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ABSTRACT
Lean combustion systems are usually employed in gas-turbine engines, 
particularly in land-based applications, to reduce NOx emission. These 
combustion systems are often susceptible to lean blowout (LBO), which 
can be detrimental for operation and productivity of gas-turbine engines. 
An abrupt decrease in the equivalence ratio during a throttling operation, 
which is often encountered in power plants due to sudden decrease in 
load demand and also in aircraft engines at the time of landing, may lead 
to an unexpected LBO. From this perspective, online data-driven algo-
rithms are deemed necessary for early prediction of potential transitions 
to near-blowout conditions. This procedure would provide the human 
operator/active controller with an appropriate lead time to alter the 
operating conditions so that the system can be brought back to 
a desired stable condition. The paper emulates pertinent conditions of 
LBO on a laboratory-scale apparatus of swirl-stabilized dump combustor 
with transient time series of CH* chemiluminescence data, where the 
objective is early prediction of LBO. The underlying algorithms are con-
structed based on a well-known statistical learning tool, called Hidden 
Markov Modeling (HMM), which can be used in the setting of supervised 
learning to discern near-blowout time series data from stable data. Being 
solely data-driven, the proposed methodology is model-free; it has been 
shown to be numerically efficient as well as sensitive to regime changes 
when the combustion system moves toward or away from LBO.
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Introduction

With growing concerns over pollutant emission, lean combustion technology has been 
accepted as a promising alternative to alleviate high levels of NOx emissions (Correa 1993). 
Nevertheless, lean-premixed combustion can be susceptible to flame extinction due to the 
reduced flame speed against high flow rates of unburnt gases (Plee and Mellor 1979; 
Radhakrishnan, Heywood, Tabaczynski 1981), which is known as lean blowout (LBO). 
The effects of LBO are detrimental for both land-based and aircraft gas-turbine engines. In 
power plants, the penalty associated with LBO is very expensive when flame extinguishes 
abruptly during lower requirements of load (Meegahapola and Flynn 2015). The blowout 
phenomenon can promote the generator shutdown which leads to the frequency stability 
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issues (NER, June, 2008; FRC, Feb, 2008). A major risk develops in aircraft applications 
when the combustor faces a variation in power settings. During the landing period, based 
on lower load requirements, fuel-flow rate (FFR) needs to be decreased; but often, the 
reduction rate in fuel flow occurs rapidly. On the other hand, slower transience of the air- 
flow rate (AFR) due to compressor inertia makes the mixture so lean that the fuel-air 
mixture may reach the lower end of the flammability limit (Rosfjord and Cohen 1995). 
Thus, prior to landing, the flame may blow out and can result in an unexpected loss of 
power, and even worse, the engine shutdown. Therefore, early identification of the immi-
nent lean blowout is essential to circumvent such situations.

Significant research on LBO has been carried out under National Jet Fuels Combustion 
Program (NJFCP), a multi-agency program in the United States, steered by the Federal 
Aviation Administration (FAA). Some of the significant initiatives taken under this pro-
gram attempted to study the effects of different alternative fuels on the LBO signature 
(Peiffer, Heyne, Colket 2019; Zheng et al. 2019). For that purpose, Zheng et al. (2017) 
considered the performance near LBO as one of the major criteria for the evaluation of 
candidate fuels. The consideration of LBO behavior for using different candidate fuels was 
further explored by Esclapez et al. (2017a), where the main objective was to compare the 
behavior of flame dynamics in terms of OH* emissions using different fuels to evaluate the 
fuel performance on combustion stability. A few attempts were also made to explore the 
performance of LBO mechanisms through large eddy simulation (LES) (Cavaliere, Kariuki, 
Mastorakos 2013; Esclapez et al. 2017b). Recently, the investigation of fuel compositions on 
the blowout dynamics has been extended to the liquid fuels by Rock et al. (2020), where the 
pre-LBO signature is observed to be highly dependent on the fuel composition. LBO has 
been an important issue of concern in the gas turbine industry, and several investigations 
have been carried out to explore the flame dynamics near blowout regime for the last two 
decades. The studies have reported that the flame undergoes different oscillatory behaviors 
as the combustion approaches blowout (Chao et al. 2000; Hertzberg, Shepherd, Talbot 1991; 
Nair and Lieuwen 2005; Nicholson and Field 1948). It has also been observed that the height 
of the flame increases toward LBO (Chao et al. 2000; Savas and Gollahalli 1986). Therefore, 
researchers have also looked into the prediction of blowout through behavioral changes of 
the flame (Muruganandam et al. 2002; Yi and Gutmark 2007a). Moreover, to get direct 
information from the flame behavior, chemiluminescence-aided image techniques are often 
used (Herna´ndez and Ballester 2008; Rock et al. 2020; Sun et al. 2013).

On the other hand, continued investigations were emphasized on quantitative analysis of 
measurements (e.g., temperature (Kaluri, Malte, Novosselov 2018) and pressure (Barnum and 
Bell 1993))-based combustion properties to predict the lean blowout. Li et al. (2007) showed 
that the intensity of low frequency temperature fluctuations can be used for the prediction of 
lean blowout. Radhakrishnan and Heywood (1980) prescribed a statistical model with Monte- 
Carlo mixing with an overall rate equation for detection of lean ignition and blowout limits of 
uniform mixtures. Yi and Gutmark (Yi and Gutmark 2007b) proposed two parameters, 
normalized root mean square and normalized cumulative duration of OH* chemilumines-
cence to predict the lean blowout. Muruganandam et al. (2005) used a double threshold-based 
method for identifying the precursors seen close to LBO. The active control methodology, 
proposed by Muruganandam et al. (2005), is based on detecting an abrupt reduction in the 
mean value of the CH* chemiluminescence as a precursor to LBO detection. One immediate 
drawback of such a threshold-based approach is that the value of the threshold is most likely to 
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change with a variation in combustion process parameters, let alone experiments with 
a different combustor. Moreover, monitoring the mean of the signal and detecting a change 
in the mean is often data-intensive, and might be impractical when the system is imminent to 
LBO and a transition to blowout is possible in a time-scale of the order of milliseconds. The 
method, proposed by Yi and Gutmark (Yi and Gutmark 2007b), involves a normalized root- 
mean-squared (NRMS) metric of normalized chemiluminescence, which can be monitored 
for online prediction of LBO, where the threshold is subjective to the particular experimental 
data and is devised for prediction of LBO onset. Recently, De et al. (2019) studied different 
statistical tools and showed that the mean frequency based on Hilbert transform can serve as 
an LBO predictor for premixed as well as partially premixed flames. Apart from these 
statistical tools, techniques (Chaudhari et al. 2013; De et al. 2020b) based on flame color are 
new additions to the series of LBO predictors.

Apart from these, different nonlinear tools have been developed to study flame beha-
viors, for example, Recurrence Plots (RP) and Recurrence Quantification Analysis (RQA) 
(De et al. 2020a; Nair, Thampi, Sujith 2014; Unni and Sujith 2016), phase plots (Kabiraj 
et al. 2012; Mondal, Pawar, Sujith 2017b; Sen et al. 2018), Lyapunov exponent (Gotoda et al. 
2012b; Kabiraj et al. 2015, 2012), permutation entropy (Gotoda et al. 2012a), translational 
error (Gotoda et al. 2014), Hurst exponent (Nair and Sujith 2014) and so on. The para-
meters have the ability to signify the notable changes of the flame dynamics. However, few 
of them are shown as suitable candidates for being implemented in LBO control applica-
tions (Domen et al. 2015; Gotoda et al. 2016).

