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H I G H L I G H T S

• The FFT-based method computes a scalar measure to distinguish between the operational regimes of a combustor.

• The scalar-valued measure shows applicability in the early detection of immemnt changes to LBO or TAI.

• The proposed algorithm uses audio data from a non-intrusive and inexpensive external microphone.
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Abstract: Lean blow-out (LBO) and thermoacoustic instability (TAI) are common undesirable occurrences in
modern lean-burn turbulent combustion systems, such as fossil-fuel furnaces for gas turbines and in both land-
based power generation and marine or aviation propulsion applications. While LBO causes loss of power due to
flame extinction, TAI leads to loud noise, vibrations and mechanical fatigue-failure. Timely detection and
classification of the operating conditions are important for both open-loop and closed-loop control of combustion
systems to ensure their long service life, high efficiency, and reliability & availability. Data-driven techniques
already exist for detection of these phenomena; however, most of these techniques require high training and/or
processing times. This paper presents a fast Fourier transform (FFT)-based method to generate, in real time, a
single scalar-valued measure for detection and classification of operational regimes; this measure can also be
used to identify precursors (i.e., for prediction of impending LBO and TAI). This FFT-based method utilizes prior
knowledge of the combustion system acoustics; and the measure acts as a classifier to distinguish different
operational regimes. The underlying algorithms have been validated on time series data, collected from a
(commercially available) microphone sensor that is external to the laboratory-scale experimental apparatus.

1. Introduction

The rising concerns of global warming and environmental hazards
due to combustion of fossil fuels have brought about significant changes
in the energy portfolio with a progressively increasing shift towards
utilization of renewable sources of energy. The increasing capacity of
power generation, based on renewable (e.g., solar and wind) energy, is
fast transforming the role of thermal power plants to that of on-demand
peak load plants [1]. However, the unpredictable availability of energy
sources like the sun and wind would require thermal power plants to be
designed to compensate for fluctuations in the power generated from

renewable sources. Consequently, intermittent operations with large
fluctuations in the plant load would require the combustors to be de-
signed with high turn-down ratios. High turn-down ratios have also
been a requirement for burners in fuel-fired furnaces in process in-
dustries and manufacturing applications due to large differences in the
energy and power requirements in different processes or even different
stages of a manufacturing process like heating and holding phases of
annealing of materials. Even for locomotion needs, the primary energy
source is still the combustion of fossil fuels in furnaces or gas turbines.

The need for reduction in carbon footprint and efforts towards
achieving carbon neutrality have led to exploration of newer grades of
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fuel, especially those obtained from biological sources. Apart from the
low heating values and low flame speeds in many of these fuels, like
biogases (which contain a large proportion of carbon-dioxide), there are
wide variations in the fuel composition itself, depending on its source.
Furthermore, combustion systems are also often operated under fuel-
lean conditions to ensure operation at lower temperatures, thus miti-
gating emission of oxides of nitrogen (NOx).

Large turn-down ratios, a wide range of fuel compositions leading to
large variations in the flame speed, and the need to operate under a
large range of equivalence ratios from fuel rich to fuel-lean conditions
make modern combustion systems susceptible to the following two
major anomalous phenomena.

1. Lean-blow out (LBO): LBO, which is a phenomenon that occurs when
the flame is lean, causes loss of flame, possibly leading to complete
loss of power in the combustion system, which may be difficult to
reignite; and

2. Thermoacoustic instability (TAI): TAI may occur due to a constructive
interference between heat release rate and acoustically-driven flow
perturbation in combustors [2], assisted by the fact that these sys-
tems have very low acoustic damping [3]. Although it is possible to
occasionally encounter TAI in lean conditions, TAI is treated as a
phenomenon occurring at high equivalence ratios, close to or higher
than stoichiometric; this assertion is based on the experimental
observations conducted on the apparatus reported in this paper. In
general, TAI leads to loud noise and vibrations, due to the high
energy in the system, which can be harmful to structural integrity of
the combustor due to thermomechanical fatigue-failure. In extreme
cases, total breakdown of the system may occur if the frequency of
the generated thermoacoustic waves matches the natural frequency
of the system. This phenomenon may also cause flow reversal and
choked flow, leading to flame instability and extinction in through-
flow combustors [4,5].

Thus, for mitigation of the above undesirable phenomena and life
extension of the combustion system, early prediction of forthcoming
LBO and TAI is necessary to ensure that an appropriate decision and
control action can be taken to reduce the probability of their occur-
rence.

The problems of LBO and TAI detection and prediction have been
studied extensively in recent years and several techniques already exist,
which use time series data or video data. The main idea here is the
preemptive detection of imminent LBO and TAI so that decision and
control actions can be taken prior to their occurrence.

