the flaw size in its
individual component(s) may keep on growing due to the fatigue
stresses resulting from repetitive loading; once a flaw reaches the
critical size, the component fracture begins to take place [1–5].
Hence, these flaws are considered to be the root cause of structural
degradation.
In many instances of mechanical failures, damage precursors

(e.g., dislocations and voids) would evolve inside the component
structure, followed by their indicators (e.g., cracks) before a
failure actually occurs. Since such indicators may not be observable
at an early stage of damage (e.g., cracks less than 0.25mm), fatigue
damage monitoring is necessary to forecast the damage before these
indicators appear; this is specifically true for components that may
have grave consequences on the human life, the economy, and the
environment.
Important roles of real-time sensing of damage include continu-

ous inspection of mechanical structures and updated measurements
of product quality so that their reliability can be assessed and the
protection against unexpected failures is maintained. Health moni-
toring of mechanical structures using visual testing (VT) is a
widely used method of inspection in industrial applications, by
which many macroscopic flaws (e.g., surface deformation/crack,
poor welding, and improper surface finish) can be detected.
However, VT has two significant disadvantages:

(1) Limitations regarding flaw detection: Examples include
detection of micro-scale and meso-scale flaws on surfaces
and internal defects (e.g., voids and inclusions) of the
structure.

(2) Intermittent inspection: The damage could occur in-between
two inspection events.

Therefore, real-time sensing of damage with computer-assisted
analytical methods of nondestructive testing (NDT) is considered
to be essential in a majority of industrial applications.
Ultrasonic testing (UT) [6,7] is an NDT method that is widely

used to estimate the internal damage and defects of mechanical
structures. The operating frequencies in UT sensors may range nor-
mally between 400 kHz and 25 MHz, which exceed the human
audible range which is between 16Hz and 20 kHz [8]. The frequen-
cies of UT play a major role in determining the internal defects. For
example, high frequencies (e.g., 15 MHz) that are used for contact
testing applications have two advantages. First, due to the sensitiv-
ity at ∼5 MHz, UT can detect small material imperfections (i.e., dis-
continuities). Second, due to the high resolution at ∼5 MHz, UT
sensors can determine the location of discontinuities, even if these
discontinuities are very closely spaced. However, high frequencies
may not be able to detect discontinuities of some components
that have large grain structures (e.g., castings) because these high-
frequency (e.g., ∼5 MHz and higher) signals are significantly atten-
uated while passing through a coarse-grained material. On the other
hand, an advantage of low-frequency (e.g., ∼1 MHz and less)
signals is that they perform well for testing coarse-grained
materials; however, their sensitivity and resolution are usually inad-
equate [9].
Transducers, which are one of the functional units of UT sensors,

belong to two broad classes of usage: (i) transmitter transducers and
(ii) receiver transducers. The transmitter transducer converts electri-
cal energy into mechanical energy in the form of ultrasonic waves,
while the receiver transducer converts the mechanical vibrations of
ultrasonic waves into electrical signals. The basic principle and
functionalities of crack detection using UT are as follows:

The ultrasonic energy, generated by the transmitter transducer, which
has known and fixed characteristics, propagates through the medium
of the structure and a part of this energy is reflected back to the trans-
mitter transducer; the remaining part of the energy is attenuated (and
possibly distorted) before reaching the receiver transducer. The result-
ing attenuation and distortion (e.g., due to a damage precursor) in the
received waveform is used for damage assessment in the structure. In
this way, UT characterizes material conditions and locates the mate-
rial flaws that could eventually lead to a structural failure [7,10–12].
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The tools of both VT and UT have been used in the work
reported in this paper to forecast and detect the onset of fatigue
cracks at the notch tip of specimens on a laboratory apparatus.
The most important aspect of this investigation is to improve the
performance of the monitoring system for forecasting and detec-
tion of fatigue crack damage. The digital microscope in the test
apparatus supports the VT observations by magnifying the notch
tip images, which are used in conjunction with UT data. Generally,
spurious signals (e.g., vibrations) from the surrounding environ-
ment of the laboratory generate various types of disturbances
and noise, which degrades the quality of UT signals; therefore,
the disturbance and noise contamination need to be filtered out
from the UT signals.
This paper evaluates the performance of a UT-based procedure of

damage forecasting and detection by comparison with the results of
VT images that are taken to be the ground truth in this paper. The
time-domain observations on the laboratory apparatus reveal that
the attenuation of a UT signal can be consistently detected before
any meaningful information is available from the VT images; oth-
erwise, the UT detection may not have much use. Therefore, it is
necessary to observe the main features of the UT signal (e.g., the
texture of UT signals and profiles of the signal energy).
Figure 1(a) displays the profile of the received UT signal on a
typical crack-free specimen, while Fig. 1(b) shows the same for a
typical fatigue cracked specimen.
The paper is organized in six sections including the current

section. Section 2 describes the laboratory apparatus on which
experiments have been conducted to validate the theoretical part
of the work reported in this paper. Section 3 provides the necessary
background on signal processing for UT-based fatigue crack fore-
casting and detection of fatigue cracks. It also presents the mathe-
matical concepts of discrete wavelet transform (DWT), Hilbert
transform (HT), and the proposed DWT and HT-based methods.
Section 4 compares the results of experimentation via DWT, HT,
and the proposed method by making use of VT images. Section 5
presents and discusses the results of experimentation on the
typical test specimens. Section 6 summarizes and concludes the
paper along with recommendations for future research.

