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ABSTRACT
Thermoacoustic instability (TAI) is a critical issue in modern lean-burn gas- 
turbine combustors, which is induced by a strong coupling between the 
resonant combustor acoustics and fluctuations in the heat release rate. 
This instability may lead to high-amplitude pressure waves that generate 
undesirable noise levels as well as fatigue stresses in mechanical struc-
tures of the combustor. The intense pressure fluctuations due to TAI may 
also cause large flow perturbations and possibly flow reversal that may 
lead to flame oscillations, flame liftoff, and even flame blow-out. Hence, 
there is a strong need for exercising control actions in a timely fashion to 
mitigate the TAI phenomena. Anomaly detection is an essential prerequi-
site to the design of a good controller and such a detector must be able to 
reliably predict a forthcoming TAI. To detect and predict the onset of a TAI 
from an ensemble of pressure time series, this paper investigates three 
data-driven methods: Fast Fourier transform (FFT), symbolic time series 
analysis (STSA), and hidden Markov modeling (HMM). The main focus of 
the paper is to make a comparative evaluation of these three anomaly 
detection methods for classification of the current regime of operation 
into stable and unstable categories as well as for real-time identification of 
precursors to impending instabilities with short-length time series of 
measured variables (e.g., pressure oscillations). The results, generated on 
experimental data from a multi-nozzle combustor apparatus, have been 
compared to evaluate the performance of FFT, STSA, and HMM methods 
for TAI analysis.
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Introduction

Combustion systems in modern-day applications are designed to operate fuel-lean so as to 
allow complete combustion and reduce NOx emissions. These lean-burning combustors, 
however, are often prone to thermoacoustic instability (TAI) (Rayleigh 1845), which is 
a consequence of the coupling between the unsteady heat release rate from the flame and the 
natural acoustics of a (typically confined) combustor. The TAI phenomena lead to large and 
periodic pressure fluctuations, which can cause thermo-mechanical stresses on the structure 
as well as excessive vibration (Lieuwen and Yang 2005). The adverse pressure waves also 
disrupt the bulk flow, and may lead to flow choking and flow reversal in the combustion 
system, which may in turn cause further flame instability and even flame extinction or blow- 
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off. Along this line, Candel (2002) showed that TAI is further aided by the low damping 
typically seen in many combustors (e.g., in gas-turbine engines).

Much research effort has been expended to understand the physics of TAI phenomena 
(Lieuwen 2005) with the objective of designing combustion systems (e.g., Chattopadhyay 
et al. (2017)) that would be less prone to TAI. Along this line, significant research on 
combustor system models has identified the pertinent mechanisms by which combustion 
instability occurs (Lee and Santavicca 2003; O’Connor, Acharya, Lieuwen 2015; Richecoeur 
et al. 2008; Sen et al. 2016), for a range of combustor geometries, flow conditions, and other 
parameters related to TAI phenomena. Despite better understanding of instability mechan-
isms, many combustion systems use passive techniques to suppress instability, which 
include resonators (Noiray and Schuermans 2012) and fuel staging (Samarasinghe et al. 
2017). A viable alternative is to design active controllers that can enhance mitigation of TAI. 
Much of the combustion control research has been conducted on a device known as the 
Rijke tube (Rijke 1859), which is a laboratory-scale apparatus that is capable of emulating 
pertinent acoustic properties of real-life combustors. In this regard, several researchers have 
reported their research work on open-loop and closed-loop control of TAI in a Rijke tube 
(e.g., Kabiraj and Sujith (2012); Zhao (2012); Zhao and Chow (2013)).

A prerequisite to TAI control is the capability to detect the very occurrence of instability. 
Several methods have been reported in literature for detecting TAI from time series data 
generated from combustion systems. More recently, data-driven methods have emerged for 
detecting and predicting the onset of TAI. It is noted that data-driven techniques do not 
require the knowledge of the physics of the system, and therefore are more versatile and 
need relatively less human intervention in both training and testing phases of the algorithm 
as well as for the application of the algorithm in a real-time setting. For example, Nair et al. 
(2013) have shown that, under a TAI operation, the pressure signal tends to become 
sinusoidal in nature, as compared to a more disordered and chaotic signal in the stable 
regime. Murugesan and Sujith (2015) have applied this knowledge to distinguish between 
stable and unstable operations in a complex network (Lacasa et al. 2008) setting. A similar 
approach has also been shown by Mondal et al. (2017) who introduced a more robust Fast 
Fourier Transform (FFT)-based method; this method relies on the fact that, during TAI, as 
the signal is sinusoidal, a major portion of the system’s energy goes into a single frequency 
(and its harmonics), which manifests as a high-magnitude spike in the FFT. This method is 
further expanded upon by Bhattacharya et al. (2020a) where the method was shown to be 
effective at discriminating between lean blow-out, thermoacoustic instability, and stable 
operation by using a very simple scalar metric based approach. Recurrence analysis (Sen 
et al. 2018) has also been used as a means to distinguish stable signals from unstable ones. 
However, methods like recurrence analysis and complex networks are too slow to be used in 
an online detection or analysis setting; therefore, other faster and more accurate data-driven 
techniques have been explored. For example, high-speed flame image analysis along with 
a neural network have been used by several investigators (e.g., Sarkar et al. (2015); Hauser 
et al. (2016)); however, such a technique requires the mounting of cameras in the combus-
tor, which is plausible for laboratory scale combustors, but may not be so for real-life 
applications (e.g., gas turbine engines).

Recently a fast and efficient technique has emerged, namely, symbolic time series analysis 
(STSA). This method is built upon a finite-memory Markov model, called the D-Markov 
machine (Mukherjee and Ray 2014; Ray 2004), which is constructed in the setting of 
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probablilistic finite state automata (PFSA). The concept of D-Markov machines has been 
used by several researchers (e.g., (Sarkar et al. 2016; Unni, Mukhopadhyay, Sujith 2015)) to 
distinguish between stable and unstable operations; since the execution time of this method 
is fast, it is a good choice for online operations. More recently, (Ghalyan et al. (2019) and 
Mondal et al. (2019) have reported usage of hidden Markov models to distinguish combus-
tion regimes using short-length data of pressure time series from a Rijke tube (Bhattacharya 
et al. 2020b; Matveev 2003; Rijke 1859). Another popular method for time-series classifica-
tion is neural networks (NN) in their various configurations, such as deep neural networks 
(DNN) (Wang, Yan, Oates 2017), recurrent neural networks (RNN) (Husken and Stagge 
2003), and long short-term memory (LSTM) networks (Hochreiter and Schmidhuber 
1997). However, in this paper, the authors have chosen not to broach the NN-based 
methods for the following reasons: (i) many of these NN techniques may not be suitable 
for online detection in dynamical systems that are often restricted to use short-length time- 
series, (ii) NN-based methods need significantly larger amount of data to accurately train, 
(iii) although shallow nets are decently fast to train and test, RNNs or LSTMs have 
extremely high training times (much longer than either PFSA or HMMs), and (iv) 
a major contribution of this paper is identification of “optimal” parameters of the under-
lying algorithms, which for NNs, are very different and elaborate and have a significantly 
different design approach.