Lefebvre [6] introduced the concept of correlation function-based
LBO prediction, which is useful for combustor design, but it may not be
sufficiently accurate for online LBO prediction and control. Since then
OH∗ and CH∗ chemiluminescence has been used by researchers [7,8] to
study and detect LBO in swirl-stabilized combustors. Based on the facts
that there are localized flame extinction and re-ignition near LBO, and
the flame detaches from and re-attaches to the burner, Yi and Gutmark
[9] have reported that “near-lean-blowout combustion is characterized by
the intensified, low-frequency combustion oscillations of the OH∗ signal,
(typically, below 30 Hz).” This observation has been since augmented to
be used on a pulse combustor using ion current sensors [10]. More
recently, Chang et al. [11] compared the standard practice of using CH∗

signals to generate “normalized root mean square (NRMS), normalized
cumulative duration (θ) and fraction of the fast Fourier transform (FFT)
power at low frequencies” to study the precursors to LBO and they pro-
posed a new threshold-based metric to improve upon the same. Other
researchers (e.g. [12]) have used the changing flame color as a pre-
cursor to LBO. It is noted that, in the lean limit, the flame color changes
from red to blue; and using a commercial color charge-coupled device
(CCD) camera, a good estimate of approaching LBO can be obtained. In
other works [13], chemiluminescence data have been used for recur-
rence analysis to detect LBO.

Similar to LBO, it is necessary to have a real-time method for pre-
diction of TAI onset. Since it is not desirable to allow the combustion
system to enter into the unstable regime of operation, early prediction
and real-time control of TAI phenomena have been studied in literature
by using various techniques. For example, Nair et al. [14] have shown
that, during lean operation, as the combustor goes unstable, the pres-
sure trace exhibits ordered (e.g., nearly sinusoidal) oscillations. During
nominal conditions (i.e., stable operations), however, the pressure time
series shows a chaotic signature. Murugesan and Sujith [15] extended
this idea by using a visibility graph technique to convert the pressure
time series into a complex network [16] and to show that combustion
noise is scale-free; it transitions to an ordered signal during instability
and achieves a limit-cycle-like behaviour. This approach has been re-
cently used in combination with machine learning approaches to do an
experimental study of TAI [17]. Recurrence analysis for dynamic
characterization of TAI in a ducted inverse-diffusion flame is another
approach [18]. Mondal et al. [19] introduced a simpler and faster FFT-
based dynamic characterization, which yields results comparable to
those of the visibility graph technique. The concept that the ordered
nature of the pressure signal implies a lower data entropy [20] during
unstable operation, as compared to the stable operational regime, has
been used by researchers for the online prediction of TAI [21]. Sarkar
et al. [22] used hi-speed flame image data for early prediction of im-
pending instability using neural networks. More recently hidden
Markov models [23] have been used by researchers to detect and pre-
dict the onset of TAI [24].

Most of the above techniques, which have been validated in a la-
boratory environment, may not be easy to implement at industrial in-
stallations, because of the following reasons: (i) computational over-
head and/or (ii) difficulties in interpretation of the metrics due to
limited familiarity of the engineers with these techniques. On the other
hand, FFT has been used for studying dynamic signals for a long time
and hence techniques based on FFT can be more suitable for easy im-
plementation. Moreover, a majority of the sensors (e.g. pressure sen-
sors, OH∗ sensors, and cameras), required for the above analysis, are
expensive and, in some cases like pressure sensors, may often need
direct access on the combustor. Placement of such sensors is difficult
and is often not possible in actual combustion systems (and even ex-
perimental rigs); especially, adequate optical access (for optical sen-
sors) which may not always be available in combustors. It is, thus,
necessary to have sensors, which are simple, inexpensive and can
capture the combustor dynamics without any major modifications of its
design or construction.

This paper proposes an FFT-based detection technique that in-
corporates a combination of the domain knowledge as well as basic
characteristics of the physical system, which significantly reduces the
computational complexity of the data-driven technique. The main idea
here is a major extension of the previous work by Mondal et al. [19],
which used an FFT-based method to discriminate between stable
combustion signals and those that are undergoing thermoacoustic in-
stability and showed that it gives results comparable to the visibility
graph technique. The modified method, proposed in the current paper,
has been tested on the audio time series of a microphone placed near a
combustor apparatus; the results show that the extended algorithm is
capable of discriminating stable, TAI, as well as pre-LBO signals.

The proposed method of LBO and TAI detection relies on the
knowledge of dominant acoustic modes. This information can be often
generated experimentally on test rigs; and if that is not possible, usage
of one or more of several analytical methods is recommended, where
the dominant acoustic modes can be identified by using Helmholtz
models or Flame transfer functions (FTFs). In this regard, several papers
have reported the results of theoretical and numerical analysis of
dominant acoustic modes. For example, Hosseini et al. [25] identified
the modes in a Rijke tube, while analyses of a premixed combustor [26]
and a swirling flame [27] were reported by other researchers. A very
thorough theoretical study on the acoustic modes, including azimuthal
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modes in annular combustors is available in [28].
The time-series to be analyzed is obtained from the audio signal that

is recorded with a commercially available microphone (as compared to
pressure signals obtained from expensive and intrusive pressure sensors
as in [19]). This microphone is placed at a distance of about 60 cm from
the experimental combustor and records a mono-channel audio signal.