2 Description of the Experimental Apparatus
Figure 2(a) presents the experimental apparatus that is built

upon a computer-controlled and computer-instrumented fatigue-
testing machine (MTS®, Berlin, NJ), which is equipped with a
digital microscope for VT and ultrasonic sensors (OLYMPUS®,
Shinjuku, Tokyo, Japan) for UT. The UT transducers are excited
by 15 MHz ultrasonic waves, injected to the specimens by a pie-
zoelectric transducer, called the transmitter, and the transmitted
signals are detected by another piezoelectric transducer, called
the receiver, that is located on the other side of the notch tip, as
seen in Fig. 2(a). When the crack begins to propagate, the UT
signal starts to attenuate, because a part of the signal is reflected
and thus the full signal is not received by the receiver. Moreover,
the digital microscope is synchronized with the UT to monitor
the crack behavior and to provide the evidence for attenuation
of the UT signal. The digital microscope is located close to the
notch tip since the crack appearance starts at the crack tip due to
the high-stress concentration.

In the reported work, experiments have been conducted with
three identical2 test specimens (that are made of AL7075-T6 alu-
minum alloy) to investigate the fatigue damage properties of poly-
crystalline materials. The dimensions of these specimens are 3mm
thickness and 50mm width. A (1–3.5mm) U-notch is incorpo-
rated at the edge, as seen in Fig. 2(b) that shows the CAD
drawing of a typical test specimen. In the experiments that are
used to forecast and detect the onset of fatigue cracks, all speci-
mens are subjected to tension-tension load cycles, and the loads
are generated by the fatigue-testing machine (see Fig. 2(a)). A
typical target set-point is the tensile-tensile load fluctuation with
(peak) 11,000N and (valley) 3000N (i.e., the load range is
8000N).

3 Background: Signal Processing for Ultrasonic
Testing-Based Fatigue Crack Detection
In the discipline of signal processing, mathematical transforma-

tions are used to extract pertinent information, which is embedded
in the time series of the raw signal. However, in many cases, the
time-domain analysis of a signal may not be the best way for
anomaly detection, because the most relevant signal information
can be conveniently extracted from the frequency spectrum. The
Fourier transform (FT) is commonly used for conversion of time-
domain signals to the frequency domain. However, usage of FT
may not be suitable for non-stationary signals, where localization
of both time and frequency is necessary. For non-stationary
signals, a modified version of FT, called the short time Fourier
transform (STFT), could be used if the signal can be split into seg-
ments, where the signal of each segment is assumed to be station-
ary [13].
The wavelet transform (WT) largely overcomes the localization

problems of FT and STFT [13,14], because WT provides both

Fig. 1 Typical ultrasonic signals at the receiver end: (a) Crack-
free specimen and (b) cracked specimen

Fig. 2 The fatigue-testing apparatus and ancillaries: (a) Picture
of the experimental apparatus and (b) computer-aided design
(CAD) drawing of an AL7075-T6 aluminum alloy specimen (all
dimensions are in millimeter and are not to scale)

2The rationale for using three (apparently) identical specimens is to establish the
consistency of experimental results. It is noted that the fatigue life of identical test spe-
cimens may significantly vary due to uncertainties resulting from internal defects as
well as from the machining process.
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time and frequency localization at different scales and time-
translation and provides better time-frequency representation for
the signal. However, according to Heisenberg uncertainty principle,
the windows of time and frequency localization cannot be made
arbitrarily small. The fundamental operation using WT is signal
decomposition, where the original signal is passed through a bank
of high-pass and low-pass filters, where the output of a low-pass
filter is further orthogonally decomposed into two parts, namely,
low frequencies and high frequencies. This procedure is repeated
until the signal is decomposed to the desired level. The final step
is to determine the frequency band to which the signal is physically
relevant.
In this paper, the most important information derived from UT

signals is the data set found before the fatigue crack takes place,
and this vital information of UT data is obtained by applying two
methods. The first method is a DWT, called multiresolution analysis
(MRA), which decomposes a generated UT signal into the detail
and approximation of the signal [13]. The detail represents high-
frequency components of the signal, while the approximation repre-
sents the low-frequency components of the signal. The multilevel
signal decomposition is the fundamental process of MRA, where
each approximation portion of the signal is decomposed into a hier-
archical set of details and approximations. In this investigation, the

Fig. 3 Envelope detection of UT signals for typical crack-free
and cracked specimens, where the abscissa is the measured
UT signal and the ordinate is signal amplitude: (a) UT signals
response for a crack-free specimen and (b) UT signals response
for a cracked specimen

Fig. 4 The waveform of a typical UT signal

Fig. 5 Scaling and wavelet functions for db10: (a) scaling function (ϕ) and
(b) wavelet function (ψ)
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preferred wavelet decomposition level that provides the best detec-
tion of the crack onset is a fourth level wavelet decomposition.
Another method of signal processing is envelope detection via

the HT [15]. In many engineering applications (e.g., vibration,
rolling element bearings, and gearboxes), the envelope detection
method is one of the main techniques that are used for fault diagno-
sis. Thus, HT has become one of the methods that are widely used
for analysis of non-stationary signals, where relevant information
(e.g., amplitude, instantaneous phase, and frequency) of signals
can be extracted by using HT [15,16].
The principle of HT-based envelope detection is built upon the