Two major issues arise in tackling the problem of TAI detection in transient data. The 
first issue is accurate detection of changes from stable to unstable regimes and vice versa 
in the offline setting. In this detection mode, the aim is to reliably classify the transient 
time-series to match the experimental ground truth as much as possible. The second issue 
is early detection of the onset of TAI for the purpose of triggering preventive control 
actions in an online closed-loop (e.g., real-time monitoring and active control) setting. In 
this mode, the aim is to reliably capture precursors to changes from the stable to the 
unstable regime as early as possible, even before the ground truth shows such changes. 
Furthermore, a good algorithm is one that can predict an impending change into 
instability by using a short length of data from a sensor (i.e., to provide high-accuracy 
classification/detection using as few data points as possible). This will cause the algorithm 
to be faster (because it has to process less data to reach a decision), as well as help make an 
earlier decision (because fewer data points mean reduced delays in the data recording 
time). Both of the above characteristics are highly desirable, especially in the TAI context 
as the growth from stable to full-blown instability happens within a very short time 
interval (e.g., in the order of ,1 second).

This paper has investigated three data-driven detection algorithms, namely, a fast 
Fourier transfom (FFT) based method, symbolic time series analysis (STSA), and hidden 
Markov modeling (HMM). Subsequently, these three methods have been applied on 
transient data of combustor pressure time series, generated from an experimental appara-
tus. The apparatus is a four-around-one multi-nozzle can-combustor that mimics the 
complexities seen in can-annular power-generation gas turbines by capturing flame and 
flow interaction phenomena. These methods are compared for their efficacy of early 
detection of TAI, along with a detailed insight into the effect of the model hyper- 
parameters and the required data length on the combustor performance. The involved 
costs of CPU execution time are also investigated. Thus, depending on the intended purpose 
and the criteria of demanded performance, the algorithm must be appropriately selected by 
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the user. In essence, this paper acts as a guideline as to the choice of the design methodology 
and selection of the most suitable algorithm for the purpose at hand.

Contributions: Summarized below are major contributions of the paper toward 
comparison of three data-driven anomaly detection methods, namely, fast Fourier trans-
form (FFT), symbolic time series analysis (STSA), and hidden Markov modeling 
(HMM): 

(a) Comparison of the methods for accuracy in online detection of anomalies using 
short-length time-series data, including the ability to predict onset of instability and 
the computational time needed for online execution.

(b) Identification of key algorithm parameters, including window length and down-
sampling rate of time series, for enhancement of both accuracy and execution time in 
both training and testing phases.

(c) Experimental validation of the results of analysis on an ensemble of time series data 
collected from a laboratory-scale multi-nozzle combustion apparatus at different 
operating conditions. 

Organization of the paper: The paper is organized in five sections, including the present 
one. Section II describes experimental apparatus and the procedure for generating the data 
sets to validate the underlying algorithms. Section III briefly describes the mathematical 
principles of the three data-driven methods: FFT, STSA, and HMM, for anomaly detection. 
Section IV makes comparative evaluation of the above three methods by validation with the 
same experimental data. Section V summarizes and concludes the paper with recommen-
dations for future research.

Description of experimentation

An ensemble of experimental data for this analysis was obtained over a three-year period on 
a laboratory-scale apparatus, which is built upon a four-around-one multi-nozzle can 
combustor, for a range of operating conditions. The combustor, shown in Figure 1, consists 
of five industrial fuel-injector nozzles each with a swirl number of 0.7. The flames attach to 
the centerbodies of the nozzles, which are recessed from the dump plane. The optically- 
accessible quartz combustor has a diameter of 260 mm and a length of 300 mm, and is open 
to the atmosphere at the exit, which enforces a pressure release boundary condition at the 
end of the combustor and ensures that combustor operation takes place at atmospheric 
pressure at all times. More details on the experimental setup are discussed by Samarasinghe 
et al. (2017).

A fully premixed mixture of preheated air at 473 K and natural gas are fed into the 
combustor system and split evenly among the five nozzles, resulting in a nozzle exit velocity 
of ,26 m/s. Of all 487 test cases available for analysis, most of them were transient tests 
where the amount of fuel was varied in order to change the stability of the combustor, while 
the others were either completely stable or completely unstable. At this preheat temperature 
and flow rate, the combustor experiences thermoacoustic instability for equivalence ratios at 
and above ϕ ¼ 0:7 whereas the system is stable for lower equivalence ratios. It was found 
that thermoacoustic instability could be suppressed through the use of fuel staging 
(Samarasinghe et al. 2017), where the fuel was unevenly distributed among nozzles while 
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the global equivalence ratio was maintained. For example, by increasing the equivalence 
ratio of the center nozzle to ϕ ¼ 0:85 and decreasing the equivalence ratio of the outer 
nozzles to ϕ ¼ 0:68, the instability could be completely and repeatably suppressed (Culler 
et al. 2018b).

The staging fuel was added in a transient manner through a partially-premixed fuel 
circuit located in the injector nozzles, as shown in Figure 2. It is noted that the staging fuel 
can be added to any of the five injectors; previous work has shown that each injector has 
a slightly different suppression efficacy, which has been quantified using what is termed as 

Figure 1. Multi-nozzle combustor apparatus

Figure 2. Schematic diagram of fuel-injector nozzle with staging-fuel flow paths.
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the “bifurcation equivalence ratio,” or the equivalence ratio at which the instability is 
suppressed (Culler et al. 2018a). The staging fuel is drawn from the same fuel manifold as 
the fully-premixed fuel and is added to the staged nozzle so that the fuel flow rate to the fully 
premixed mixture decreases. Staged fuel flow rate is controlled by using a proportional 
control valve located just upstream of the staging-fuel injection point. The objective is to 
control the amount of fuel added or subtracted and the timescale over which that fuel flow 
rate is changed. This “transient timescale” determines the timescale of the instability onset 
or decay process, depending on whether the staging fuel is subtracted or added (Culler et al. 
2018b). Cross-spectral analysis of the pressure traces in the combustor and in the fuel 
system show that oscillations in the fuel system as a result of the opening and closing of the 
transient valve do not impact combustion instability behavior (Howie et al. 2020).