Contributions: Major contributions of the paper are summarized
below.

1. Computer-instrumented sensor software: The software sensor replaces
expensive and bulky sensor hardware (e.g., pressure sensors, ima-
ging cameras, or other optical sensors) that requires direct or optical
access to the combustor. In contrast, the software sensor only re-
quires a commercially available microphone placed at a distance
from the combustion system.

2. Development of a scalar-valued measure derived from time series of
sensor data: This measure is computed in real time by a synergistic
combination of FFT-based analysis and domain knowledge to iden-
tify LBO, TAI, and stable operations in a pre-mixed combustor from
audio time-series.

3. Experimental validation of the concept: The efficacy of the proposed
algorithm has been validated with experimental data from a la-
boratory scale combustion apparatus.

Organization of the paper: The paper is organized in five sections
including the current section. Section 2 describes the laboratory-scale
combustor apparatus and the experimental methodology. Section 3
outlines the theory of the FFT-based algorithm, while Section 4 presents
the results generated by the algorithm on the time-series data, collected
from the experimental apparatus. Section 5 summarizes and concludes
the paper along with a few recommendations for future research.

2. Experimental apparatus and methodology

The combustor apparatus, as depicted in Fig. 1, has four main
components: (a) a premixing chamber; (b) a combustion chamber; (c)
an exhaust section; and (d) a microphone with a computer-in-
strumented and computer-controlled data acquisition system (DAQ).
The premixing chamber consists of five sets of fuel inlets at five dif-
ferent axial locations and an air inlet further upstream. The air port is
located 20 mm downstream of the bottom end of the premixer tube. In
this study, the fuel ports furthest from the combustion chamber are
used, located at 330 mm upstream of the dump plane [12]. This ensures

a nearly premixed mixture at the dump plane. Fig. 1 further shows that
each fuel or air port has four inlets positioned circumferentially ( °90
degree apart from each other) on the premixing tube. This type of ar-
rangement for air and fuel locations reduces the circumferential
asymmetry in the flow configuration. A swirler (swirl number, SN
= 1.26) with blade angle of °60 is present 15 mm upstream of the dump
plane causing the formation of re-circulation zones to enhance the
flame stability. The combustion chamber comprises of a quartz tube
200 mm in length, having an outer diameter of 65 mm, which provides
the optical access to the turbulent flame. Downstream of the combus-
tion chamber, an exhaust section of 50 mm length and 60 mm inner
diameter is fitted on the quartz tube. In this configuration, the com-
bustion system is open to atmosphere allowing the burnt gases to es-
cape. The combustor apparatus that has been used in the current in-
vestigation had also been used in several previous research publications
(e.g. [12]) and the readers are referred to these papers for more details
on this apparatus.

The air flow rate (Q ̇A) is metered using an Alicat MFC (MCR Series,
Range: 0–1500 SLPM) and the fuel flow rate (Q ̇F) is metered using
another Alicat MFC (MCR Series calibrated for LPG, Range: 0–250
SLPM). Here SLPM is standard liter per minute which is a unit of volu-
metric flow rate of a gas at standard conditions for temperature and
pressure (STP). Thus, using the mass flow rates of the air and fuel (ṀA
and ṀF , respectively), the global equivalence ratio (ϕ) calculated as

⎛
⎝

= ⎞
⎠( ) ( )ϕ /M

M stoichiometric

M
M actual

̇
̇

̇
̇

A
F

A
F

, can be varied. The fuel used in these

experiments was LPG gas (~60% butane and ~40% propane), the
composition of which is specified by the manufacturer [29].

In an effort to capture the dynamics of a premixed flame, audio data
have been acquired using a microphone (Philips SBCMD110/01) with a
maximum audio sampling rate of 44 kHz [30]. The objective here is to
record the sound produced by the combustion system at different
equivalence ratios; the microphone is placed at a distance of 60 cm
from the combustor. The audio interface (Aqcuire Sound VI) of the
National Instruments software, LabVIEW 2018, acts as the data acqui-
sition (DAQ) system, where the audio signal from the microphone is
supplied to the DAQ using the standard inbuilt 3.5 mm auxiliary jack.
The microphone data are recorded for a specified time duration (see
SubSection 4.1) at the sampling frequency ( f ) of 12 kHz. The recorded
output signal is represented in 16 bits and is auto-normalized to arbi-
trary units with a range of ± 1.

3. Fast Fourier Transform (FFT) algorithm

This section develops a fast Fourier transform (FFT)-based algo-
rithm that forms the backbone of the data-driven method for detection
and classification of LBO and TAI.