In addition, different data-driven approaches (e.g., cross wavelet transform (XWT) (Dey 
et al. 2015), and Kullback-Leibler divergence (Sarkar et al. 2014) based anomaly measure 
employing finite memory Markov modeling) were used to predict the proximity to LBO. 
The investigation of Dey et al. (2015) also performed an accuracy test of the XWT-based 
method and showed that the strategy has ability to predict the approach to LBO. However, 
the work did not highlight on the computational performance and also on the suitability of 
the method in online LBO control application. Mukhopadhyay et al. (2013) established 
a strategy, which is based on symbolic time series analysis (STSA) of the CH* emission of 
the flame collected through optical sensor. They showed that the anomaly measure, defined 
as the deviation of the current state vector from the reference state vector, can be used for 
LBO prediction. It is worth noting that data-driven methods, which have previously been 
employed for online prediction of LBO, are mostly based on amplitude-based thresholding 
heuristics applied to the chemiluminescence signals. Moreover, the sizes of time windows 
used in almost all of the available data-driven analysis for LBO detection in literature are 
typically in the order of multiples of seconds, which might incur significant data overhead 
for detection purposes, particularly in such a high-stake application where early detection of 
incipient LBO is of utmost priority for giving the controller an appropriate lead time to 
implement corrective measures to stabilize the system.

The current paper proposes a dynamic data-driven method that can be used for early 
prediction of LBO and also for regime identification when the combustion system stabilizes 
from being close to the LBO limit. In this context, ”regime detection” refers to the 
classification of two different kinds of transient regimes in the combustion system: 1) 
transition from stable mode of operation toward LBO; and 2) transition from near LBO 
to being stable. The central idea in this work is to solely use the experimentally procured 
chemiluminescence data from a laboratory-scaled swirl-stabilized dump combustor to train 
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different latent-variable models, called Hidden Markov Models (HMMs), and to employ 
them for regime classification. HMMs have been successfully used as a statistical learning 
tool for speech recognition (Rabiner 1989); specifically, HMMs are used to solve an 
inference problem, whereby a doubly stochastic Markov chain with unobserved states is 
used to model the temporal behavior of the available data regimes (Zhong and Ghosh 2002). 
HMMs have also been used as online predictive monitoring techniques for a laboratory- 
scaled Rijke tube apparatus (Mondal et al. 2019), pulverized coal-based combustion systems 
in furnaces (Chen et al. 2011), and gas turbine engines (Menon et al. 2003). An HMM, 
trained on data from a particular regime of operation, is capable of modeling the inherent 
statistical behavior of that regime. With a bank of HMMs, pre-trained with respect to the 
regimes of a-priori known operation, it is possible to compute the likelihoods of observed 
data sequences with respect to each of the pre-trained models. This computation can be 
performed almost in real-time for monitoring purposes whereby sequences of chemilumi-
nescence data windows can be processed to find the most likely regime to which it belongs, 
based on the likelihoods calculated by each HMM. Thus, if a combustion system approaches 
LBO, the likelihood of the ”stable” HMM model would decrease with respect to a ”blowout” 
HMM model. Since the HMM likelihoods are very sensitive to regime changes, this decrease 
would be rapid and serve as an online predictor of the imminent LBO. In addition to 
detecting the transience toward LBO regime, this HMM-based online predictor must make 
sure that the false alarm rates are minimized. That is, it must be able to discriminate the 
transience of the system if it starts becoming stable from the near LBO phase. The HMM- 
based prediction algorithm proposed in this paper has been shown to be robust to the two 
different types of transients, and have been demonstrated to identify the system regime with 
significant accuracy while exhibiting parsimonious data requirements.

The proposed LBO prediction methodology is free from subjective thresholding heuristics, 
because the regime classification methodology is based on choosing the HMM that has the 
maximum likelihood of generating a particular test data signature among all the HMMs that 
have been pre-trained with data from different regimes. So, the likelihood ratio-based metric 
devised in this paper in threshold-free due to its formulation which does not need to be changed 
across different types of experiments. Moreover, a comparison has been provided whereby the 
early LBO prediction has been demonstrated with significantly lower data requirements than 
that of the NRMS metric proposed by Yi and Gutmark (2007b), or the RQA-based metric 
(Recurrence Rate) proposed by Unni and Sujith (2016). This is accomplished with considerably 
higher prediction accuracy, particularly owing to the fact that HMM-based metrics are sig-
nificantly more sensitive to regime changes than those based on traditional statistics (e.g., mean 
and RMS) of the chemiluminescence data. Moreover, a comparison of online computational 
expenses of the HMM-based metric with NRMS and RR has been presented.

The paper is organized in six sections including the present section. Section II describes 
the laboratory apparatus and the experimental procedure for validation of the theoretical 
results. Section III describes the technical approach for early prediction of the proximity to 
LBO from transient time series. Section IV presents the results of early LBO detection on the 
experimental data procured from the laboratory apparatus described in Section II along 
with pertinent discussions. The paper is summarized and concluded in Section V along with 
recommendations for future research. Appendix A summarizes the essential mathematical 
concepts that form the backbone for analysis of stochastic dynamical behavior of LBO.
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Laboratory apparatus and experimental procedure

This section describes the laboratory apparatus and the experimental procedures for 
chemiluminescence data generation on which HMM technique has been applied for early 
detection of LBO.

Description of the laboratory apparatus

A swirl-stabilized dump combustor, detailed in the earlier reported work (De et al. 2019), 
has been used in this study, which represents a laboratory-scaled model of a generic gas- 
turbine combustor. The schematic of the combustor rig is shown in Figure 1. The apparatus 
has three major components: a premixing chamber (PC), a combustion chamber (CC), and 
an exhaust chamber (EC), which are coaxially aligned; and the entire body of the combustor 
is made of stainless steel (SS) type SS316 to resist corrosion at high temperatures. The fuel- 
air mixing takes place in the PC before the mixture enters into the CC. The fuel enters at 
a distance of 330 mm from dump plane, and the air inlets are located at a distance of 20 mm 
from the upstream end of the premixing chamber, as shown in Figure 1. The distance 
between air and fuel entrance points is 50 mm. There are four circumferential holes at 
respective entrances of both air and fuel to enhance the flow symmetry. To ensure good 
mixing, a swirler is placed at a distance of 15 mm upstream of the dump plane. The swirl 
number (SN) used here is 1.26 and the angle of swirler blade is 60o relative to the axial 
direction (De et al. 2019, 2020b).

The CC is fabricated to provide optical access to the swirling premixed flame. A quartz tube 
of 65 mm outer diameter and 200 mm length is held between two grooved flanges, which 
serves as the flame observation window. At the base of the CC, a provision is made for 
sparking the flame during the start of an experiment. The flow rate of fuel and air mixture is 
measured using Alicat Mass flow controllers (range: 0 to 250 SLPM, and 0 to 1500 SLPM, for 
liquid petroleum gas (LPG) and air, respectively). The uncertainty in the flow measurement is 
± (0.8% Reading ± 0.2% of Full Scale). The equivalence ratio (ϕ) is defined as: 

ϕ ¼
_MF;a= _MA;a
_MF;s= _MA;s 

where _M represents the mass flow rate; the subscripts A and F represent the air and fuel, 
respectively; and the subscripts s and a represent the stoichiometric and actual conditions, 
respectively, at the time of measurement of both fuel and air flow rates. For the ease in 
comparison, the results in Section 4 are described in terms of normalized equivalence ratio 
ϕ=ϕLBO. The blowout equivalence ratio, ϕLBO is defined as the lowest equivalence ratio at which 
the flame is observed. Any further reduction in fuel flow rate or increase in air flow rate may lead 
to the disappearance of the flame. Thus, the actual equivalence ratio at which the flame blows 
out is within a range of 0.04 (determined by the least counts of MFCs) of the last recorded 
value, ϕLBO.