Several diagnostic devices have been used to monitor the behavior of the combustor. For 
example, K-type thermocouples are located at the tip of the centerbodies and on the dump 
plane; these measurements of metal temperatures are used to monitor the thermal state of 
the combustion system and to ensure repeatability of transient tests. High-speed piezo-
electric pressure transducers (PCB Model 112A22) are coupled to a signal conditioner (PCB 
model 482A16) to measure pressure fluctuations in the nozzles and in the combustor. The 
combustor pressure fluctuations, analyzed in this work, have been generated from the 
transducer located in the dump plane. The transducer is not directly in contact with the 
combustion gas but located in a cooling jacket that has a stand-off length of ,0.125 inches 
(,3 mm) from the combustion gas. The resonant frequency of that cavity volume is almost 
an order of magnitude higher than the upper response frequency of the transducer and so 
does not impact the measurements. All data have been acquired at the sampling frequency 
of 16,384 Hz for a duration of 8 or 16 s, depending on the duration of the transient test. No 
analog or anti-aliasing filters are deemed necessary while obtaining this data as the sampling 
frequency was significantly higher (on the order of ,20 times) than any significant 
frequency content in the signal (significant frequencies of interest were in the range of 
400–700 Hz).

Experimental results for algorithm validation

The ensemble of data described above, has been used in this analysis. Table 1 shows the 
range of operating conditions at which the data were collected. In these tests, the inlet flow 
velocity (,26 m/s), inlet temperature (473 K), and global equivalence ratio (ϕ ¼ 0:7) were 
held constant, while four other parameters were varied. The staging nozzle (the nozzle 
through which staging fuel is injected) was varied, in order to understand the relative 
efficacy of different flames; results of these tests and description of the nozzle nomenclature 
are discussed in more detail in Culler et al. (2018a). The other variations concerned the fuel- 
staging transients by changing the transient timescale (τtran), the transient amplitude 
(ϕstage), and the transient direction. The transient timescale is the time scale over which 
the proportional control valve is actuated from the initial to final flow rates, and included 
times of 1 ms, 16 ms, 4 s, and 10 s. Infrared absorption measurements were used to quantify 
the actual fuel delivery time. For example, for an actual valve opening time of 1 ms, the fuel 
delivery time to the flame was between 10 ms (for ϕ ¼ 0:85) to 30 ms (for ϕ ¼ 0:75); further 
details of this measurement are provided in the supplementary material and Table 2 of 
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Culler et al. (2018b). The transient amplitude is the equivalence ratio of the staging nozzle, 
and included values of ϕstage ¼ 0:8, ϕstage ¼ 0:85, and ϕstage ¼ 0:9. The transient direction 
refers to whether the system transitioned from stable to unstable (staged to unstaged 
operation) or unstable to stable (unstaged to staged operation) thermoacoustic conditions. 
Cases where the system moves from stable to unstable operation are said to be the “onset” 
cases and the change from unstable to stable operation are “decay” cases. Results from 
variations in the transient characteristics are reported in Culler et al. (2018b).

Figure 3 shows representative pressure time series for both stable and unstable opera-
tions and also reports their frequency characteristics in FFT graphs. The top left plot shows 
the low-amplitude pressure trace seen during a stable operation along with the correspond-
ing zoomed section of the signal (middle left), while the FFT plot at the bottom left indicates 
the frequency information of the same. Similarly, the top right plot shows the high- 
amplitude pressure time series for an unstable operation along with the corresponding 
zoomed section of the signal (middle right), while the bottom right shows the correspond-
ing FFT. In these reported FFT plots, the frequency cover used is 10–3,000 Hz as described 
further in sub-section III-A. It is seen that the unstable operation is characterized by a very 
strong peak at a particular frequency (,531 Hz in the reported time-series), while the stable 
operation has a more broadband spectrum with a mild peak (about 10 orders of magnitude 
lower than unstable) near the resonant frequency (,497 Hz in the reported time-series). 
This nature of the FFTs is easily explained by observing the zoomed in time series plots in 
the middle row of Figure 3, which shows ordered sinusoidal signals in an unstable operation 
and noisier signals during a stable operation.

Examples of the transient time-series pressure data are shown in the four plates of Figure 4. 
For all of the four cases, the center nozzle is staged with an equivalence ratio of ϕstage ¼ 0:85. 
All pressure time series have been high-pass filtered at 10 Hz to remove drift from DC- 
coupling in the pressure transducer electrical system. In the τstage ¼ 1 ms cases, the staging 
valve was actuated at 4 s, resulting in very different responses between the onset and decay 

Table 1. Test matrix.

τtran (ms) ϕstage Staging nozzle

1 0.8 Center
1 0.8 Outer 2
1 0.8 Outer 4
1 0.85 Center
1 0.85 Nozzle 1
1 0.85 Nozzle 2
1 0.85 Nozzle 4
1 0.9 Center
1 0.9 Nozzle 1
1 0.9 Nozzle 2
1 0.9 Nozzle 3
1 0.9 Nozzle 4
16 0.8 Center
16 0.85 Center
4000 0.8 Center
4000 0.85 Center
10000 0.8 Center
10000 0.85 Center
10000 0.9 Center
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cases. In the decay case, the system responded quickly, resulting in instability sup-
pression in less than 0.25 s after valve actuation. In the onset case, however, 
instability onset is more gradual, taking approximately 1 s to reach the limit-cycle 
amplitude. Although these data show two examples out of hundreds, the trends are 
similar for almost all of the 1 ms cases obtained. The valve in the τstage ¼ 4 s cases is 
actuated at 4 s as well, but actuation lasts until 8 s. Here, the onset of instability 
occurs faster after actuation than the decay, but the instability is highly intermittent 
during the valve actuation time. Again, these results are representative of those found 
across test cases.