(complex-valued) analytical signal, generated from the input data.
The real part of the analytical signal is the original signal, while
the imaginary part is HT of the original signal. Furthermore, the
signal envelope characterizes the upper and lower boundaries of
the signal. In other words, it can illustrate the behavior of the
signal in the time-domain. In this paper, UT signals contain a
rapidly oscillating component which is measured in time-domain,
as seen in Figs. 3(a) and 3(b) that represent the widely different
signal attenuation of crack-free specimens and fatigue cracked spe-
cimens, respectively, and the attenuation of UT signals becomes
more obvious using HT. Therefore, the (HT-based) envelope detec-
tion technique has been used to detect the transition between crack-
free specimens and cracked specimens [17–19].
This paper develops and experimentally validates a novel method

of forecasting and detection of fatigue cracks in polycrystalline
alloys by combining the envelope detection property of HT with
DWT analysis of UT signals. The objective here is to enhance the
forecasting and detection of fatigue crack onset. The proposed
method relies on the energy of the signal envelope that is signifi-
cantly influenced by fatigue crack initiation, where a part of the
signal is reflected due to the structural damage of the specimen.
Consequently, the energy of the signal envelope is attenuated at
the onset of fatigue crack. Then, the energy profile envelope of
the receiver signal is analyzed by DWT; the rationale is that
DWT is capable of extracting the relevant information both
locally and globally.
In the above context, major contributions of the current paper are

briefly summarized as follows:

• Performance enhancement of real-time health monitoring:
Measurements of UT data, in combination with images of
VT from a digital microscope, yields significantly better detec-
tion of the onset of a fatigue crack.

• Time-frequency analysis of UT data: A synergistic combina-
tion of HT and DWT has been implemented and demonstrated
on UT signals for forecasting and detection of fatigue cracks.

4 Methodologies and Procedures
This section presents the details of methodologies and procedures

for forecasting and detection of fatigue crack damage, which
involve DWT and HT as well as their combination.

4.1 The Discrete Wavelet Transform. It is well known that a
DWT procedure can be conveniently constructed based on the
principle of MRA [13], where the signals are analyzed at different
scales and time translations. The general concept of MRA was orig-
inally developed by Mallat [14] in 1988 and, in the same year,

Daubechies [20] defined a technique to build compact-support
orthogonal wavelets. In this paper, the Daubechies wavelet basis
function, db10, is applied for decomposition of the multilevel
wavelet signal. The rationale for applying db10 is that the mother
wavelet function of db10 is largely similar to the original signal
[21,22], as seen in Figs. 4 and 5(b).

Fig. 6 Two-channel analysis and synthesis filter banks in MRA

Fig. 7 A four-level dyadic representation of the DWT of ultraso-
nic signals using a two-channel filter bank

031003-4 / Vol. 4, AUGUST 2021 Transactions of the ASME



In MRA, the “detailed” components of a signal are extracted by a
bank of high-pass filters, and the “averaged”(also called “approxi-
mate”) components of the signal are extracted by a bank of
low-pass filters. These two operations have significant roles
toward determining the resolution of the signal. The first operation
is the signal filtering, which represents a high-pass filter and a
low-pass filter. The second operation is the signal scaling, where
the scale of the signal is changed by down-sampling and
up-sampling operations [13].
MRA has two main stages, as seen in Fig. 6, where the first stage

is the analysis filter bank. In this stage, the input signal of each level
passes through two steps. The first step is the signal filtering, where
the signal passes through a low-pass or high-pass filter. The second
step is the signal down-sampling, where some of the signal samples
are excluded. For example, down-sampling the signal by two, that
is, removing every other sample of the signal, and it is widely
used in the first stage of DWT. The approximation signal denotes
the output of the low-pass filter after the down-sampling operation,
and the detail signal represents the output of the high-pass filter after
the down-sampling operation. For the most part, the approximation
signal at each level is considered to be the input signal for the next
level [23,24]. The signal analysis procedure of the first stage (i.e.,
analysis filter bank), illustrated in Fig. 7, is described as follows:

(1) The UT signal passes through half-band (low-pass and high-
pass) digital filters, where the signal is convolved with
impulse response h[n] and g[n], respectively. The half-band
low-pass filter eliminates frequencies (i.e., those exceeding
half of the highest frequency), and half-band high-pass
filter removes all frequencies that are below half of the
highest frequency [25–27].

(2) The convolution outputs are down-sampled by two, The
mathematics of convolution operation are

x[n] ∗ h[n] =
∑∞
k=−∞

x[k]h[n − k] (1)

Hence, the outputs of the down-sampling operation will
have only half of the number of the samples. After the
down-sampling operation, the scale of the signal is twice
the original signal scale [25–27]. The output of first level

Fig. 8 An illustration of the concept of envelope detection:
(a) original signal, (b) HT signal, and (c) signal envelope

Fig. 9 Measurements of UT signal for a completed experiment, and (from left to right) red dashed
lines showing the location of a normal UT signal, attenuated UT signal, and noisy signal, respec-
tively (Color version online.)
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decomposition is expressed as

ylo[k] =
∑
n

x[k]h[2n − k]

yhi[k] =
∑
n

x[k] g[2n − k]

where ylo and yhi represent the outputs of the low-pass and
high-pass filters, respectively, after down-sampling by 2.