Flame behavior

Considering the changes in flame dynamics in response to variations in the flow condition, 
the experimental period, including the initiation of flame to the onset of LBO, can be 
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divided into three regimes, namely stable, transition, and near LBO. The start and end 
points of these regimes can be varied at different fixed FFRs by increasing the AFRs in steps. 
In this section, the typical flame behavior in the three regimes are described for the case 
shown in Figure 3, for which FFR has been kept fixed at 3.5 SLPM while AFR has been 
increased from 105 SLPM to 205 SLPM in steps of 5 SLPM after every 30 s. However, 
variations of the flame dynamics from higher equivalence ratio to LBO (by variation of 
AFR) for other cases with fixed FFRs exhibit similar characteristics.

1) Stable Regime: Near Stoichiometric Condition
At higher equivalence ratios, the flame looks symmetric where an outer conical envelop 

shines inside the combustion chamber (CC). The structure of the flame at ϕ=ϕLBO ¼ 1:52 is 
shown in Figure 2(a). The base of the flame still anchors at the dump plane while changing 
ϕ=ϕLBO from 1:46 to 1:41 (Figure 2(b,c)).

33
0 

m
m

dump plane

Combustion Chamber

Exhaust

Swirler

Fuel Inlets

Air Inlets

Pilot (not used in the study)

CH* Filter

Photo Multiplier tube

Figure 1. Schematic diagram of the experimental apparatus, incorporating a CH* filter mounted on the 
photo multiplier tube.
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Figure 2. The display of flame behavior in the three regimes in response to variation in AFR at a fixed FFR 
of 3.5 SLPM. The dynamics of the stable flame (1) are shown at: (a) ϕ=ϕLBO ¼ 1:52; (b) ϕ=ϕLBO ¼ 1:46; 
and (c) ϕ=ϕLBO ¼ 1:41. The transition flames (2) are presented at: (d) ϕ=ϕLBO ¼ 1:28,; (e) ϕ=ϕLBO ¼ 1:21; 
and (f) ϕ=ϕLBO ¼ 1:17. The lean flames near LBO (3) are shown at: (g) ϕ=ϕLBO ¼ 1:08; and (h) 
ϕ=ϕLBO ¼ 1:05.
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2) Transition Regime: Flame Transition Condition
As the equivalence ratio decreases, the effect of the slower reaction rate possibly alters the 

flame dynamics. At ϕ=ϕLBO ¼ 1:28 the flame base is not attached to the burner inlet, rather 
it moves further downstream (Figure 2(d)). The flame at this stage stands inside the CC at 
a certain height from the dump plane. The weak attachment of the flame is further observed 
in the Figure 2(e,f). In this work, we define the transition or bifurcation point where the 
conical shape of the reddish flame disappears and instead of that, a prominent blue lifted or 
elongated flame is visible (De et al. 2019, 2020b)., 3) Near Lean Blowout (LBO) Regime: 
Flame Blow-off Condition

As the AFR is increased gradually, the flow reaches a stage when the air-fuel ratio 
becomes high enough to cause frequent pulsation of the flame base, accompanied by local 
extinction and re-ignition (Chaudhari et al. 2013; De et al. 2019, 2020b; Nair and Lieuwen 
2005). As the equivalence ratio is further reduced, these events are observed more fre-
quently (Nair and Lieuwen 2005). The detailed analysis of these pre-LBO events using flame 
imaging can be found in a previous work by some of the co-authors (De et al. 2019, 2020b), 
and is not presented here further for brevity. The images of the near LBO flames are shown 
in Figure 2(g,h).

The dynamics of the flame behavior at the three regimes (mentioned above) for constant 
FFR are exhibited in videos provided as Supplementary materials. V01.mp4, V02.mp4 and 
V03.mp4 show the flame behavior at the stable, transient and near LBO regimes respectively 
for the constant FFR = 3.5 SLPM case. Similar behavior of the flame at those regimes for 
constant AFR = 80 SLPM is observed in videos V04.mp4, V05.mp4 and V06.mp4 respectively.

Experimental procedure

In these experiments, the fuel is liquid petroleum gas (LPG) whose composition is 60%

butane (C4H10) and 40% propane (C3H8) by volume (Gas, Accessed on June 20, 2020). The 
variation in the characteristics of a premixed flame is captured through chemiluminescence 
data, which are assumed to be proportional to the heat release rate (Hardalupas and Orain 
2004; He et al. 2019; Liu et al. 2019). The chemiluminescence signal is obtained from the 
flame directly using a photo multiplier tube (PMT), as seen in Figure 1. Thus, the effort to 
understand the flame dynamics through flame emission is non-intrusive, where the sensor 
does not need to be placed inside the high-temperature combustion chamber. However, 
earlier literature had provided evidence of examining the flame behavior using heat release 
data (Keller and Saito 1987; Lawn 2000; Price, Hurle, Sugden 1969). A PMT (model 931A, 
Hamamatsu Corporation), fitted with a CH* filter (a narrow bandpass filter centered at 
430 nm with a bandwidth of � 10 nm), is kept in front of the CC in such a way that it can 
collect only CH* emission from the flame. The voltage output from the PMT is collected by 
interfacing a c-RIO data acquisition system (Serial No. 9073) with the computer through 
NI-LabVIEW 2015 at the sampling frequency of 4.096 kHz. The chemiluminescence data is 
captured as the equivalence ratio is programmed to decrease in small steps.

Lean blowout can be approached in two ways: either by keeping the fuel flow rate (FFR) 
constant and increasing the air flow rate (AFR), or by keeping the AFR constant and 
decreasing the FFR. Referring to Section IV, two types of LBO data have been collected during 
the experimental procedure. In the first type, as shown in Figure 3 and reported in Table 1, the 
fuel flow has been kept constant, whereas the AFR has been increased in steps of 5 standard 
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liters per minute (SLPM), which results in a data signature that moves from stable toward LBO 
phase, through a transience regime. The step-duration of AFR increase is controlled at 30 
s using a program running in FlowVision, a software that controls the mass flow controllers 
for the fuel and air. With such a step change in AFR the change in equivalence ratio is about 
0:04 near stoichiometry and 0:02 near LBO. On the other hand, in Figure 8, the equivalence 
ratio is gradually moved toward the lean zone by reducing FFR in steps of 0.1 SLPM from near 
stoichiometric condition after every 5 s (fastest ramping time allowable by the system hard-
ware), while AFR is kept fixed at 110 SLPM. For the data used in Figure 5, the AFR has been 
kept fixed at 80 SLPM, while the FFR is reduced in steps of 0.1 SLPM till ϕ=ϕLBO ¼ 1:083, 
after which the FFR is increased again in steps of 0.1 SLPM till ϕ=ϕLBO ¼ 1:42. This results in 
a data signature that moves into the transience phase before LBO, after which the stability in 
the flame is recovered by a gradual increase in FFR.

The reason for demonstrating the online prediction performance with two different types 
of data is to check the efficacy of proposed loglikelihood ratio (LLR)-based method not only 
during the phase of imminent LBO, but also when the combustion system recovers from the 
LBO phase after a short excursion event. Unlike the monotonic transition toward LBO, this 
scenario may not need any corrective action. The distinction between the two types of 
events would save unnecessary control efforts along with the associated costs. The online 
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Figure 3. Experimental data collected over 630 s with FFR kept fixed at 3.5 SLPM and increasing the AFR 
from 105 SLPM to 205 SLPM in steps of 5 SLPM.

Table 1. Duration of transience to LBO and lead time in the prediction of imminent LBO for different 
cases.

FFR (SLPM) 2.5 2.8 3.0 3.2 3.5

Transient to LBO limit (s) 120 � 310 210 � 310 210 � 480 230 � 508 330 � 630
Lead time of prediction (s) 120 120 160 165 180
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condition monitoring system should be sufficiently fast to discriminate between these two 
different types of transients in order to reduce the chances of false alarms.