3.1. Previous work

Mondal et al. [19] proposed a fast Fourier transform (FFT)-based
method for discrimination between stable and unstable combustion
operation, where they defined the following two metrics by using
pressure time series from an experimental combustor at Penn State
[31].

• Metric A is obtained as the ratio of the energy content of the
dominant frequency (i.e., the frequency corresponding to the max-
imum amplitude in the power spectrum) to the energy content of the
second most dominant frequency that is a non-harmonic of the
dominant frequency was computed. The rationale is that combus-
tion instability causes excitation of harmonics of the unstable mode
and thus, most of the signal energy is concentrated in the unstable
mode and its harmonics. This ratio is expected to be higher for a
unstable signal than for an stable signal, because a stable combus-
tion system resembles a near-uniform distribution of energy over the

Fig. 1. Experimental apparatus showing different components: (a) premixing
section; (b) combustion chamber; (c) exhaust chamber; and (d) a microphone
with a computer-instrumented and computer-controlled data acquisition system
(DAQ) to capture the acoustic signal from flame.
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entire spectrum. Metric A classified a signal as unstable if the ratio
was greater than a specified threshold.

• Metric B is the ratio of the energy content at the dominant frequency
to the total energy content of the signal. The unstable signals have a
significant energy in the excited dominant frequency. Thus, Metric B
classifies a signal as unstable if the ratio is greater than the specified
threshold.

3.2. The proposed FFT-based algorithm

The algorithm proposed by Mondal et al. [19] is limited by the fact
that it is capable of distinguishing only between statistically stationary
time series (over a complete window length of 8 s) that are either
completely stable or undergoing TAI. It is unable to detect LBO, and is
not adaptable for online detection of transient data using small data
windows. However, in a real combustor, it would be necessary to detect
LBO too, and thus the objective would be to create a simple measure
that could distinguish TAI, LBO and stable operations in an online
fashion.

Thus, a modified methodology is necessary to attain the above ob-
jective. During the course of experimentation, it was observed that the
system showed any one of the two dominant frequencies during TAI,
namely ~190 Hz and ~520 Hz in the ranges of ± 20 Hz and ± 40 Hz,
respectively. Similarly during the onset of LBO, the frequencies showing
the maximum amplitude were ±~50 Hz ( 5 Hz) and ±~100 Hz ( 10 Hz).
Compared to these observations, the stable operation was more
broadband in nature as seen in the FFT spectrum. System-specific me-
trics can now be defined based on this knowledge of the system char-
acteristics.

As the dominant frequencies during either LBO and TAI are mostly
in the ranges of ± ± ±Hz Hz50 5 , 100 10 , 190 20 Hz and ±520 40 Hz,
the algorithm first recognizes the most dominant frequency in each of
these four frequency ranges by observing which frequency (from each
range) has the highest magnitude in the FFT spectrum. The FFT itself is
restricted to a cover of 10 Hz to 1200 Hz, with an upper limit more than
double of the dominant frequency range observed during TAI. Higher
frequencies yield no major information about the state of the system.

For each locally maximum frequency, the power (denoted as
powerfreq) is used to compute the energy ’stored’ in that frequency mode
from the area under the FFT around that frequency. This energy is as-
sumed to be akin to a measure of the energy contained in that particular
mode, similar to Metric B used in [19]. For computing the area, a
bandwidth support of ± 5 Hz is assumed. Following this procedure, four
values of frequency powers are computed corresponding to the four
dominant frequencies indicated as power power power, ,50 100 190 and
power520, where each of the (positive) peak powers is normalized to
maximum value of 1. The rationale for taking this approach is as fol-
lows.

When any one of the frequencies dominates, the respective in-
dividual power is higher than that of the rest, because most of the en-
ergy is concentrated around the dominant frequency mode. Similarly,
when a modal frequency does not dominate, its power is relatively low.
Finally, to serve as a (scalar-valued) measure, an overall ratio (denoted
as ρ) is defined as follows:

≜
− × −
− × −

ρ
power power
power power

(1 ) (1 )
(1 ) (1 )

50 100

190 520 (1)

where ∈ =power n(0, 1), 50, 100, 190, 520n .
By virtue of its construction, the value of ρ in Eq. (1) is low when

either or both of the 50 Hz or 100 Hz frequencies dominate, i.e. the
system is approaching LBO. This is so, because high values of power
peaks in LBO (e.g., power50 and/or power100) lead to a small value of the
numerator and simultaneously low values of power peaks in TAI (e.g.,
power190 and power520) lead to relatively high values of the denominator
in Eq. (1); hence this situation of LBO yields a low value of the scalar

measure ρ. By a similar argument, high values of ρ are generated if
either one or both of 190 Hz and 520 Hz frequencies dominate, i.e., the
system is approaching or undergoing TAI. Intermediate values of ρ
would indicate stable operations, i.e., neither TAI nor LBO. Appropriate
thresholds, θ1 and θ2, can now be assigned for detection of LBO and TAI
respectively on the scalar ρ, in an attempt to distinguish among LBO,
TAI, and stable operations of the experimental combustor solely based
on the audible sound, emitted by the system.