From the procedure of the first stage, called analysis filter, for the
first level of the decomposition, we observe that the signal is
decomposed into a coarse (or approximation) signal, ylo[k], and
detail signal, yhi[k], by analyzing the signal at different frequency
bands with different resolutions. The DWT function that is associ-
ated with a low-pass filter is defined as the scaling function, ϕ, as
shown in Fig. 5(a). On the other hand, Fig. 5(b) represents the
wavelet function, ψ, which is associated with high-pass filter.
According to Nyquist’s rule, which says that after filtering operation
half the samples can be removed, the signal is down-sampled by
two without losing any signal information, because half of the
number of the samples are redundant. The signal decomposition
of the first level reduces the time-resolution by 50% because only
50% of the samples represents the whole signal. The frequency

resolution is doubled since the signal frequency band extends
only half the prior frequency band. In this paper, this analysis pro-
cedure is repeated for the next level, until level four. The low-pass
filter and high-pass filter satisfy the property of quadrature mirror
filters [26,27], where the relationship between the impulse
responses of both filters is related to each other by g[M− 1− n]=
(−1)n h[n], where M is the filter length, g[n] is the high-pass
filter, and h[n] is the low-pass filter.
The second stage of DWT is called the synthesis filter bank [26].

The procedure of the second stage is as follows:

(1) The outputs at every level from the analysis filter bank are
up-sampled by two.

(2) The outputs of the up-sampling operation pass through a
half-band digital filters (low-pass or high-pass).

(3) The outputs of the high-pass filter and low-pass filter are
combined to construct the input of the next level of the synth-
esis filter bank.

From the above procedure, we observe the following:

• The procedure order of the synthesis filter bank is a mirror of
the analysis filter bank procedure.

• The first stage and the second stage of DWT are analogous to
each other, excluding a time reversal.

• The orthonormal bases of half-band filters assist the signal to
be reconstructed. Thus, a condition of the signal reconstruction
is half-band filtering.

The signal reconstruction for each level is obtained as

x[n] =
∑∞
k=−∞

((ylo[k] h[− n + 2k]) + (yhi[k] g[− n + 2k])) (2)

4.2 The Hilbert Transform. HT is one of the fundamental
operators in the field of signal processing, which was introduced
by David Hilbert to solve a special case of the Riemann–Hilbert
problem [17,28]. The HT of a signal x(t), represented as x̂(t), is

Fig. 10 Microscope images for VT of fatigue cracks

Fig. 11 Measured ultrasonic signals for specimen 1: (from left to right) the first red
dashed line representing the location of VT crack detection and the second red
dashed line representing typical UT crack detection (Color version online.)
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Fig. 12 Measured ultrasonic signals for specimen 2: (from left to right) the first red dashed line
representing the location of VT crack detection and the second red dashed line representing
typical UT crack detection (Color version online.)

Fig. 13 Measured ultrasonic signals for specimen 3: (from left to right) the first red dashed line
representing the location of VT crack detection and the second red dashed line representing
typical UT crack detection (Color version online.)
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Table 1 Instants of the fatigue crack detection using VT and UT

VT detection
(loading cycles)

UT detection
(loading cycles)

UT delay
(loading cycles)

No. of measured
points using UT

Specimen 1 44,939 8680 3741 0.99 * 106

Specimen 2 36,146 37,353 1207 2.3 * 106

Specimen 3 29,767 32,049 2282 2.7 * 106

Fig. 14 Crack detection using VT image and UT data for specimen 1: UT data include UT
signal measurements from beginning of the experiment until VT crack detection, where the
end of UT data denotes the location of VT detection: (a) reference detection (VT image) and
(b) corresponding UT data for crack detection

031003-8 / Vol. 4, AUGUST 2021 Transactions of the ASME



computed via the following integral:

x̂(t) =
1
π

∫∞
−∞

x(τ)
(t − τ)

dτ (3)

The key points of HT are as follows:

(1) The HT does not involve a change in signal domain.
However, the HT output x̂(t) is different from the original
signal x(t).

(2) The HT shifts the angle phase of the original signal x(t) by
−π/2 radians without changing its amplitude as seen in the
following example:
• Example 1: The HT for a signal x(t)= cos (ωt) is

x̂(t) = sin (ωt).
(3) One method to construct x̂(t) is to multiply the positive spec-

trum (i.e., positive frequencies) of the continuous-time signal
x(t) by the −π/2 rotation operator −j and the negative spec-
trum (i.e., negative frequencies) of x(t) by the +π/2 rotation
operator +j, and the output is HT in the frequency domain
which is also the FT F [x̂(t)]. Then, by taking the inverse
Fourier transform (IFT) F−1, the HT of the signal x̂(t) can
be obtained by the convolution of x(t) with the HT kernel
h(t) as seen as follows:

y(t) = x̂(t) =
∫∞
−∞

x(τ) h(t − τ) dτ (4)

Thus, the FT of y(t) is

Y(ω) = F [x̂(t)] = X(ω) H(ω) (5)

By applying IFT F−1 on Eq. (5), we reconstruct x̂(t) as

x̂(t) = F−1
(
X(ω) H(ω)

)
(6)

Now, we define the function H(ω) such that

H(ω) =
−j, ω > 0

j, ω < 0

{

i.e., H(ω) = −j sign(ω)
(7)

Then, the IFT F−1[H(ω)] is

h(t) =
1
πt

(8)

By substituting Eq. (8) into Eq. (4), HT of a signal x(t) is
defined, as illustrated in Eq. (3).