Technical approach: early prediction from transient data

This section describes the technical approach for early prediction of the proximity to LBO 
in transient time series data. The problem is addressed in the setting of the two different 
types of experimental data, as discussed in Section II. From the first type of datasets, 
whereby the experiments were conducted such that the fuel-air mixtures were made 
leaner progressively (by varying AFR while keeping FFR fixed at values ranging from 
2.5 SLPM to 3.5 SLPM), chunks of data belonging to each of the three regimes, namely, 
stable, transition and near-LBO, were extracted. Each of these datasets comprises data in 
multiples of 30 s windows at a sampling rate of 4096 Hz. From all the available time 
windows (in multiples of 30 s), randomly selected 40% of the data from each regime were 
used for training three HMMs: λi; for i 2 f1; 2; 3g, where λ1 corresponds to the stable 
regime of operation, λ2 corresponds to the transition regime, and λ3 corresponds to the 
near-LBO regime, using Baum-Welch algorithm as described in Appendix A. The perti-
nent mathematical formulation is described in Appendix A. Instead of using individual 
sequences to learn a particular HMM, the training is performed with ensemble data, e.g., 
ensemble of stable time series data across different experiments were used to learn λ1. 
This ensures that an HMM for a particular regime learns the overall pattern of the 
chemiluminescence signature in that regime and does not overfit to a particular response 
signature. It is to be noted that the HMM training is performed only once, with one set of 
experimental data for which AFR has been increased in ramps of 30 s. Test data of similar 
type has been used in the analysis discussed in Section IVA which refers to different 
experiments of the same type whereby the AFR increment occurs in 30 s steps. But for the 
analysis in Section IVB and IVC, the type of experiments performed is different, with the 
FFR being changed after every 5 s instead of changing AFR in steps of 30 s. But even for 
a difference in experimental conditions, the same pre-trained HMMs have been found to 
generalize, as will be discussed in Section IV.

These learned HMMs serve as generative models for the respective datasets, which are 
based on the domain knowledge procured by the experiments. The HMM-based approach 
presented in this paper is completely data-driven, and is intended to learn the trend in the 
data available, which can be used to train the models. Unlike model-based approaches, it is 
not limited to simplifying assumptions of the thermophysics involved in the LBO phenom-
enon. Therefore, with a sufficiently dense set of experimental training data procured from 
different regimes, this approach can be used to learn the stochastic behavior of the system in 
the different regimes. Since these generative models are learnt from an ensemble of data 
belonging to these different regimes, the modeling is robust to issues like variations in 
operational conditions and differences in sensor noise levels for even a single mode of 
operation.

With the pre-trained models λi; for i 2 f1; 2; 3g, the chemiluminescence data have been 
used from the test data set for early prediction of the onset of LBO. Given a window of time 
series data fy1; . . . :; yTg, the algorithm calculates the following log-likelihood ratio (LLR) 
using Forward Procedure: 
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Lk;m ¼ log
ðpðy1:TÞjλkÞ

ðpðy1:TÞjλmÞ

� �

¼ logðpðy1:TÞjλkÞ � logðpðy1:TÞjλmÞ ¼
Δ
½Lk � Lm� (1) 

where k, m = 1, 2, or 3, k � m, and ðpðy1:TÞjλkÞ denotes the probability that the observed 
chemiluminescence time series sequence is generated by model λk. This paper primarily 
focuses on the prediction of the onset to LBO during the transition phase. From the dataset 
that has been collected in the experiments, it has been seen that there is a distinct decrease in 
amplitude of the CH� chemiluminescence as the system moves into the transition zone 
from the stable regime. This results in a sharp increase of L3;1 or L2;1, which unequivocally 
corresponds to an almost sure distinction of the LBO regime from the stable behavior. On 
the other hand, there is a slow and inconspicuous change in the amplitude and dynamics of 
the data from the transition to the near-LBO regime, which renders the problem of 
predicting the proximity to LBO in the transition zone even more challenging, particularly 
in a real-time scenario where the data windows available for analysis are short and limited. 
This problem is addressed by tracking the temporal behavior of appropriate LLRs as the 
data windows scan through the transition zone into the LBO limits.

Results and discussions on early LBO detection

This section presents the results of experimentation conducted on the laboratory apparatus 
described in Section II along with pertinent discussions in the following three subsections.

Early prediction of LBO in the transition regime

This subsection presents the results for prediction of LBO during the transition phase for 
five different experiments, where the FFRs were kept fixed at 2.5 SLPM, 2.8 SLPM, 3.0 
SLPM, 3.2 SLPM and 3.5 SLPM, respectively. Representative results are shown with the 
chemiluminescence data obtained by increasing the AFR from 105 SLPM to 205 SLPM 
while keeping the FFR fixed at 3.5 SLPM. Similar results for the other cases are enlisted in 
Table 1. Time series data of chemiluminescence have been collected over 630 s with the FFR 
ratio kept fixed at 3.5 SLPM; the data profile is shown in Figure 3. The three regimes of data 
are marked: a) Stable regime from 0 to 330 s, b) Transition regime from 330 s to 480 s and c) 
Near LBO regime from 480 s to 630 s. The AFR has been increased from 105 SLPM to 205 
SLPM in steps of 5 SLPM, where each step of increase is kept fixed for 30 s. For this case, the 
LBO happens at ,630 s when the AFR is 205 SLPM.

Referring to Section III, early LBO prediction within the transient period relies on 
tracking the evolution of the LLR, ½L3 � L2�, calculated with a fixed window length from 
the time series data. The evolution of ½L3 � L2� is shown in Figure 4 for a window length of 
1000; that is, the LLR is calculated after every 1000 samples of chemiluminescence data 
recording. A positive ½L3 � L2� for a dataset indicates a higher likelihood of belonging to 
a near-LBO regime. This implies that the operator/controller will have the indication of 
a forthcoming LBO and thus may take appropriate actions to alleviate the problem. The lead 
time in prediction of LBO corresponds to the time from which ½L3 � L2� remains consis-
tently positive. It is seen from Figure 4 that ½L3 � L2� profile becomes positive at 430 s, but it 
oscillates between positive and negative values from 430 s to 450 s. From 450 s onwards the 
½L3 � L2� profile remains positive and starts to increase rapidly as the LBO limit is reached. 
The system moves from transient to near LBO limit for this case from 330 s to 630 s, and 
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hence, there is a lead time (,180 s) of imminent LBO prediction, during which control 
actions can be taken for flame stabilization. Table 1 enlists the duration from transient to 
LBO limit and the lead time of imminent LBO prediction by the tracking of ½L3 � L2� for all 
these cases. The least lead time has been obtained with FFR at 2.5 SLPM and the highest lead 
time with FFR at 3.5 SLPM. This observation follows the intuitive fact that there is a smaller 
lead time before LBO occurs with a lower FFR as less energy is released, making the flame 
inherently weaker.

Classification of data towards and away from the LBO limit

The previous subsection dealt with datasets for which the flame moves from stable to LBO 
regime before extinguishing completely. Now, if appropriate actions are taken near the LBO 
limit so that the blowout does not happen and if the system gradually moves toward 
stability, then the HMM-based algorithm must indicate the recovery in its LLR signature. 
This subsection extends the proposed HMM-based approach to demarcate two regimes of 
data, which are close to LBO limit. Figure 5 depicts the experimental data obtained by 
decreasing the FFR to reduce the ϕ=ϕLBO from 1.42 to 1.08, after which the FFR is increased 
to increase ϕ=ϕLBO from 1.08 to 1.42 in steps of 5 s, as discussed in Section IIC.