In view of the above explanation, the thresholds, θ1 and θ2, for de-
tection and prediction of LBO and TAI respectively, have been identi-
fied by using the Bayes’ criterion of minimum average cost [32] from a
jointly optimal threshold set. In the operation of combustion systems, it
is safer to have false alarms, i.e., classifying stable operations as un-
stable (i.e., LBO and TAI) rather than to have misclassifications of un-
stable as stable. In this paper, the relative cost of misclassifications of
stability are made twice those of false-alarms of LBO and TAI.

4. Results and discussions

This section analyzes the data collected from the experimental ap-
paratus, described in Section 2 by using the algorithms explained in
Section 3. The experimental procedure is described in SubSection 4.1
while an overview of the experimental observations is reported in
SubSection 4.2 with the detailed results of the analysis presented in
SubSections 4.3 and 4.4.

4.1. Experimental procedure

The experiments were conducted for different values of the
equivalence ratio (ϕ) (see Section 2), starting at a lean condition and
then increasing the equivalence ratio progressively until a very rich
region of about =ϕ 2 was reached. Subsequently, ϕ was reduced to
very low values and, in some cases, the experiments were continued
until LBO was reached.

During each experiment, the air flow rate (Q ̇A) was held constant
and the equivalence ratio (ϕ) was varied by changing the fuel flow rate
(Q ̇F) with the Alicat controller described in Section 2. For every ex-
perimental trail, each value of ϕ was maintained for 10 s during which
the audio signal generated by the combustion system was recorded via
the microphone-DAQ-LabView arrangement as detailed in Section 2.

The experimental observations are reported in SubSection 4.2. In
order to allow for stationary observations, the system was allowed to
stabilize for 30 s after each progressive change in Q ̇F . This procedure
ensured that no transient behavior was captured for steady state ana-
lysis in SubSection 4.3. For the few unsteady cases recorded in
SubSection 4.4, a similar overall procedure was followed with the air-
flow rate (Q ̇A) held constant over the experiments with the fuel flow
rate (Q ̇F) being increased or decreased progressively every 10 s with
Alicat’s automatic flow-rate scheduling algorithm. The audio signals
were recorded over the range of ϕ that was intended to be observed
(generally 60 s having 6 values of ϕ per observation). The increments or
decrements were intentionally kept small ( ϕΔ ~0.035) so as not to have
strong transient fluctuations at the change points.

In this paper, neither flame images nor chemiluminescence data
have been used for regime identification, because the motivation here is
the development of a low computational-cost method for regime de-
tection using inexpensive and non-invasive tools. For the purpose of
illustration, some of these flame images are shown in Fig. 2, which were
recorded at varying values of equivalence ratio (ϕ) ranging from stoi-
chiometric to LBO. There are several published works by the authors of
this paper (e.g. [12]), where the details are reported.

4.2. Experimental observations

A total of 112 steady-state 10-s long experimental observations were
recorded. Of these, 39 observations corresponded to stable, 63 to TAI,
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and 10 to pre-LBO and LBO operations. The experiments showed the
following observations:

(i) Occurence of TAI for richer ϕ close to or greater than stoichio-
metric; and

(ii) Occurence of LBO for low values of ϕ.

A distinct tonal sound was heard during TAI, which was also cap-
tured by the microphone. Similarly, pre-LBO regions were discerned by
a fluttering in the flame and a very low-frequency growl. These ob-
servations, tallying the sound clip to the physical manifestation as well
as the expected regime (compared to previous works [12,13]), were
noted. These results have been used as the ground truth for validating
the proposed FFT-based algorithm.

Figs. 3–5 show representative time-series and FFT plots for each of
the three regimes, namely, pre-LBO, stable, and TAI; each figure con-
sists of three plates, where the top left plate shows the audio time-series
signal for the entire 10-s (steady-state) recording, the top right plate
shows the FFT corresponding to that signal, and the bottom plate shows
‘zoomed in’ versions of the audio signals illustrating a 0.2-s window of
the recording. A more detailed discussion of these findings are provided
in the subsequent SubSections 4.3 and 4.4.

4.3. Steady-state signal analysis

This subsection analyzes statistically stationary data, where a given
time series is expected to remain stationary at constant values of air and
fuel flow rates, and thus the regime of operation appears to be similar over the entire 10-s observation window.