Figure 3. Samples of pressure signals for stable (top left) and unstable (top right) operation along with 
corresponding zoomed sections of the signals (middle left and right) and respective FFT plots (bottom 
left and right).
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Background mathematical information

This section addresses the underlying mathematical theory and intuition behind the three 
data-driven detection methods, namely fast Fourier transform (FFT), symbolic time series 
analysis (STSA), and hidden Markov modeling (HMM). The associated decision metric 
(i.e., the threshold method that is used to make the binary classification) and algorithm are 
also presented for each of these three methods. The mathematical theories for these three 
methods are extensively reported in open literature; however, for completeness and ease of 
readability, these concepts are very succinctly presented in this section.

Fast Fourier transform (FFT)

The FFT algorithm uses the knowledge of the physical process dynamics to distinguish 
between the stable and unstable regimes (Bhattacharya et al. 2020a; Mondal et al. 2017). 
During the stable operation of the combustor, the signal energy is generally broadband and 
so no strong frequency components can be clearly identified. However, when the system 
undergoes thermoacoustic instability (TAI), the frequency corresponding to the unstable 
mode becomes much stronger and contains most of the energy of the signal. In a plot of the 
FFT amplitude, this manifests as a large-magnitude spike at the resonant frequency during 
the TAI.

Figure 4. Pressure time series for four transient cases with different values of τstage.
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To estimate how much of the total signal energy is contained in an unstable mode, a ratio 
of the energy of the unstable mode to that contained in the entire signal is defined. In this 
work, the total energy is defined as the total area under the square of FFT amplitude over 
a frequency range of 10–3,000 Hz; and the energy of the unstable mode is similarly defined 
as the area under the frequency range having the highest magnitude, using a bandwidth of 
4 Hz (� 2 Hz). The choice of the frequency range of 10–3,000 Hz can be justified as 
follows. A lower bound of 10 Hz is selected as it is desirable to remove low frequency noise 
associated with DC effects. Similarly, the higher limit is chosen to be 3,000 Hz as that is 
higher (with a safe margin) than the frequencies of interest (400–700 Hz) as described in 
sub-section II-A and demonstrated in Figure 3. Furthermore, a sampling rate of 16,384 Hz 
sets the upper limit of the FFT (by Nyquist criterion) to 8,192 Hz. If the ratio of the above 
two areas is higher than a specified threshold (ηFFT), it implies that a significant part of the 
energy is contained in the unstable mode (i.e., it is unstable). During the testing phase, there 
is no specific training because the FFT method is largely physics-based and not data-driven. 
A window of specified length is observed, and the FFT ratio as defined above is computed. 
The final decision is made as: 

Area under highest magnitude frequency
Area under total FFT <>

Unstable Regime

Stable Regime
ηFFT 

Symbolic time series analysis (STSA)

The symbolic time series Analysis (STSA) method makes use of the concept of probabilistic 
finite state automata (PFSA) (Mukherjee and Ray 2014; Rajagopalan and Ray 2006; Ray 
2004; Subbu and Ray 2008), to convert the given pressure time series into quantized 
sequence of alphabets and then generate features that are used for classification. The 
following sub-sub-sections III-B1 and III-B2 provide the mathematical details of STSA 
and the computation of D-Markov machines.

Theory of probabilistic finite state automata (PFSA)
The time series of a measured signal is converted to a symbol string. In this process, the 
signal space is partitioned into a finite number of cells, where the number of cells is 
identically equal to the user-chosen cardinality �j j of the (symbol) alphabet �; and 
a symbol from the alphabet � is assigned to each (signal) value corresponding to the cell 
to which it belongs (Rajagopalan and Ray 2006; Subbu and Ray 2008); details are reported in 
Mukherjee and Ray (2014). Thus, a symbol is associated with a data point at a given instant 
of time when the value of that data point is located in the particular cell corresponding to 
that symbol. The following definitions, which are available in standard literature (e.g., Ray 
(2004); Mukherjee and Ray (2014)), are recalled for completeness of the paper: 

Definition 1: A finite state automaton (FSA) G, having a deterministic algebraic structure, is 
a triplet �;Q; δð Þ where:

• � is a (nonempty) finite alphabet, i.e., its cardinality �j j is a positive integer.
• Q is a (nonempty) finite set of states, i.e., its cardinality Qj j is a positive integer.
• δ : Q� �! Q is the (deterministic) state transition map.
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Definition 2: A symbol block, also called a word, is a finite-length string of symbols 
belonging to the alphabet �, where the length of a word w ¼Δ s1s2 � � � s, with every si 2 �

is denoted as wj j ¼ ,, and the length of the empty word ε is εj j ¼ 0. The parameters of FSA 
are extended as:

• The set of all words, constructed from symbols in � and including the empty word ε, is 
denoted as �?.

• The set of all words, whose suffix (respectively, prefix) is the word w, is denoted as �?w 
(respectively, w�?).

• The set of all words of a given (finite) length ,, where , is a positive integer, is denoted 
as �,.

Remark 3: A symbol string (or word) is generated from a (finite-length) time series by 
symbolization.

Definition 4: A probabilistic finite state automaton (PFSA) K is a pair ðG; πÞ, where:
• The deterministic FSA G is called the underlying FSA of the PFSA K.
• The probability map π : Q� �! ½0; 1� is called the morph function (also known as 

symbol generation probability function) that satisfies the condition: 
P

σ2�

πðq; σÞ ¼ 1 for 

all q 2 Q.

Equivalently, a PFSA is a quadruple K ¼ �;Q; δ; πð Þ. The state transition probability 
mass function κ : Q�Q ½0; 1� is constructed by combining δ and π, which can be struc-
tured as a Qj j � Qj j state transition probability matrix �. In that case, the PFSA can also be 
described as the triple K ¼ ð�;Q;�Þ.

Theory of D-Markov machines
The PFSA model of a D-Markov machine generates symbol strings 

s1s2 � � � s, : , 2 Nþ ¼
Δ 1; 2; 3; � � �f g and sj 2 �

n o
on the underlying Markov process. 

When constructing a D-Markov machine, it is assumed that the generation of the next 
symbol depends only on the most recent finite history of at most D consecutive symbols, i.e., 
a symbol block of length not exceeding length D. A D-Markov machine (Mukherjee and 
Ray 2014) is defined as follows. 