The transition region in the time interval of 15 s to 40 s is of interest, where the temporal 
behavior of the chemiluminescence signal changes from moving toward LBO to going out 
of the blowout regime. A windowed rate of change, dðL3 � L1Þ=dt, is calculated to detect 
this regime change. A positive rate of change of ½L3 � L1� in a time window is equivalent to 
a data signature that corresponds to the flame approaching toward LBO limit. For extract-
ing the LLR rate, a time window of 2.5 s has been chosen. The windows contain data in non- 
overlapping segments from 15 s to 40 s at intervals of 2.5 s. Within each of these 2.5 s time 

Figure 4. Evolution of ½L3 � L2� with the chemiluminescence signal from 330 s to 630 s for the case shown 
in Figure 3. LBO occurs at 630 s. ½L3 � L2� starts becoming positive at 450 s indicating an increased 
likelihood of approaching LBO.

12 S. MONDAL ET AL.



windows, a 100-sample-based calculation of ½L3 � L1� is performed, from which a linear rate 
is extracted based on least-square regression. Figure 5 shows two timeframes: Timeframe 
A (from 20 s to 22.5 s) and Timeframe B (from 32.5 s to 35 s), which are plotted on top of 
another in Figure 6(a). It is seen that the chemiluminescence signature in these two time 
windows are very similar, but the ½L3 � L1� signatures in the two timeframes (Figure 6(b,c), 
respectively) show that there is a positive rate of increase of ½L3 � L1� in Timeframe A, and 
a decay of ½L3 � L1� in Timeframe B. Since dðL3 � L1Þ=dt is estimated via the linear rate (θ) 
which is subject to uncertainties due to noisy observations within a short time window, 
statistical behavior of the estimates have been analyzed, and reported as θ ¼ μ� 2σ 
(corresponding to ,95% confidence band), where μ is the mean of the estimation and σ 
is the standard deviation. For Timeframe A, θ ¼ 723� 289s� 1, while for Timeframe 
B, θ ¼ � 1121� 327s� 1.

Figure 6. Comparison of results in Timeframe A and Timeframe B. The slope of the fitted line in (b) and (c) 
is estimated by θ ¼ dðL3 � L1Þ=dt in Timeframes A and B, respectively.

Figure 5. Dataset showing transition from near LBO toward stable combustion. FFR is gradually reduced 
to near LBO limit (ϕ=ϕLBO ¼ 1:083), and then increased in steps of 0.1 SLPM till ϕ=ϕLBO = 1.42, while AFR 
is kept fixed at 80 SLPM.
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The results of dðL3 � L1Þ=dt variation are shown in Figure 7, where vertical dashed lines 
correspond to the time instants at which the FFR has been changed, indicating a change in 
ϕ=ϕLBO. With 2.5 s time windows the time rate of change dðL3 � L1Þ=dt (filled red circles) 
remains positive till about 25 s, and starts to become negative after that. It is worth 
mentioning that the temporal behavior indicated by the rate of change of LLR is highly 
local to the time window being observed, i.e., if the chemiluminescence data show local 
temporal decay while globally moving toward a stabler regime, it is likely to show local 
increase in dðL3 � L1Þ=dt. Hence, an optimally long enough sample window is required 
before a data-driven decision can be taken in order to ascertain appropriate control actions, 
which are robust to the noisy local fluctuations in the temporal signal. So, for this experi-
ment where step changes in ϕ=ϕLBO occur at 5 s intervals, a time window of ,2:5s has been 
found to be sufficient to discern the regime of operation of the system based on the 
chemiluminescence data signature. It is noted that this optimal time window can change 
from system to system and from one experiment to another because its calculation is 
essentially data-driven. With available experimental data from a particular system, such 
an analysis can be useful to have an estimate of how much time is required for tracking the 
rate of change of LLR for regime detection from online time series data.

Comparison with existing techniques of online LBO detection

Of the various data-driven methods studied till date that have focused on LBO detection 
from time series data, the prominent ones that have focused on online prognosis of LBO are 
the works by Yi and Gutmark (2007b) and Unni and Sujith (2016). In this section, we 
present a comparative study of the classification performance and computational cost of the 
proposed LLR-based LBO detection algorithm with the aforementioned method.

Yi and Gutmark (2007b) have proposed the tracking of normalized root mean square 
(NRMS) calculated from the filtered chemiluminescence time series signal as an online 
condition monitoring metric, where NRMS is defined as: 
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NRMS ¼Δ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

i¼1
�2

i
N

q

��
(2) 

where �i denotes the ith sample of the chemiluminescence after filtering the signal with 
a bandpass filter of bandwidth 2 � 100 Hz, N denotes the number of samples in the time 
series data analyzed, and �� denotes the mean of the chemiluminescence signal in the time 
period under analysis. The LBO warning methodology suggested in Yi and Gutmark 
(2007b) is based on the following inequality condition: 

NRMSðϕ=ϕLBOÞ

NRMSðϕ=ϕLBO > 1:5Þ
> α (3) 

The above inequality is based on an observed behavior of NRMS which remains almost 
constant when ϕ=ϕLBO > 1:15 and starts to increase as ϕ=ϕLBO drops below 1.15 when the 
flame moves toward LBO regime. There are a few caveats with the NRMS metric in Eq. (3). 
First of all, the NRMS mapping, including the threshold for classifying the proximity to 
LBO, needs to be updated for different operating conditions even for the same combustor. 
The value of α and the ϕ=ϕLBO limit till which NRMS remains approximately constant is 
very likely to change with a variation in experimental conditions. Moreover, for computing 
NRMS, because of the irregularity due to the chaotic nature of the signal near LBO, a large 
value of time window length N is preferred (at least N ¼ 10000 with sampling rate = 5 kHz 
as reported by Yi and Gutmark (2007b)) for robust performance.

Recently, Unni and Sujith (2016) have adopted a methodology of Recurrence 
Quantification Analysis (RQA) (Iwanski and Bradley 1998) without phase space reconstruc-
tion as a metric that is capable of predicting incipient blowout in combustion systems via 
capturing the dynamic transitions in the system. Though Unni and Sujith (2016) have 
applied their metric on pressure time series data, the applicability of the method has been 
tested on chemiluminescence time series in this work. According to Equation 4, recurrence 
occurs at the point ðti; tjÞ in the recurrence plot, if XðtjÞ (the value of the time series at time 
tj) is within the range ðXðtiÞ � P;XðtiÞ þPÞ. Θ denotes the Heaviside step function and P 

indicates the upper limit of the distance between two recurrent observations. 

Rij ¼ ΘðP � Xti � Xtj

�
�

�
�Þ i; j ¼ 1; 2;N (4) 

The threshold P is considered here as the 10% of the standard deviation of the chemilu-
minescence fluctuations observed at the stoichiometric condition. The strategy of consider-
ing such constant threshold is borrowed from the work of Unni and Sujith (2016) where 
40% of the pressure oscillations during limit cycle oscillations was taken as the threshold for 
the construction of recurrence matrix (Rij) and measurement of RQA parameters. To 
compare the performance of our LLR-based method with that work, recurrence rate (RR) 
is considered, which is defined as: 

RR ¼
1

N2

XN

i;j¼1
Rij (5) 

where, N ¼ Ns � τFsðm � 1Þ is the total number of phase space vectors in reconstructed 
space. Ns is the total number of time steps acquired from the chemiluminescence time series 
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obtained experimentally. τ is the optimum time delay obtained using autocorrelation function 
(Abarbanel et al. 1993), Fs is the sampling frequency, and m is the minimum embedding 
dimension (Kennel, Brown, Abarbanel 1992). In the current analysis, m is considered as 1 (i.e., 
one dimensional system) following the work done by Unni and Sujith (2016) as the process 
had been reported as effective for exploring the dynamic transitions of a turbulent combustor, 
although the computational information was not provided there.