4.3 Properties of Hilbert Transform. The salient properties
of HT are summarized as follows:

(1) The HT of an even signal is odd, and the HT of an odd signal
is even. Specifically, the HT of x̂(t) is −x(t), i.e., ˆ̂x(t) = −x(t),
as seen in the following example:
• If x(t)= cos (t), then the HT is x̂(t) (see Example 1). Then,

its HT is

ˆ̂x(t) = sin(ωt − π/2) ⇒ ˆ̂x(t) = −x(t) (9)

(2) The signal x(t) and its HT x̂(t) are mutually orthogonal, i.e.,
∫∞
−∞

x(t) x̂(t) = 0 (10)

(3) The energy of a signal x(t) is identically equal to that of its
HT x̂(t), i.e.,

∫∞
−∞

∣x(t) ∣2 dt =
∫∞
−∞

∣ x̂(t) ∣2 dt (11)

As stated in Sec. 1, the main objective of using HT in this paper is
to apply the envelope detection method on the UT data. The enve-
lope of the original time-domain signal is obtained directly from the
magnitude of the analytical signal which is defined as

a(t) ≜ x(t) + jx̂(t) (12)

where x(t) is a typical UT signal and x̂(t) is its HT. Then, the signal
envelope of x(t) is defined as

envx(t) ≜
����������������
|x(t)|2 + |x̂(t)|2

√
(13)

An example follows:

• Example 2: Let us create a time-domain signal x(t) that decays
over time so that we can observe how the envelope character-
izes the decay (note: the decay parameter λ > 0):

x(t) = A exp(−λ t) sin(α t) (14)

Fig. 15 Signal decomposition at level-1 of MRA: (a) the mea-
sured points of the ultrasonic signals, from 0 cycle to 44,939
loading cycles and (b) first level of the approximation coeffi-
cients and detail coefficients of DWT
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and its HT is

x̂(t) = A exp (−λ t) cos(α t) (15)

Figures 8(a) and 8(b) present the original signal and its HT
signal, respectively. It follows from Fig. 8(c) that the envelope
detection method using HT provides a perfect characterization
for identification of the decay rate of the signal x(t).

Now we show how to detect the fatigue crack onset using the
information on energy of the UT signal. Figure 9 shows that the
UT signal in a typical test specimen starts as stable and remains
(nearly) constant until the onset of the fatigue crack. Then, it
starts to decay, because part of the signal is reflected back to its
source due to the increase in ultrasonic impedance resulting from
the fatigue damage initiation. Consequently, envelope detection

(see Eq. (13)) becomes applicable for detection of the signal atten-
uation in the UT signal.

4.4 Analysis of Ultrasonic Testing Signals Via Discrete
Wavelet Transform and Hilbert Transform. The proposed pro-
cedure of fatigue damage detection, which is a synergistic combina-
tion of DWT and HT and also makes use of VT data, is briefly
described in the following steps as:

(1) Determine the energy of each UT signal over its entire range
(see Eq. (11)).

(2) Determine the envelope of each UT signal energy over its
entire range (see Eq. (13)).

(3) Identify the instant when the reduction in the envelope of UT
signal energy initiates by applying DWT on the envelope of
UT signal energy—this is the onset of fatigue crack damage.

Fig. 16 Signal decomposition at level-2 of MRA: (a) approximation signal at level-1 as
input to level-2 and (b) approximation and detail coefficients at level-2

031003-10 / Vol. 4, AUGUST 2021 Transactions of the ASME



(4) Compare the result for the proposed method with those of
other methods such as DWT, HT, and VT.

As illustrated in the analysis procedure, the proposed detection
method takes advantage of both HT and DWT, where HT character-
izes the envelope of UT signal energy, and DWT determines the
instant of crack onset by analyzing the envelope of UT signal
energy at different scales and time translations.

5 Results and Discussion
This section presents and discusses the results of experiments

pertaining to detection of fatigue crack onset in polycrystalline
alloy (i.e., AL7075-T6) specimens using both VT and UT data.
The results of UT data analysis can be obtained by both DWT
and HT individually; in this paper, the results of the proposed
method (i.e., a combination of DWT and HT) have been compared
with those of the individual methods (i.e., DWT and HT) by having
VT images of fatigue crack as the ground truth, which were gener-
ated by the digital microscope.