Definition 5: A D-Markov machine is a PFSA in the sense of Definition 4 and it generates 
symbols that solely depend on the most recent history of at most D consecutive symbols, 
where the positive integer D is called the depth of the machine. Equivalently, a D-Markov 
machine is a statistically stationary stochastic process S ¼ � � � s� 1s0s1 � � � , where the prob-
ability of occurrence of a new symbol depends only on the last consecutive (at most) D 
symbols, i.e., 

P½sn � � � sn� D � � � sn� 1� ¼ P½snj jsn� D � � � sn� 1�

Consequently, for w 2 �D (see Definition 2), the equivalence class �?w of all (finite- 
length) words, whose suffix is w, is qualified to be a D-Markov state that is denoted as w.
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In this paper, the maximum entropy partitioning (MEP) scheme (Rajagopalan and Ray 
2006; Subbu and Ray 2008) has been used to quantize the time series. A PFSA (or D-Markov 
machine) (Mukherjee and Ray 2014) is constructed from the symbol string that is generated 
from the partitioned time series and the state transition probability matrix � is extracted as 
the feature (� indicates the probability of observing a particular state in the next instant 
given the present state). In this paper, the depth of the D-Markov machine is taken to be 
unity (i.e., D ¼ 1), which makes � and Q identical.

During the training phase, the algorithm trains on the time-series data corresponding to 
fully stable or fully unstable regimes (i.e., no transience). The algorithm trains on a certain 
portion (80% has been chosen in this paper) of the available data. Two trained feature 
matrices, namely, one for the stable regime and the other for the unstable regime (called 
�Stable and �Unstable, respectively) are constructed and used as the trained features for the 
pattern classification that follows.

During the testing phase, the algorithm takes a data window from the unknown transient 
time series. The specified window length and downsampling rates now determine the 
number of data points to be selected. This windowing is done at equal intervals of 0.02 s 
(i.e., 50 Hz rate), which implies that, for window lengths of 10 ms and 20 ms, there is no 
overlap; however, for higher window lengths, there is overlap. Each window is studied 
individually, and the state transition probability matrix (�Test) corresponding to the 
window is generated using the selected data points. Then, the following ratio is computed, 
which depending on a threshold (ηPFSA), decides whether the given window corresponds to 
data belonging to the stable regime or the unstable regime: 

logð
jj�Test � �Stablejj1
jj�Test � �Unstablejj1

Þ <>
Unstable Regime

Stable Regime
ηPFSA 

where jj � jj1 is the induced infinity norm of the matrix � .
Figure 5 shows two samples of state transition matrices, one each for stable (�Stable) and 

unstable (�Stable) regimes, at downsampling DS ¼ 2, window length = 100 ms with alphabet 
size �j j ¼ 4, and PFSA depth D ¼ 1. The difference between the two is leveraged to 
discriminate between these two regimes. In this case, since D ¼ 1, the number of states 
( Qj j) is equal to the alphabet size ( �j j), which is 4 in this case, as seen in Figure 5.

Figure 5. Sample state transition matrices for stable and unstable regimes where Qj j ¼ �j j ¼ 4, D ¼ 1, 
DS ¼ 2, window length = 100 ms.
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Hidden Markov modeling (HMM)

Since the details of hidden Markov models (HMM) are extensively reported in technical 
literature (e.g., Rabiner (1989); Hajek (2015)), only the key concepts are introduced here for 
completeness of the paper. For further mathematical details, the readers are requested to 
follow the references.

HMMs have been used to represent long-range dependencies between observations, 
where the underlying models are assumed to be probabilistic functions of the hidden states 
(Murphy 2012). Considering a discrete-time representation of a data string Y ¼

y1; y2; . . . ; yTf g of T continuous (real-valued) observations, and assuming a first-order 
Markov property (Bishop 2007) over the observations, the joint probability density function 
of Y is obtained as: 

pðYÞ ¼ pðy1Þ
YT� 1

t¼1
pðytþ1jytÞ

Although the above conditions have been widely used in practice, it may not always be valid 
because of long-range correlations among the observations, which are seen in certain 
systems (Bishop 2007; Murphy 2012). This has led to HMMs being used for applications 
primarily in speech recognition (Najkar, Razzazi, Sameti 2010), time series classification 
(Oates, Firoiu, Cohen 2000) and even in image classification (Ali and Ghani 2014). More 
recently it has shown good accuracy in the classification of chaotic data (Bhattacharya and 
Ray 2020a). In all of these problems, the HMM method has shown high classification 
accuracy.

Essentially, HMMs belong to a class of doubly-embedded stochastic processes, with 
a latent stochastic process of hidden state evolution. Although not directly observed, this 
evolution can be inferred by observing another stochastic process that produces the 
sequence of observations (Rabiner and Juang 1993), which capture the long-range depen-
dencies among observations and enables the usage of HMMs as black-box density models 
on observation sequences. The major difference between the HMM and the standard 
Markov model is that the HMM does not directly assume the Markov property (i.e., 
conditional dependence on the states and being independent of each other) for the 
observations themselves. Instead, the hidden state sequence Z ¼ z1; z2; . . . ; zTf g is assumed 
to follow Markovian dynamics. That is, given the current state zt , the future state ztþ1 is 
independent of all the states prior to time instant t.

To formalize the mathematical structure, let a string of observations y1; . . . :; yTf g be 
assumed to be generated by a hidden state sequence z1; . . . :; zTf g. A HMM is then 
constructed as a triplet λ ¼ A;B; πf g (Rabiner 1989), where:

a) A ¼Δ ½aij� is the Nj j � Nj j state-transition probability matrix, where Nj j is the finite 
number of hidden states belonging to the set N of hidden states: 

aij ¼ pðztþ1 ¼ qjjzt ¼ qiÞ : qi; qj 2 N 

where 
P

j
aij ¼ 1 "i and aij � 0 "i; j. In this paper, for comparison of HMM with STSA, 

the cardinality of the hidden state set is made equal to that of the PFSA state set (see sub- 
section III-B).

b) B ¼Δ ½bjðytÞ� is the probability density of the observation given the state: 
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bjðytÞ ¼ pðytjzt ¼ qjÞ

c) π ¼Δ ½πi� is the probability distribution of the initial state z1: πi ¼ pðz1 ¼ qiÞ, where π is 
a 1� Nj j vector with 

P

i
π Nj j

i¼1 ¼ 1 and πi � 0 "i.
Following a model λ, the corresponding joint probability distribution of states and 

observations has the form: 

pðY;ZÞ ¼ pðz1:TÞpðy1:T jz1:TÞ ¼ ½pðz1Þ
YT� 1

t¼1
pðztþ1jztÞ�½

YT

t¼1
pðytjztÞ�

In the training phase of a HMM (Rabiner 1989), time series data from each regime (i.e., 
classes k ¼ 1; � � � ;K), are used to learn the HMM. Subsequently, in the testing phase, the 
learned HMMs are compared to the HMM constructed from the data belonging to an 
unknown regime. A succinct description of HMM is outlined below.