The LLR-based methodology has been compared with NRMS and Recurrence Rate (RR) 
in this section for a comprehensive comparison between the two. Figure 8 shows 
a comparison between the three metrics. The metrics have been calculated with non- 
overlapping scanning windows of 1000 samples each. It can be clearly seen that even with 
a window-length of 1000 samples, the change in ½L3 � L1� is significantly higher than the 
corresponding changes in NRMS or RR across the transition from ϕ=ϕLBO ¼ 1:50 to 1:44, 
where the chemiluminescence signal indicates a shift from the stable to the transition 
regime leading to LBO. In fact, while ½L3 � L1� changes from around � 0:5� 104 to 
1� 104, NRMS shows a noisy behavior between 0:1 � 0:2 across the regime transition 
point. The behavior of RR is less noisy as compared to NRMS across the changepoint. This 
indicates that the LLR metric is more sensitive to regime change as compared to NRMS or 
RR, which is crucial for maximizing the chances of detecting near LBO transition in an 
online condition monitoring setting. Moreover, the LLR ”threshold” to be chosen for L3 �

L1 is equal to 0, as expected intuitively, since L3 � L1 > 0 indicates that the data window 
under consideration is most likely to be belonging to the near blowout phase, as compared 
to the stable phase. This allows for a decision-making algorithm that is free from the need of 
thresholding, regardless of the operating conditions/type of combustor chosen for analysis, 
where a positive log-likelihood ratio between the near-LBO and stable HMMs for a given 
data window should always be the condition to monitor for signaling the near LBO alerts to 
the control system.

Figure 8. Comparison of normalized root mean square (NRMS) and recurrence rate (RR) with L3 � L1 

norm with a scanning window-size of 1000 samples. The left vertical axes in blue and magenta indicate 
the ranges for NRMS and RR, respectively. The right vertical axes in red and black indicate the ranges for 
L3 � L1 and chemiluminescence amplitude, respectively.
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The NRMS-based detection methodology as proposed in Equation 3 was not directly 
applicable in our case, since the ϕ=ϕLBO value till which NRMS remains almost constant was 
difficult to ascertain, along with the value of α. A modification of Eq. (3) has been made for 
LBO prediction based on a binary classification problem (Poor 1988), where the hypothesis 
H0 corresponds to the stable regime, and H1 corresponds to the transient combined with 
near LBO regime: 

NRMSðϕ=ϕLBOÞ <>
H0

H1
τ (6) 

for a specified threshold τ. A Similar idea of thresholding is needed for RR: 

RR <>
H0

H1
τ (7) 

This τ is expected to vary from one experiment to another, and hence needs to be chosen on 
a case-by-case basis for online prognosis purposes. A commonly used criterion to choose τ is 
the receiver operating characteristic (ROC) curve that is obtained by varying τ as a trade-off 

between the probability of successful detection ðpD ¼
Δ p½Selected Class ¼ H1jTrue Class ¼

H1�Þ and the probability of false alarms ðpF ¼
Δ p½Selected Class ¼ H1jTrue Class ¼ H0�Þ. 

Defining the threshold in the above manner provides more flexibility for the user, whereby 
an informed choice can be made on the value of the threshold on the basis of some predefined 
notion of the allowable misdetection and false alarm rates for the particular application.

Window sizes ranging from 200 to 1000 samples have been tested for comparing RR and 
NRMS-based detection performance with that of LLR. One commonly used method for 
comparing the performance of different classifiers is by comparing the area under the curve 
(AUC) for each classifier (Fawcett 2006). The classifier that has a higher AUC is generally 
considered to be a better classifier on average. It is seen in Table 2 that the AUC in the ROC 
curves for NRMS and RR consistently less than that of LLR. Moreover, the AUC for LLR 
with a window size of 200 is almost close to 1, which is not achieved even with a larger 
window size for the other two metrics. This indicates that using NRMS or RR as a metric for 
detecting LBO is less data-efficient than using the proposed LLR-based classifier.

Along with AUC, another metric that can be useful for the practical application of ROC 
curves is the optimal operating point (OOP) of the curve. It is noted that OOP is the point 
ðpF; pDÞ on the ROC curve, where a line drawn from the top left corner (i.e., pF ¼ 0; pD ¼ 1) 
meets the curve with a slope: 

S ¼Δ
CostðH1jH0Þ � CostðH0jH0Þ

CostðH0jH1Þ � CostðH1jH1Þ

� �
jH0j

jH1j
(8) 

Table 2. Comparison of AUC of ROC curve as a function 
of window size for the three classifiers.

Window size LLR RR NRMS

200 0.999 0.978 0.615
400 0.999 0.971 0.729
600 1.000 0.975 0.796
800 0.995 0.967 0.832
1000 0.993 0.967 0.858
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where jHkj indicates the number of instances of Hk, k ¼ 1 or 2, in the data; CostðH1jH0Þ

indicates the penalty associated with a false alarm; CostðH0jH1Þ indicates the penalty 
associated with a misdetection; and CostðH1jH1Þ and CostðH0jH0Þ indicate the cost asso-
ciated with correctly classifying the members belonging to the respective hypothesis, 
respectively. In this analysis, equal penalties have been associated with both false alarms 
and misdetections, while the cost of each correct classification is set to 0. These penalty 
weights are user-defined, and can be changed based on the requirements of the problem at 
hand (Mondal et al. 2017a). OOP is one of the different ways of choosing the best point to 
operate the ROC, which indicates better performance if pF is low and pD is high at that 
point. Table 3 lists the comparison of OOPs of ROC curves as a function of window sizes for 
the three metrics. The OOPs are listed as ðpF; pDÞ pairs, for example, the OOP for LLR with 
a window size of 200 has a false alarm probability of 0:2% and a true detection probability of 
99:7%. It is seen that OOPs of the ROC curves for LLR always have lower pF and higher pD 
than the corresponding ROC curves for NRMS and RR, with every window size.

Table 3. Comparison of OOP (pF; pD) of ROC curve as a function of window 
size for the three classifiers.

Window size LLR RR NRMS

200 (0.002,0.997) (0.019,0.9168) (0.237,0.422)
400 (0.002, 1.000) (0.011, 0.927) (0.178, 0.552)
600 (0.001, 0.996) (0.013, 0.913) (0.218, 0.671)
800 (0.005, 1.000) (0.011, 0.931) (0.167, 0.700)
1000 (0.003, 1.000) (0.007, 0.913) (0.111, 0.670)

Figure 9. Metrics of variations of NRMS and RR in Timeframes A and B. Linear rates of increase/decrease of 
the metrics are estimated in the timeframes.
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Between RR and NRMS, the comparison of the performance on the basis of AUC and 
OOP of the ROC curves shows that RR has an improved performance as compared to 
NRMS for all the window sizes explored, which can be attributed to the fact that RR is 
a more complicated analysis tool that takes into account nonlinear characteristics to under-
stand the recurrent behavior of the state of a dynamical system. But the stochastic sequential 
behavior of the system is captured better in the probabilistic modeling architecture of 
HMM, which renders its performance to be better than RR or NRMS.

The regime detection capability of LLR with respect to two different transients as 
discussed in Section IVB has also been compared with those of RR and NRMS. Figure 9 
shows the variations of NRMS and RR in the Timeframes A and B as shown in Figure 5. The 
95% confidence intervals for the slopes of the variations of NRMS and RR in Timeframe 
A are � 0:009� 0:0183 and 0:01453� 0:0109 respectively, while that in Timeframe B are 
0:006759� 0:0202 and � 0:0029� 0:0112, respectively. To compare the results with the 

estimated slopes using LLR as shown in Figure 6, the coefficient of variation (CV) ¼Δ σ
jμj of 

the slope parameter estimate has been computed for each of the metrics. CV is a measure of 
dispersion of the data relative to the mean, and can be used to compare the degrees of 
variation across datasets (Lovie 2005). The CVLLR (CV using LLR metric) for Timeframe 
A is 0.2, while that for Timeframe B is 0.15, as shown in Figure 6. On the other hand, 
CVNRMS for Timeframes A and B are 1.02 and 1.49, respectively, while that of CVRR are 
0.375 and 1.87, respectively. So, not only are the mean estimated slope values for LLR 
significantly greater than those of NRMS and RR (which is an indication of high sensitivity 
of LLR), the CV for LLR is also lower than that of NRMS and RR for each of Timeframe 
A and Timeframe B, which signifies that the slope estimation with LLR is more precise, and 
hence can be trusted more for online regime detection purposes.