In plotting the FFTs of the entire 10-s data, the dominance of the
50 Hz and 100 Hz frequencies can be distinctly seen in the pre-LBO case
of Fig. 4b albeit with lower magnitudes, while strong peaks in the vi-
cinity of ~190 Hz (188 Hz precisely) and ~520 Hz (542 Hz precisely) are
seen during TAI in Fig. 5b. In contrast, the stable case of Fig. 3b shows a
more broadband behavior in the spectrum as expected. It is also seen by
comparison that the signal appears to have the highest amplitudes for
TAI in Fig. 5a, intermediate for stable operation in Fig. 3a, and lowest
during the pre-LBO regime in Fig. 4a. The rationale for not using the
amplitude of the signal as a classification measure is described later in
this subsection. The ‘zoomed-in’ segments of the audio time-series sig-
nals show:

(i) Small-amplitude chaotic signals [14] under stable operation
(Fig. 3c);

(ii) Small-amplitude disordered oscillations in the pre-LBO regime
(Fig. 4c); and

(iii) Large-amplitude ordered signals in the TAI regime (Fig. 5c).

Using the Bayes’ criterion of minimum average cost on the entire
ensemble of data, two thresholds θ1 and θ2 are assigned and evaluated,

Fig. 2. Flame images showing the behavior of the flame at 7 different operating
conditions between stoichiometric and LBO. The equivalence ratios are: (a)
ϕ = 1.0 (Undergoing TAI), (b) ϕ = 0.825, (c) ϕ = 0.75, (d) ϕ = 0.637, (e)
ϕ = 0.60, (f) ϕ = 0.562 and (g) ϕ = 0.50 (Just prior to LBO).

Fig. 3. Representative time series signals and FFT for stable regime, where
“a.u.” in the ordinate of plots (a) and (c) indicates arbitrary units.
( = = =Q SLPM Q SLPM ϕ̇ 80 , ̇ 2.4 , 1.04A F ).

Fig. 4. Representative time series signals and FFT for LBO Regime, where “a.u.”
in the ordinate of plots (a) and (c) indicates arbitrary units.
( = = =Q SLPM Q SLPM ϕ̇ 80 , ̇ 1.1 , 0.48A F ).

Fig. 5. Representative time series signals and FFT for TAI Regime, where “a.u.”
in the ordinate of plots (a) and (c) indicates arbitrary units.
( = = =Q SLPM Q SLPM ϕ̇ 80 , ̇ 2.8 , 1.21A F ).
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where the (scalar-valued) measure ρ (see Eq. (1) in SubSection 3.2)
being less than θ1 implies pre-LBO or LBO, and being greater than θ2
implies TAI; and stable operations otherwise. The optimal thresholds
are obtained by analyzing the training data (which are 70% of the
entire data) and the thresholds are tested on the remaining testing data
(which are 30% of the entire data). This analysis has been over 20 trials
and average values are listed in Table 1.

Since the data length needed to make these decisions is an im-
portant criterion, especially for online detection, several window
lengths are considered, namely, the full data length of 10-s, as well as
smaller windows of 5-s, 2-s, 1-s and 0.5-s. Table 1 lists the values of the
learnt optimal thresholds, θ1 and θ2. Table 1 also shows the number of
total misdetected cases, (i.e., unstable signals classified as stable) and
false alarms (i.e., stable cases classified as unstable) across both training
and testing sets. The total percentage classification error, obtained by
dividing the number of incorrectly classified cases by the total number
of data time-series, is also presented in the last column of Table 1.

The results listed in Table 1 show that the proposed FFT-based al-
gorithm works quite well in the sense that it is capable of classifying a
signal into LBO, TAI or stable regimes with good accuracy (e.g., less
than 10% error) for window sizes greater than 1 s long; the lowest ac-
curacy (13.39%) is seen for the smallest window size of 0.5 s length.
This is reasonable, because although the process is statistically sta-
tionary, the smallest window size might not accurately capture the
system dynamics in the presence of process and measurement noise. As
seen in Table 1, a 5-s data window has yielded the highest classification
accuracy. The confusion matrix for the classification error in the testing
set is presented in Table 2, using a window size of 5-s, where the
thresholds θ1 and θ2 are as listed in Table 1. It is seen in Table 2 that,
under this condition, there is no misclassification of the LBO and stable
regime, with a low mis-detection rate (e.g., misdetecting only 2 out of
19 test cases for the TAI regime). Interestingly, the performance of 10-s
window is not as good as that of the 5-s window. A possible rationale
for this outcome is that the FFT is a signal averaging method, which
tends to partially average the transient signals beyond the 5-s duration,
consequently yielding less accurate results.