During training, a commonly used expectation maximization (EM) procedure, called the 
Baum-Welch algorithm (Hajek 2015; Rabiner 1989), is used to learn each of the HMM 
models belonging to K classes. For each class (regime), an ensemble of time-series windows 
is obtained from the available time-series data. Then, the Baum-Welch algorithm Rabiner 
(1989); Hajek (2015) is applied to train the HMM λk which is a triplet λk ¼ Ak;Bk; πk� �

Rabiner (1989), k ¼ 1; � � � ;K, where Ak, Bk, and πk are defined similarly as A, B, and π for 
each class k. The procedure is repeated for each of the K classes.

During the testing phase, data windows of the signal from an unknown regime are 
provided as inputs to the algorithm. Given this observational sequence and the HMM 
models for each of the K classes, λk ¼ Ak;Bk; πk� �

, the problem is to find the probability of 
the entire observation sequence being associated with the most likely model. This is 
expressed as: 

pðYjλkÞ ¼
X

Z
pðYjZ; λkÞpðZjλkÞ ¼

X

z1;z2;;zT

πz1 bz1ðy1Þaz1z2 bz2ðy2Þ . . . azT� 1zT bzT ðyTÞ

which is obtained by using the Forward Procedure (Hajek 2015; Rabiner 1989) to compute 
the log likelihood (Lk) of the given window of unknown time series data belonging to each 
of the K classes. The final decision, as to which class the unknown data belongs, is made by 
selecting the class with the largest log likelihood as follows: 

Selected Class ¼ � argmax
k2 1;2;���;Kf g

Lk 

In this paper, a continuous HMM formulation has been used, where the emission is 
assumed to follow a Gaussian mixture model with M Gaussian components and N hidden 
states. The algorithms and theory for all the above HMM procedures are available in 
literature (e.g., Rabiner (1989); Hajek (2015); Murphy (2012)).

In the context of this paper, during the training phase, two HMM models are trained 
using the Baum-Welch algorithm, one for the stable regime (λStable) and another for the 
unstable regime (λUnstable). Once again, similar to the STSA method, these models are 
trained using 80% of the data available from the fully stable and fully unstable regimes. 
During the testing phase, a similar method to the STSA method is adopted where a data 
window of a specified window length is taken and downsampled. Once again, the 
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windowing is done at equal intervals of 0.02 s (50 Hz rate), i.e., the raw pressure data used to 
make the decision is the same for both the STSA and HMM methods. Then using the 
forward procedure, the log likelihoods of the observed data to be from the stable and 
unstable regimes are computed (called LStable and LUnstable respectively). The final decision is 
once again made using a threshold (ηHMM) as: 

LUnstable � LStable
<>

UnstableRegime

StableRegime
ηHMM 

Computation of the threshold parameters

In order to investigate the performance of the binary classification problem (i.e., accurate 
detection of the stable or unstable regimes), it is best to study it in the form of receiver 
operating characteristics (ROC) curves (Bishop 2007). The ROC curves are created by 
plotting the true positive rate (i.e., the rate at which the stable condition is correctly 
classified to be stable) against the false positive rate (rate at which the stable condition is 
falsely classified to be unstable) for a range of threshold values. The area under the curve 
(AUC) in a ROC curve is an indicator of how accurate the algorithm is, with a value of 1 
being perfect classification and lower values implying poorer classification.

In the computation of these ROC curves, the optimal thresholds (ηFFT , ηPFSA and ηHMM) 
have also been identified as those yielding the least errors, i.e., least number of mis-classified 
data windows. The optimal thresholds are seen to be functions of the window length and 
downsampling parameters as well as the alphabet size and number of mixture components 
for the STSA and HMM methods. Details of the ROCs are given in sub-section IV-A.

Results of experimental data analysis and discussions

This section discusses the comparison of the above three methods, namely, FFT, STSA, and 
HMM, based on the same set of experimental data obtained from the combustion appara-
tus, described in Section II. As mentioned earlier, in order to allow for a fair comparison of 
these three methods, the respective parameters in the algorithms have been kept similar, as 
explained below.

The root mean square (RMS) value of the pressure signal is defined as the ground truth 
that has been obtained using a moving window formulation, applied on the the experi-
mental data. The signal is considered stable when the RMS value of the pressure is found to 
be below 0.07 psi (0.483 kPa), which is 0.5% of the mean combustor pressure (Culler et al. 
2018b). As mentioned earlier in Section II, the available experimental time-series data 
consisted of completely stable signals, completely unstable signals and transient signals, 
where the combustor went from a stable state to an unstable state or vice-versa. For training 
both the HMM and STSA methods, data-driven models in the algorithms used 80% of the 
available completely stable and completely unstable data. For testing each of the three 
algorithms, only the transient data were used.

For each of the three algorithms, six window lengths of 10 ms, 20 ms, 50 ms, 100 ms, 
500 ms, and 1000 ms duration have been investigated. The analysis is performed every 0.02 
s (i.e., 50 Hz), yielding non-overlapping windows for data lengths of 10 ms and 20 ms, and 
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overlapping windows for the rest. However, each window is processed individually with no 
bias, making the comparison fair. The windowed data from the transient time-series are 
downsampled to examine the algorithm performance. Downsampling parameters of 1 (i.e., 
no downsampling), 2, 5, and 10 have been investigated. The FFT method uses the non- 
downsampled data to assure that signals at all pertinent frequency bands are captured and 
to avoid the risk of having too few points for generation of a sensible FFT graph; however, 
downsampling is applied to the data used for STSA and HMM to mitigate self-looping in 
the finite-state graph models. The final parameter under investigation is the alphabet size 
�j j in the STSA method (see sub-section III-B) and equivalently, Nj j, the number of hidden 

states, as seen in sub-section III-C; the values of Nj j that have been studied are 2, 4, 6, and 8. 
In all of the analyses, the number, M, of output Gaussian mixtures in the emissions of the 
HMM model has been kept fixed (e.g., M ¼ 2 was seen to be sufficient for initial analysis). 
Detailed analyses are made in the following sub-sections, where Table 2 tabulates the 
number of data-points used for analyzing FFT, STSA, and HMM algorithms as a function 
of the window-length and the downsampling parameter. This table will be referred to 
subsequently to show how the methods work for ultra-short windows of time series.