5.1 The Ultrasonic Testing Data Analysis Using Discrete
Wavelet Transform. As described in Sec. 2, UT data were gener-
ated synchronously with the images obtained from the digital micro-
scope. Figure 10 presents images of fatigue cracks on the curved
surface inside the notch of test specimens. However, a casual inspec-
tion of UT data (e.g., see Fig. 9) does not provide any additional
information beyond VT data that serve as the ground truth for
crack detection. This issue is further explained below.
Figures 11–13 show profiles of UT data for specimen 1, speci-

men 2, and specimen 3, where it is seen by visual inspection that
fatigue crack onsets occur at ∼48,680, ∼37,353, and ∼32,049
loading cycles, respectively. Table 1 shows the loading cycles

Fig. 17 Signal decomposition at level-3 of MRA: (a) approxima-
tion signal at level-2 as input to level-3 and (b) approximation and
detail coefficients at level-3

Fig. 19 MRA detection at level-4 for specimen 2: (a) UT signals
(0 to 36,146) loading cycles and (b) corresponding level-4
approximation

Fig. 18 Signal decomposition at level-4 of MRA: (a) approxima-
tion signal at level-3 as input to level-4 and (b) approximation and
detail coefficients at level-3 (Color version online.)
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observed from both VT images and UT data at the crack onset for
these three specimens along with delay of UT data and the amount
of measured data. It is noted that VT images consistently detect
cracks earlier than casual inspection of UT data. In other words, a
casual inspection of UT data provides the information on crack
detection after the crack is propagated, not before or at the begin-
ning of crack propagation. Therefore, a rigorous analysis of UT
data is necessary to provide useful information on a forthcoming
crack before the VT images do. In this process, the collection of
UT data may start anytime after the beginning of the experiment
but not after the instant of crack detection by VT.
One of the methods that is capable of generating the above infor-

mation from UT data is DWT. Following the block diagram in
Fig. 7, the procedure for DWT-based analysis of UT data for
crack detection (e.g., for specimen 1 in Fig. 14) is described in
the following steps:

Fig. 20 MRA detection at level-4 for specimen 3: (a) UT signals
(0 to 29,767) loading cycles and (b) corresponding level-4
approximation

Fig. 21 HT detection for specimen 1: (a) UT signals (0 to 44,939)
loading cycles and (b) corresponding Hilbert envelope

Fig. 22 HT detection for specimen 2: (a) UT signals (0 to 36,146)
loading cycles and (b) corresponding Hilbert envelope

Table 2 Instants of fatigue crack detection using VT and DWT
on UT

VT detection
(min)

UT detection using
DWT (min)

DWT detection
performance
improvement

(min)

Specimen 1 259 233 26
Specimen 2 207 185.33 21.67
Specimen 3 168 139.36 28.64
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(1) The original signal s(n) is obtained from UT data, which
represents the measured signal points from the beginning
of the experiment until the VT detection that serves as the
ground truth, as seen in Fig. 15(a).

(2) The input to the first level DWT is the original signal which
is decomposed into approximation output ylo[k] and detail
output yhi[k], as seen in Fig. 15(b).

(3) The first level of the approximation output ylo[k] becomes the
input signal at the second level of the analysis filter bank for
decomposition into new approximation and detail outputs, as
seen in Fig. 16.

(4) This process of signal decomposition is continued to the third
level and fourth level of the analysis filter banks, where the
input signal of each level is the approximation output of
the previous level. In other words, the input signal at each
level is decomposed into new approximation and detail
outputs as seen in Figs. 17 and 18.

For specimen 1, decomposition of UT signals at the fourth level
shows clear trends of decay in both approximation and detail coef-
ficients as shown by the vertical red dashed lines in two plots of
Fig. 18(b); this forecasts the onset of fatigue crack. Similar incidents
are also seen in Figs. 19(b) and 20(b) for fatigue crack detection for
both specimen 2 and specimen 3. Thus, the consistency of results
from three test specimens evinces that wavelet decomposition of
ultrasonic signals by DWT analysis provides pertinent information
for forecasting and detection of fatigue crack onset.
Determination of the onset time of a fatigue crack from VT

images is required, because it serves as the reference point for eval-
uation of the prediction capability of the DWT-based and other
methods. The reference detection time is measured from the exper-
iment startup until the appearance of the fatigue crack on the notch

Fig. 23 HT detection for specimen 3: (a) UT signals (0 to 29,767)
loading cycles and (b) corresponding Hilbert envelope

Table 3 Instants of fatigue crack detection using VT and HT on
UT

VT detection
(min)

UT detection using
HT (min)

HT detection
performance

improvement (min)

Specimen 1 259 242 17
Specimen 2 207 189.83 17.17
Specimen 3 168 140.16 27.84

Fig. 24 Detection by the proposedmethod for specimen 1: (a) Hilbert envelope of
UT signal energy (0 to 44,939) loading cycles and (b) corresponding approxima-
tion of signal energy envelope at level-5
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Fig. 25 Detection by the proposed method for specimen 2: (a) Hilbert envelope of UT
signal energy (0 to 36,146) loading cycles and (b) corresponding approximation of signal
energy envelope at level-5

Fig. 26 Detection by the proposed method for specimen 3: (a) Hilbert envelope of UT
signal energy (0 to 29,767) loading cycles and (b) corresponding approximation of signal
energy envelope at level-5
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surface (i.e., VT detection time). As seen in Table 2, the
DWT-based detection yields a significant improvement in forecast-
ing of fatigue crack onset as compared to VT detection.