Along with the performance metrics, it is necessary to compare the computational 
complexity of the three classifiers, since they are potential competitors as data-driven 
metrics for detecting incipient LBO in combustion systems. Table 4 lists the average online 
processing times of the three classifiers as a function of window sizes. The comparison has 
been carried out in a MATLAB-2015 environment running on Intel Xeon CPU E5-2620 v3 
@ 2.40 GHz (24 cores) with a system memory of 256 GB.

It can be seen that NRMS, being the simplest in construction among the three classifiers, 
has the least time complexity, with it being almost constant over the studied time window 
range. Since the calculation of log-likelihood based on Forward Procedure has a time com-
plexity to the order of ðQ2TÞ, the computational time of LLR increases almost linearly with 
window size (since Q remains constant for a given HMM). The computational time of RR, on 
the other hand, has a higher order dependence on the window size as compared to the almost 
linear dependence of LLR, which is observed from the fact that the computational cost of RR 

Table 4. Comparison of computational time (s) as 
a function of window sizes for three classifiers.

Window size LLR RR NRMS

200 0.019 0.007 0.011
400 0.039 0.024 0.014
600 0.067 0.059 0.012
800 0.079 0.125 0.013
1000 0.088 0.132 0.013
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is significantly higher than LLR’s cost at the higher window sizes of 800 and 1000 samples. 
Thus HMMs, despite being more complex in its non-deterministic formulation as 
a stochastic model representing the sequential behavior of temporal data, has a competing 
computational cost at low window sizes as compared with RR, although the classification 
performance is superior to that of RR and NRMS. Moreover, a focal area of this paper is to 
devise a data-driven technique of LBO detection which performs well with very short data 
lengths and is free from empirical thresholding needs, all of which is satisfied with the HMM- 
based LLR metric. Moreover, the recent work of (Mondal et al. 2019) has shown the 
applicability of LLR in detecting the onset of thermoacoustic instabilities (TAI) in combus-
tion systems with short time windows. TAI involves very different physics as compared to 
LBO, and the temporal behavior of the time series data involved in TAI is characteristically 
different than that of LBO. This shows the generalizability of the LLR metric in detecting 
different types of instabilities in combustion systems. Hence, the performance robustness of 
LLR, along with its competitive computational time complexity, make it a potentially suitable 
metric for incipient LBO detection and regime classification, which can significantly aid in 
near-real time detection and control of LBO in combustion systems.

Summary, conclusions, and future work

This paper has developed a methodology for early prediction of lean blowout (LBO) 
phenomena in combustors of aircraft and land-based gas-turbine systems in the framework 
of hidden Markov modeling (HMM) and hypotheses testing, which can be used in the 
setting of supervised learning to discern near-blowout time series data from stable data. The 
paper also addresses online classification of two different kinds of transient regimes in the 
combustion systems, which are: 1) transition from stable mode of operation toward LBO; 
and 2) transition from near LBO to being stable. In order to experimentally validate the 
underlying theory, pertinent conditions of LBO have been emulated on a laboratory-scale 
apparatus of swirl-stabilized dump combustor with transient time series of CH� chemilu-
minescence data. Being data-driven, the proposed methodology is model-free; it has been 
shown to be numerically efficient as well as sensitive to regime changes when the combus-
tion system moves toward or away from LBO.

While there are many areas of theoretical and experimental research to enhance the work 
reported in this paper, the authors suggest the following topics of future research for early 
prediction of lean blowout (LBO) phenomena and classification of operational regimes in 
combustion systems:

(1) Usage of statistical modeling tools based on symbolic dynamics for online detection 
of LBO (Mukherjee and Ray 2014; Ray 2004). of the LBO detection framework for 
liquid fuel-based combustion systems.

(2) Development of analytical tools for prediction of precursors to LBO from changes in 
the flow patterns via: (i) synergistic combinations of data-driven and physics-based 
modeling; and (ii) high-fidelity measurements like high-speed imaging/advanced 
diagnostics.

(3) Experimental validation on laboratory apparatuses for different types of multi- 
physics experiments.
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Nomenclature

λ Hidden Markov model
Θ Heaviside Step Function
θ Rate of increase of anomaly metric
ϕ Equivalence ratio
μ Mean of estimated slope parameter
σ Standard deviation of estimated slope parameter
τ Classification threshold for binary hypothesis problem
LIST OF ACRONYMS

AFR Air flow rate
AUC Area under the Curve
CC Combustion chamber
CV Coefficient of variation σ

jμj

� �

ES Exhaust chamber
FFR Fuel flow rate
HMM Hidden Markov model
LBO Lean blow-out
LLR Log likelihood ratio
MFC Mass flow controller
NRMS Normalized root mean square
OOP Optimal operating point
PC Premixing chamber
PMT Photo multiplier tube
RMS Root mean square
ROC Receiver Operating Characteristics
RP Recurrence plots
RQA Recurrence quantification analysis
RR Recurrence rate
SLPM Standard liters per minute
SN Swirl number
SS Stainless steel
STSA Symbolic time series analysis
XWT Cross wavelet transform
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Appendix A  
Mathematical formulation: hidden markov modeling

While the details on hidden Markov modeling (HMM) are available in standard literature (Bishop 2006; 
Hajek 2015; Murphy 2012; Rabiner 1989; Rabiner and Juang 1993), this appendix summarizes the 
essential concepts that form the backbone for analysis of stochastic dynamical behavior of LBO in this 
paper. The applications of HMM in a different context of detecting thermoacoustic instabilities in 
combustion systems have been demonstrated by the authors in a recent work (Mondal et al. 2019). This 
paper extends the approach demonstrated in the work of (Mondal et al. 2019) for early detection of 
LBO. In general, HMMs are a class of stochastic processes, which involves a latent hidden state 
evolution. The hidden states are not directly observed, but can be inferred by drawing observations 
from another stochastic process that produces the sequence of observations (Rabiner and Juang 1993). 
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HMMs differ from standard Markov models in the formulation that does not assume Markov property 
for the observations themselves.

Let a sequence of T discrete-time observations be represented as Y ¼ fy1; y2; . . . ; yTg. Under the 
first-order Markov assumption, the joint probability of this observation sequence is formulated as: 
pðYÞ ¼ pðy1Þ

QT� 1
t¼1 pðytþ1jytÞ; and also the sequence Z ¼ fz1; z2; . . . ; zTg of hidden state vectors are 

assumed to follow Markov properties, i.e., given the state zt� 1 at time ðt � 1Þ, the current state zt is 
independent of all the states prior to ðt � 1Þ. It is noted that the observations Y ¼ fy1; y2; . . . ; yTg are 
conditionally dependent on the states.