Comparison of FFT, STSA, and HMM performance

As mentioned in sub-section III-D, ROC curves are computed to obtain the optimal 
thresholds. The ROC curves can also be used to study the comparative accuracy of the 
various methods for different values of hyper-parameters. A total of 96 ROC curves have 
been generated (e.g., 6 window lengths � 4 downsampling parameters � 4 alphabet sizes/ 
number of hidden states). Given below are 8 selected sets of ROC curves in Figures 6 and 7 
to accurately describe the effectiveness of the methods without cluttering the paper. These 
correspond to the window length of 10 ms (Figure 6) with downsampling parameter of 1 
(i.e. no downsampling) and that of window length 20 ms (Figure 7) with downsampling 
parameter of 5.

These ROC curves are indicative of several very interesting observations. It is seen in 
Figures 6 and 7 that the HMM method consistently yields the highest accuracy (i.e., highest 
AUC). It is concluded from Figure 6 that the STSA method is the second best, with the AUC 
nearly matching that of the HMM method when the data is sufficiently partitioned (i.e., 

Table 2. Different window lengths and downsampling parameters (DS) for FFT, STSA, and HMM.

Window length (ms) FFT window data points

STSA\HMM window data points

DS = 1 DS = 2 DS = 5 DS = 10

10 164 164 82 33 17
20 328 328 164 66 33
50 819 819 410 164 82
100 1639 1639 819 328 164
500 8192 8192 4096 1639 820
1000 16384 16384 8192 3277 1639

NOTE: Total accuracy, as reported in the subsequent sub-sections, is the accuracy in classifying only the transient test set, 
expressed as; the total percentage of correct classification (i.e., stable as stable and unstable as unstable) obtained. 

NOTE: All the computations for this paper were conducted using in-house MATLAB codes for the STSA (Available at: https:// 
github.com/Chandrachur92/PFSA) and using Murphy’s (Murphy 2012) Hidden Markov Model (HMM) Toolbox for MATLAB 
(Available at: https://www.cs.ubc.ca/,murphyk/Software/HMM/hmm.html.). The computations are conducted serially on 
a single core processor of a DELL Precision Tower 7910 Workstation running an Intel® Xeon® E5-2670 CPU.
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more discrimination power). The FFT method consistently has the poorest performance, 
although it still has a rather high AUC of about 0.91; there are no changes in the FFT 
responses as the data for the FFT method is not downsampled. Figure 7 shows that 
downsampling degrades the performance of STSA when the number of symbols is 2 because 
it cannot sufficiently capture the system dynamics, but the performance recovers when the 
number of symbols is increased with �j j � 4. In the following sub-sections, the effects of 
each of the model parameters are explained in detail.

Figure 8 demonstrates the working of the threshold-based metrics for FFT, STSA, and 
HMM classification, where the optimal thresholds are obtained as elaborated in sub-section 
III-D. Each column indicates the representative result for a particular time series. For each, 
the top-most panel shows the pressure trace and the true regime based on the pressure RMS 
ground truth. The second row shows the FFT ratio computed in a windowed fashion 
superimposed with the computed threshold (see Table 6) and the corresponding classifica-
tion based on the FFT method. Similarly the third and fourth rows show the computed log 
ratio, threshold and classification for the STSA and HMM methods. It is noted that the FFT 
method produces the most noisy and hence the lowest accuracy in classification. Both STSA 
and HMM produce similar classification that closely matches the ground truth. These 
findings are further elaborated and discussed in the remainder of the paper.

Model Parameters: �j j ¼ N ¼ 4, M ¼ 2, D ¼ 1, DS ¼ 2, Window-length = 100 ms

Figure 6. ROC Curves of the three methods with window length of 10 ms and no downsampling, i.e., 
DS = 1 (yielding window sizes of 164 data points for the FFT, STSA, and HMM methods) for different 
values of PFSA alphabet size and number of HMM hidden states.
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Effects of window length on performance of STSA, HMM, and FFT

This section investigates the effects of data window length on accuracy of FFT, STSA, and 
HMM. The following figures plot the maximum total accuracy of each of the methods under 
a specified choice of model parameters. Maximum accuracy is expressed as the total 
percentage of correct classification (i.e., stable as stable and unstable as unstable) obtained 
at the optimal threshold. The optimal threshold is identified during the generation of the 
ROCs, mentioned earlier, as the threshold that yields the least errors, which implies the least 
number of mis-classified data windows. For the purpose of online detection, it is essential to 
be able to make a fast decision based on a short-length time series; thus, it is an important 
parameter to be decided by the user.

It follows from Figure 9 that the accuracy of the FFT method is highest when the window 
length is about 50–100 ms, which yields a sufficient number of data points to accurately 
generate the FFT, as seen in Table 2; smaller window lengths yield less accurate results. 
However, even higher window lengths perform poorly, because the FFT is an averaging 
method and is not able to capture the unstable mode amplitude spike over a large window, 
especially near change-points.

Figure 10 indicates that STSA yields the best performance for a window length of 100 ms 
at a downsampling parameter of 2; if the downsampling parameter is increased to 5, the best 
performing window length is 50 ms. However, in general, it is observed that window length 

Figure 7. ROC Curves of the three methods with window length of 20 ms and downsampling of 5 for only 
the STSA/HMM methods, i.e., DS = 5 (yielding window sizes of 328 data points for the FFT method while 
the STSA and HMM methods have window sizes of 66 data points) for different values of PFSA alphabet 
size and number of HMM hidden states.
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of 50 ms and 100 ms produced the most accurate detection for STSA. Even then, a smaller 
window length does not degrade the performance significantly (e.g., accuracy of ,95%). It 

Figure 8. Two sample pressure time series: first row – left and right (true regime superimposed); second 
row – left and right (FFT-based ratio metric for threshold and regime classification); thirrd row – left and 
right (PFSA-based ratio metric for threshold and regime classification); and fourth row – left and right 
(HMM-based ratio metric for threshold and regime classification).

Figure 9. Detection accuracy of the FFT Method for different window lengths.
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is observed that an alphabet size of 2 is probably insufficient for capturing the system 
dynamics. Typically, for proper control of a dynamic process, it is needed to be able to 
predict/detect changes using short data (i.e. at a time scale shorter than the time-scale the 
physical process needs in order to evolve into the anomalous state). Typically the growth of 
combustion instability takes to the order of 1 s (Bhattacharya et al. 2020b; Culler et al. 
2018b), so detection using time-windows of 100 ms (0.1 s) at a rate of 50 Hz allows for 
speedy diagnosis and control.