This paper has also investigated the possibility of having a common
optimal threshold across a range of window lengths. This common
threshold is identified by taking the mean of thresholds obtained for the
five different window lengths. Thus, the global threshold is computed
as =☆θ 1.0101 and =☆θ 1.0492 . The generated errors and number of false
alarms and mis-detected cases over both training and testing data are
listed in Table 3. It is seen that, with even this common threshold over
all window lengths, the maximum error is limited to 14.29% error with
a maximum of 16 mis-classifications. The results are considered to be

reasonably accurate, given that this algorithm is of low computational
complexity and uses nothing but the audio signal data obtained from a
commercially available microphone. As expected, the lowest accuracy
is seen for the smallest window length. Since the results in Table 3 are
less accurate than those in Table 1, it is concluded that the optimal
threshold for a selected fixed-window-length should be used only under
severe time-constraints of real-time monitoring.

Several researchers (e.g., Santavicca et al. [31]) have used root
mean square (RMS) values of the signal (typically pressure signals) as a
classification criterion. Fig. 6 presents plots of the experimentally ob-
served condition (i.e., ground truth), with the signal RMS as the ab-
scissa and the (scalar-valued) measure (ρ) (see Eq. (1)) as the ordinate
for 5-s data (see Table 2). It is seen that the RMS does not form a very
good basis for distinguishing various operational regimes, probably due
to the following fact. Under two different operating conditions, one
which is TAI (e.g., having low air flow rate and low ϕ) and the other
which is stable (e.g., having high air flow rate and low ϕ), computed
RMS values of the acoustic signal could be indistinguishable due to
measurement noise in the flow rate.

The computational complexity of the proposed FFT-based algorithm
is insignificant, because it primarily computes the FFT, followed by a
few algebraic operations. The FFT computation acts as the speed-de-
termining factor in this algorithm, because the execution times to
generate FFT of 10-s, 5-s, 2-s, 1-s and 0.5-s windows of data are ap-
proximately 4.8 ms, 2.3 ms, 1.2 ms, 0.8 ms and 0.6 ms, respectively, on
a single processor of a DELL Precision Tower 7910 Workstation running
an Intel® Xeon® E5-2670 CPU. Typically the growth of combustion in-
stability takes place within a time interval in the order of 0.5–1 s
[33,34] and the decay into LBO is a slower process. Thus, for online
detection, the proposed FFT-based algorithm is sufficiently fast and
much less computationally complex than many other data-driven
methods.

4.4. Unsteady signal analysis

This subsection demonstrates viability of the proposed algorithm for

Table 1
Optimal Threshold and Total (Training + Testing Sets) Error Chart for various
Window Sizes.

Window Size θ1 θ2 # of False
Alarms

# of
Misdetections

Total % age
Error

10-s 1.011 1.049 5 4 8.04%
5-s 1.010 1.051 2 4 5.36%
2-s 1.014 1.045 8 1 8.06%
1-s 1.005 1.055 5 4 8.06%
0.5-s 1.001 1.045 10 5 13.39%

Table 2
Confusion matrix for combustor regime detection in testing set for data-length
= 5-s, =θ 1.0101 and =θ 1.0512 .

Classified Stable Classified TAI Classified LBO

Actually Stable 100% 0% 0%
Actually TAI 10.53% 89.47% 0%
Actually LBO 0% 0% 100.00%

Table 3
Error Chart (Training + Testing Sets) for various Window Sizes for Common
Threshold of =∗θ 1.0101 and =∗θ 1.0492 .

Window Size # of False Alarms # of Misdetections Total % age Error

10-s 4 5 8.04%
5-s 5 5 8.93%
2-s 8 6 12.50%
1-s 10 1 9.82%
0.5-s 8 8 14.29%

Fig. 6. Scatter plot showing the true regime as a function of the signal RMS
value and the (scalar-valued) measure ρ (see Eq. (1)), where “a.u.” in the ab-
scissa indicates arbitrary units.
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online classification of LBO and TAI from time series of audio signals.
Transient data were collected from the experimental apparatus in
Fig. 1, where the equivalence ratio (ϕ) was gradually varied over a long
time by keeping the air flow rate (Q ̇A) constant while varying the fuel
flow rate (Q ̇F) at steps of 0.1 SLPM. At each ϕ, the fuel flow rate was
held constant for 10 s before changing to the next value of ϕ.

For testing the algorithm in an online setting, the time-series data
are windowed at 10 Hz, i.e. 10 windows per second, while each window
is of 2-s length. The reason for choosing this window length is driven by
the following requirements.

1. A sufficient window length is needed for generation of an FFT that
can yield a good metric with low mis-detection (see Table 1).

2. Small window lengths are preferable for prompt detection and real-
time control.

The 2-s window length optimizes both of the above requirements.
Furthermore, the data are sampled every 100 ms, leading to over-
lapping windows, which provides ample computational time for the
analysis to be done. It is seen earlier that a 2-s window of data requires
1.2 ms to be analysed.