5.2 Analysis of Ultrasonic Testing Data by Hilbert
Transform. Following Sec. 4.2, the signal envelope after HT char-
acterizes the shape of the upper and the lower boundaries of UT
signals. As a part of the ultrasonic signal is reflected back to the
source due to a fatigue crack, both upper and the lower boundaries
of the signal are changed. Figures 21–23 present detection of fatigue
crack onset for specimen 1, specimen 2, and specimen 3, respec-
tively, using HT-based envelope detection, where the fatigue
crack onset is forecast in advance of detection by the respective
VT images, as indicated by vertical dashed lines. As seen in
Table 3, the HT-based detection yields an improvement in forecast-
ing of fatigue crack onset as compared to VT detection. A compar-
ison of Tables 2 and 3 reveals that although both DWT and HT are
capable of forecasting fatigue cracks in advance of the VT-based
detection, DWT is consistently superior to HT; however, the com-
putational complexity of DWT-based forecasting (requiring eight
analytical operation cycles) is considerably higher than that of HT
(requiring two analytical operation cycles).

5.3 Proposed Method of Ultrasonic Testing Data Analysis.
The proposed method provides good performance for fatigue
crack forecasting and detection with reduced computational com-
plexity. Thus, DWT is a desirable application on data analysis
for performance improvement while the computational complexity
is reduced with mitigated data analysis by the usage of signal energy
envelope instead of signal envelope samples. Figures 24–26 illus-
trate the fatigue crack onset detection using the HT-based envelope
of UT signal energy and then applying DWT. As shown in Figs.
24(a), 25(a), and 26(a), the usage of signal energy envelope
improves the fatigue crack forecasting almost similar to what has
been achieved by DWT and HT. Furthermore, the signal energy
envelope is analyzed using DWT, both locally and globally,
which yields superior performance, as shown in Figs. 24(b),
25(b), and 26(b). Table 4 presents the detection performance
using the proposed method, where the results are compared with
those of VT for three specimens. The proposed method is capable
of forecasting an incipient fatigue crack well ahead of VT (i.e.,
using digital microscope); therefore, a forthcoming crack could be
detected in its initiation regime (i.e., before reaching the propaga-
tion propagation regime).

The proposed method also has a significant advantage toward
reduction of computational complexity as compared to conven-
tional DWT, because the data size of signal energy envelope, to
be analyzed in the proposed method, is significantly less than that
of the original UT data by DWT. Table 5 lists the difference in
the data size between the proposed method and the original UT
data, where the amounts of analyzed are significantly reduced to
6.84%, 6.2%, and 8.3% of the original UT data for specimen 1, spe-
cimen 2, and specimen 3, respectively. Figure 27(a) compares the
instants in minutes of fatigue crack detection for all tested
methods, and Fig. 27(b) shows the improvement in the fatigue
crack forecasting time in minutes for all tested methods as com-
pared to VT detection, which is treated as the ground truth for
crack onset in this paper.

6 Summary, Conclusions, and Future Work
The research work reported in this paper has presented a method-

ology of real-time health monitoring to forecast and detect fatigue
crack damage in mechanical structures using DWT and HT of avail-
able data. Two types of data sources have been used for real-time
sensing of damage, which are based on (i) VT images from a
digital microscope and (ii) UT data. While the digital microscope
facilitates VT-based detection, its usage outside a laboratory envi-
ronment is time-consuming and expensive. The underlying algo-
rithm of the proposed method is built upon a synergistic
combination of DWT and HT-based envelope detection, which
takes advantage of the attenuation of UT signal energy at the

Table 4 Instants of fatigue crack detection using VT and the
proposed method

VT detection
(min)

The proposed
method detection

(min)

The proposed
detection performance
improvement (min)

Specimen 1 259 229.5 29.5
Specimen 2 207 180.8 26.16
Specimen 3 168 118.5 49.5

Table 5 Data size of UT signal envelope and UT signal energy
envelope

The size of UT data
(number of measured points)

The size of our
method data
(number of

measured points)

Specimen 1 1,590,086 10,891
Specimen 2 1,535,779 9539
Specimen 3 895,763 7403

Fig. 27 Comparison study for the moment of the crack detec-
tion methods and the improvement of detection performance:
(a) instants (min) of crack detection by four methods and (b)
reduction in detection time of DWT, HT, and the proposed
method as compared to VT
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onset of fatigue crack. The proposed method requires much less
data than the conventional DWT, and its computational complexity
is significantly reduced relative to DWT.
It is concluded that, compared to conventional DWT, the pro-

posed method of fatigue crack forecasting and detection not only
yields better performance but also is computationally much less
complex. While there are many areas of both theoretical and exper-
imental research that should be undertaken before its commercial
application, the following topics are suggested by the authors for
future research:

(1) Examination of the detailed information at different levels of
DWT.

(2) Investigation of signal contents at different stages in the
crack initiation regime.

(3) Image analysis by more advanced apparatuses of optical
metrology (e.g., confocal microscopy).

Acknowledgment
The first author gratefully acknowledges the financial support

of the Saudi Arabian Cultural Mission (SACM). The work
reported in this paper has been supported in part by U.S. Air
Force Office of Scientific Research (AFOSR) under grant no.
FA9550-15-1-0400.

Conflict of Interest
There are no conflicts of interest.

References
[1] Ohring, M., and Kasprzak, L., 1998, Chapter 9-Degradation of Contacts and

Package Interconnections, M. Ohring, ed., Academic Press, Cambridge, MA,
pp. 475–537.