Figure 10 depicts the above concept with a Bayesian network model of an HMM. A shaded node in 
Figure 10(a) denotes a hidden variable, an unshaded node signifies an observed variable, and an arrow 
denotes conditional dependence between variables. In Figure 10(b) the arrows denote the transitions 
from state zi to zj with probability aij, with the states belonging to a finite and discrete set, i.e. 
zt 2 f1; ;Qg. The observation sequence fy1; . . . :; yTg is assumed to be generated by a latent state 
sequence fz1; . . . :; zTg. In this setting, an HMM is represented as a triplet λ ¼ fA;B; πg, where:

• A ¼Δ faijg is the state-transition probability: aij ¼ Pðztþ1 ¼ qjjzt ¼ qiÞ.
• B ¼Δ fbjðytÞg is the probability distribution of the observation given the state: 

bjðytÞ ¼ Pðytjzt ¼ qjÞ.
• π ¼Δ fπig is the initial state distribution: πi ¼ Pðz1 ¼ qiÞ at time t ¼ 1.
Associated with the above hmm λ ¼ fA;B; πg, the following two estimation tasks are considered 

in this paper:

1) Given the observed data Y ¼ fy1; y2; . . . ; yTg and the HMM λ, the first task is to compute the 
conditional distribution of the state, which is solved by the forward algorithm (Hajek 2015; Rabiner 
1989).

2) Given the observed data, the second task is to obtain the maximum likelihood (ML) estimate of 
the HMM λ, which is solved by the backward algorithm and Baum-Welch/Expectation 
Maximization (EM) algorithm (Hajek 2015; Rabiner 1989).

In the above context, the forward, backward, and Baum-Welch (Expectation Maximization) 
algorithms are succinctly presented as follows.

A. the forward procedure
The forward variable αtðiÞ ¼

Δ pðy1; y2; . . . ; yt; zt ¼ ijλÞ is the probability that the partial observation 
sequence fy1; y2; . . . ; ytg; 1 � t<T ending with the state of the system being i at time t. This is solved 
inductively as follows: 

Figure 10. (a) Bayesian network model of an HMM showing conditional dependence of the observations 
with the hidden Markovian states. (b) State transitions in a 4 state HMM (Mondal et al. 2019).
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1: Initialization step : α1ðiÞ ¼ πibiðy1Þ; 1 � i � Q (9) 

2: Induction step : αtþ1ðjÞ ¼
XQ

i¼1
αtðiÞaij

" #

bjðytþ1Þ; 1 � t � T � 1; 1 � j � Q (10) 

3: Termination step : pðYjλÞ ¼
XQ

i¼1
αTðiÞ (11) 

where T and Q are the same as defined earlier.
B. the backward procedure
The backward variable βtðiÞ ¼

Δ pðytþ1; ytþ2; . . . ; yT jzt ¼ i; λÞ is the probability of the partial 
observation sequence fytþ1; ytþ2; . . . ; yTg from time t+1 till the end time T and the state at time 
t is i and the HMM followed is λ. This is solved inductively as follows: 

1: Initialization step : βTðiÞ ¼ 1; 1 � i � Q (12) 

2: Induction step : βtðiÞ ¼
XQ

j¼1
aijbjðytþ1Þβtþ1ðjÞ

" #

; t¼T � 1;T � 2; . . . ; 1; 1 � i � Q (13) 

where the parameters T and Q are the same as defined earlier.
C. model learning: baum-welch algorithm
The model learning problem involves estimation of the parameters λ ¼ fA;B; πg so as to max-

imize the likelihood pðYjλÞ. Baum-Welch algorithm is a procedure for recursive estimation of the 
HMM parameters. Given the model and the observation sequence, the intermediate variables � and γ 
are defined, for 1 � i � Q, 1 � j � Q and 1 � t � T, as: 

�tði; jÞ ¼
Δ Pðzt ¼ qi; ztþ1 ¼ qjjY; λÞ; γtðiÞ ¼

Δ pðzt ¼ qijY; λÞ (14) 

The variables γt and �tði; jÞ are expressed in terms of the forward and backward variables αt and βt , 
defined earlier as: 

γtðiÞ ¼
αtðiÞβtðiÞ

pðYjλÞ
¼

αtðiÞβtðiÞ
PK

i¼1 αtðiÞβtðiÞ
; �tði; jÞ ¼

αtðiÞaijbjðytþ1Þβtþ1ðjÞ
PK

i¼1
PK

j¼1 αtðiÞaijbjðytþ1Þβtþ1ðjÞ
(15) 

Using the above relations, and the fact that γtðiÞ ¼
PK

j¼1 �tði; jÞ, it is possible to estimate fA;B; πg as: 

π̂i ¼ γ1ðiÞ; âij ¼

PT� 1
t¼1 �tði; jÞ
PT� 1

t¼1 γtðiÞ
; ĉjk ¼

PT
t¼1 ~γtðj; kÞ

PT
t¼1
PM

k¼1 ~γtðj; kÞ
;

μ̂jk ¼

PT
t¼1 ~γtðj; kÞ:yt
PT

t¼1 ~γtðj; kÞ
; �̂jk ¼

PT
t¼1 ~γtðj; kÞ:ðyt � μjkÞ

2

PT
t¼1 ~γtðj; kÞ

(16) 

where ~γtðj; kÞ is the probability of being in state j at time t with the kth mixture component. That is, 

~γtðj; kÞ ¼
αtðjÞβtðjÞ

PN
j¼1 αtðjÞβtðjÞ

" #
cjkNðyt; μjk;�jkÞ

PM
k¼1 cjkNðyt; μjk;�jkÞ

" #

(17) 

It is noted that the term ~γtðj; kÞ generalizes to γtðjÞ in case of a single-component Gaussian density 
(i.e., M ¼ 1) or a (discrete) probability mass function. The model λ̂ ¼ fÂ; B̂; π̂g is recursively 
estimated as it converges to a local maximum of the likelihood function pðYjλ�Þ, where λ� is the 
ML estimate of the HMM (Hajek 2015; Rabiner 1989).
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D. execution of hmm algorithms
A continuously-varying structure of the observation model has been used in this paper, where the 

observations fy1; . . . :; yTg are one-dimensional and their emission probability follows a Gaussian 
mixture model having a univariate distribution for each of the mixture component: 

pðytjzt ¼ j; λÞ ¼
XM

,¼1
cj,Nðyt; μj,;�j,Þ (18) 

where M is the number of Gaussian mixture components; the weights cj, are such that 
PM

,¼1 cj, ¼ 1 "j 2 f1; � � � ;Qg; and Nðyt; μj,;�j,Þ represents Gaussian density function of yt with 
mean μj, and covariance �j, associated with state j and mixture component ,. Although some 
research work has been reported on optimal identification of the HMM parameters Q and M (e.g., 
(Celeux and Durand 2008; Ryde´n 1995), Tobias), the Akaike Information Criterion(AIC)/Bayesian 
Information Criterion(BIC)-based techniques are commonly used to optimally select these model 
parameters (Akaike 1974; Schwarz 1978); this is accomplished by maximizing the likelihood of the 
data and minimizing the model complexity, thereby balancing the goodness of the fit against the 
complexity of the model to prevent over-fitting. The parameters Q and M have been chosen in this 
paper by following the BIC criterion. Consequently, the model learning problem is to find the optimal 
set of parameters for λ ¼ fA;B; πg in order to maximize PðY;ZjλÞ by using an iterative procedure 
called Baum-Welch Algorithm, which is an application of Expectation-Maximization method for 
inferring HMM parameters.

Following the HMM λ ¼ fA;B; πg, the corresponding joint distribution of the states and observa-
tions has the form: 

pðY;ZjλÞ ¼ pðz1:TÞpðy1:T jz1:TÞ ¼ pðz1Þ
YT� 1

t¼1
pðztþ1jztÞ

YT

t¼1
pðytjztÞ (19) 

The calculation of pðY;ZjλÞ according to Eq. (19) has computational complexity in the order of 
ð2TQTÞ, which may become intractable for even small values of Q and T. A numerically efficient 
method, called the Forward Procedure has been used, which reduces computational complexity to the 
order of ðQ2TÞ.
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