Figs. 7 and 8 show two sample cases of transience: (i) from stable
operaton to LBO, and (ii) from stable operation to TAI, respectively. It is
seen that as the operating condition moves from stable to either TAI or
LBO, the (scalar-valued) measure (ρ) increases or decreases accord-
ingly. Using the learnt threshold values (see Table 1), online detection
and classification can be performed to appropriately identify the change
in regime with low numbers of misdetections and false alarms. The
detected regimes, shown in the bottom plate of each of Figs. 7 and 8,
are also indicated. It is clearly seen in Fig. 7 how a drop in ρ signifies
approach to LBO and detects the imminent LBO long before it happens
(at the end of the signal). Similarly, Fig. 8 shows that an increase in ρ
indicates an approaching TAI.

It is concluded from Figs. 7 and 8 that the proposed method can
detect and identify acoustic precursors in real time, which would lead
to prediction of the impending onset of TAI and LBO by capturing a
change in the scalar-valued metric (ρ) before the occurrence of the

(LBO or TAI) event. This is seen in Fig. 7, where LBO occurs at =ϕ 0.351
but the algorithm can predict the onset at =ϕ 0.421. Similarly, full
blown TAI is observed at =ϕ 0.912 while the imminent change is pre-
dicted at =ϕ 0.878 as seen in Fig. 8.

The operating principle of the proposed method relies on the fol-
lowing entities: (i) prior (possibly physics-based) knowledge of the
dominant frequency(s) during LBO and TAI; and (ii) the scalar measure
(ρ) (see Eq. (1)), which identifies the dominant frequency(s) in the LBO
or TAI regime as compared to no dominant frequency in the stable
regime. The transition into LBO begins at equivalence ratios higher than
the LBO limit, which in turn shows up as a steady increase in the LBO
peak frequency(s). The proposed scalar indicator is able to capture this
event, which leads to an early assessment of a forthcoming LBO, thus
‘predicting’ its occurrence. For TAI, the problem is more difficult be-
cause the transition to TAI is less gradual; however, in conditions very
near to TAI, the TAI frequency(s) begin(s) to appear with larger am-
plitudes. Thus, it is possible to have early detection of a forthcoming
TAI by using the scalar measure ρ.

5. Summary, conclusions, and future work

This paper has developed and validated a computationally-efficient
and easily-implementable FFT-based method for detection and classi-
fication of combustion regimes, namely, (1) lean blow out (LBO), (2)
stable operation and (3) thermoacoustic instability (TAI). The under-
lying principle of the proposed method is built upon the physics of the
combustion process and combustor acoustics, which is similar for
nearly all combustor configurations. The following points summarize
the highlights of this paper.

• The simple (yet robust) FFT-based method computes a scalar mea-
sure to determine which of the regimes of interest the combustion
system is currently in and would tend to be in the near future.

• For the analysis, the algorithm requires only time series of audio
signals that can be captured by a commercial-grade microphone,
placed external to the apparatus, which eliminates the need for in-
vasive and expensive sensors.

Fig. 7. (top) Pressure time series and Equivalence Ratio (ϕ) when system goes
from Stable to LBO conditions, where “a.u.” in the ordinate indicates arbitrary
units; (middle) Computed value of measure (ρ) shown along with the thresholds
(θ1 and θ2); (bottom) Detected Regime using ρ and thresholds.

Fig. 8. (top) Pressure time series and Equivalence Ratio (ϕ) when system goes
from Stable to TAI conditions, where “a.u.” in the ordinate indicates arbitrary
units; (middle) Computed value of measure (ρ) shown along with the thresholds
(θ1 and θ2); (bottom) Detected Regime using ρ and thresholds.
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• The scalar measure (ρ) takes advantage of the prior knowledge
about the dominant acoustic modes (or frequencies) seen during TAI
and LBO, and uses simple scalar thresholds to discriminate the three
regimes of interest with reasonably good accuracy.

• The proposed method has been tested for both steady-state and
transient time series of audio signals obtained from a laboratory-
scale swirl-stabilized combustor apparatus. The underlying algo-
rithm is shown to be capable of detecting impending transitions to
TAI or LBO by capturing the gradual growth in the dominant fre-
quencies.

Although the proposed method is developed, tested and validated
on a laboratory-scale swirl-stabilized combustor apparatus, it can be
potentially extended to other combustion systems, where there exists
prior knowledge about the dominant acoustic modes observed during
LBO and TAI.

While further theoretical and experimental research is necessary
before the proposed method can be actually implemented in industrial
combustors, the near-term future work envisaged by the authors are:

• Testing and experimental validation of the proposed FFT-based algo-
rithm for different conditions of the combustor, and also on other
types of combustors.

• Development of a rigorous experimental procedure for the algorithm to
identify the frequencies of importance in a data-driven fashion from
an ensemble of classified data.

• Investigation of the strength of the algorithm in being able to provide a
measure of the ‘degree of deviation’ from the nominal (stable)
condition.

• Exploration of other nonlinear regimes in the audio signal to study the
presence of possibly intermittent and chaotic behavior (e.g. [35])
and relevance of the dominant acoustic modes.
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