[2] Hopkins, P., 2003, “The Structural Integrity of Oil and Gas Transmission
Pipelines,” Comprehensive Struct. Int., 1, pp. 87–123.

[3] Wong, W., 2010, “Asset Integrity: Learning About the Cause and Symptoms of
Age and Decay and the Need for Maintenance to Avoid Catastrophic Failures,”
Risk Manage. Safety Dependability, pp. 188–225.

[4] Ray, A., and Patankar, R., 2001, “Fatigue Crack Growth Under Variable-
Amplitude Loading: Part I—Model Formulation in State-Space Setting,” Appl.
Math. Model., 25(11), pp. 979–994.

[5] Ray, A., and Patankar, R., 2001, “Fatigue Crack Growth Under Variable-
Amplitude Loading: Part II—Code Development and Model Validation,” Appl.
Math. Model., 25(11), pp. 995–1013.

[6] Cawley, P., 2001, “Non-destructive Testing—Current Capabilities and Future
Directions,” Proc. I MECH E Part L J. Mater.:Des. Appl., 215(4), pp. 213–223.

[7] Gholizadeh, S., 2016, “A Review of Non-destructive Testing Methods of
Composite Materials,” Proc. Struct. Integrity, 1, pp. 50–57.

[8] Singh, R., 2016, “Ultrasonic Testing,” Appl. Weld. Eng., pp. 343–355.
[9] Campbell, F. C., 2013, Inspection of Metals: Understanding the Basics, ASM

International, Materials Park, OH.
[10] Birks, A. S., Greene, R. E., and Moore, P., 1991, Nondestructive Testing

Handbook, Vol. 7. Ultrasonic Testing, American Society for Nondestructive
Testing, Columbus, OH.

[11] Garnier, C., Pastor, M.-L., Eyma, F., and Lorrain, B., 2011, “The Detection of
Aeronautical Defects In Situ on Composite Structures Using Non Destructive
Testing,” Compos. Struct., 93(5), pp. 1328–1336.

[12] Shull, P. J., 2002, Nondestructive Evaluation: Theory, Techniques, and
Applications, CRC Press, Boca Raton, FL.

[13] Kaiser, G., 1994, A Friendly Guide to Wavelets, Birkhauser, Boston, MA.
[14] Mallat, S., 2009, A Wavelet Tour of Signal Processing: The Sparse Way, 3rd ed.,

Academic Publishers, Amsterdam.
[15] Yu, D., Cheng, J., and Yang, Y., 2005, “Application of Emd Method and Hilbert

Spectrum to the Fault Diagnosis of Roller Bearings,”Mech. Syst. Signal Process.,
19(2), pp. 259–270.

[16] Fan, X., and Zuo, M. J., 2006, “Gearbox Fault Detection Using Hilbert and
Wavelet Packet Transform,” Mech. Syst. Signal Process., 20(4), pp. 966–982.

[17] Klingspor, M., 2015, Hilbert Transform: Mathematical Theory and Applications
to Signal processing, DiVA Linköping University, Linköping.

[18] Yang, Y., 2017, “A Signal Theoretic Approach for Envelope Analysis of
Real-Valued Signals,” IEEE Access, 5, pp. 5623–5630. .

[19] Feldman, M., 2011, “Hilbert Transform in Vibration Analysis,” Mech. Syst.
Signal Process., 25(3), pp. 735–802.

[20] Daubechies, I., 1992, Ten Lectures on Wavelets, SIAM Publishers, Philadelphia,
PA.

[21] Debnath, L., and Shah, F. A., 2015, Wavelet Transforms and Their Applications,
Springer, Boston, MA.

[22] Sang, Y.-F., 2012, “A Practical Guide to Discrete Wavelet Decomposition of
Hydrologic Time Series,” Water Res. Manage., 26(11), pp. 3345–3365.

[23] Goel, A., 2014, “Discrete Wavelet Transform (DWT) With Two Channel Filter
Bank and Decoding in Image Texture Analysis,” Int. J. Sci. Res., 3(4),
pp. 391–397.

[24] Lee, B., and Tarng, Y., 1999, “Application of the Discrete Wavelet Transform to
the Monitoring of Tool Failure in End Milling Using the Spindle Motor Current,”
Int. J. Adv. Manuf. Technol., 15(4), pp. 238–243.

[25] Alonso, G. A., Gutiérrez, J. M., Marty, J.-L., and Muñoz, R., 2011,
Implementation of the Discrete Wavelet Transform Used in the Calibration of
the Enzymatic Biosensors, Intechopen, London, UK, pp. 135–153.

[26] Olivier, R., and Vetterli, M., 1991, “Wavelets and Signal Processing,” IEEE Sig.
Process., 8(4), pp. 14–38.

[27] Oliveira, M. O., and Bretas, A. S., 2009, “Application of Discrete Wavelet
Transform for Differential Protection of Power Transformers,” 2009 IEEE
Bucharest PowerTech, Bucharest, Romania, June 28–July 2, pp. 1–8.

[28] Kschischang, F. R., 2006, “The Hilbert Transform,” Univ. Toronto, 83, p. 277.

031003-16 / Vol. 4, AUGUST 2021 Transactions of the ASME