A similar trend is observed in Figure 11 for the HMM, which shows that the window length 
of 100 ms yields the best results for both downsampling parameters of 2 and 5; smaller window 
lengths show comparable accuracies. In general, it is observed that the accuracy of HMM is 
higher than that of STSA. For HMM, the results for each of the selected number of hidden states 
are largely similar with minor improvements when using larger number of hidden states, almost 
similar to STSA, however, the training and testing time increases quite a bit when increasing the 
number of hidden states. This is further discussed in sub-section IV-D.

It is to be noted that, the primary frequencies of interest are in the range of 400–700 Hz 
(see sub-section II-A and Figure 3). Thus, a 1-s-long data clip has about 400–700 cycles of 

Figure 10. Detection accuracy of the STSA method for different window lengths at downsampling 
parameters of 2 and 5, for four different values of alphabet size �j j.

Figure 11. Detection accuracy of the HMM Method for different window lengths at downsampling 
parameters of 2 and 5, for the four values of number of hidden states.
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pressure fluctuations. In tune with that 10 ms long windows have about 4–7 cycles, 100 ms 
windows correspondingly have about 40–70 cycles, with 1000 ms (i.e., 1 s) windows having 
400–700. From a quick detection point of view, smaller observation windows are better, but 
due to them not capturing sufficient cycles, the algorithms are not able to learn the best 
models of the system regimes. About 1000 ms, being extremely long again degrades results 
for the transient data cases due to the averaging effect of both HMM and STSA algorithms 
which make it difficult to capture change points accurately. The 100 ms window is the best 
of both worlds, capturing sufficient signal data to make good assessments about the regime 
while at the same time being small enough to capture changes well.

Effects of downsampling on STSA and HMM performance

Downsampling is another important parameter to be selected for accurate execution of 
the algorithms. No downsampling implies that all data points are used, which leads to 
higher computational times (see sub-section IV-E). At the same time, no downsampling 
may cause high probabilities of self-looping in the graphs of STSA because many closely 
spaced consecutive points may lie in the same data segment of the partition (see sub-sub- 
section III-B1), which may reduce the discriminative power of STSA. On the other hand, 
a high downsampling parameter may discard some of the important dynamical information 
contained in the data, which could degrade the quality of learning and classification.

It is seen in Figure 12 that STSA yields similar accuracy for downsampling parameters of 
both 1 and 2 for a window length of 20 ms. In contrast, for a window length of 100 ms, the 
optimal downsampling parameter is 1 for alphabet sizes of 2 and 8 and the downsampling 
parameter of 2 for alphabet sizes 4 and 6. In general, the downsampling parameter of 2 yields 
similar or better results, and higher downsampling parameters degrade the accuracy for STSA.

Figure 13 shows that all of the downsampling parameters yield similar results (i.e., with 
accuracy differences in the order of 0.2%). Ignoring these differences, a modest amount of 
downsampling has no major bearing on the HMM performance as long as the training is 
also done with a data-set with the same downsampling parameter. In fact, slight down-
sampling of the data reduces computation time during testing and training. In general, it is 
observed that HMM slightly outperforms STSA.

Figure 12. Detection accuracy of the STSA Method for different values of downsampling parameter DS 
with window lengths of 20 ms and 100 ms and for four different values of alphabet size �j j.
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The reason why downsampling emerges to be an important hyper-parameter for STSA- 
based methods is two-fold. Higher downsampling rates lead to poor detection since much 
of the signal information is not accounted for and is removed. However for STSA, if the 
signal is not sufficiently downsampled, a situation emerges where the state transition 
matrices for the STSA method have ‘heavy diagonals’ due to a large number of self-loops 
within the same state. This is a problem seen when there is oversampling. The fundamental 
frequencies of the signals are about the 400–700 Hz while the normal signal sampling rate is 
16,384 Hz, which even using the maximum downsampling tested (DS = 10) yields a sam-
pling rate of , 1640 Hz which is more than two times the highest frequency of interest, thus 
satisfying the Nyquist criterion. Other than this, there needs to be no mathematical linkage 
between the fundamental frequencies of the dynamical system and the sampling frequency. 
In other words, since the best sampling rate in this case is about 8192 Hz (16,384 Hz at 
DS = 2) when the frequencies of interest are in the range of 400–700 Hz, it means that 
a desirable sampling frequency would be about 20 times larger than the important 
frequencies.

Effects of alphabet size on STSA/PFSA performance and number of mixtures on HMM 
performance

The alphabet size of the STSA/PFSA method largely governs the accuracy of the method. 
Similarly, the number of hidden states changes the accuracy of the HMM method. Typically 
higher values of these yield better data separation. However having an extremely large 
number of alphabets/hidden states may degrade performance by needing more data to train 
the models, longer window lengths of data for good classification, and more training/testing 
times. Thus an optimal value of the alphabet size and number of hidden states must be 
arrived at.

It is observed from Figure 14 that the alphabet size of 2 is insufficient for capturing the 
system dynamics in the combustion pressure data. However, alphabet sizes of 4, 6, and 8 all 
yield largely similar results for each window length, which implies that an alphabet size of 4 
is sufficient. The trend similar to that seen in sub-section IV-B, where the best performance 
is obtained for a window-length of 100 ms (closely followed by the 50 ms window-length) 

Figure 13. Detection accuracy of the HMM Method for different downsampling parameters, four different 
values of number of hidden states Nj j, and window lengths of 20 ms and 100 ms.
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for both downsampling parameters of 2 and 5, with the performance dropping off when 
reducing or increasing the window-size.

Figure 15 shows that selecting the number of hidden states to be 2, 4, 6, and 8, causes the 
HMM method to yields similar results. This implies (as discussed in sub-section IV-B) that 
selecting the number of hidden states as N ¼ 2 is sufficient and higher values of N are 
unnecessary, which increase the time complexity (see sub-section IV-E). Once again, 
window lengths of 50 ms and 100 ms produce the best results.

Time complexity

Table 3 lists the average testing time taken to analyze a single window of data for six 
different window lengths. Since no downsampling or symbolization of data is considered in 

Figure 14. Detection accuracy of the STSA Method for different window lengths and for four different 
values of alphabet size �j j.

Figure 15. Detection accuracy of the HMM Method for different window lengths and four different values 
of number of hidden states Nj j.

Table 3. Testing time (per window) using the FFT method for the different window lengths.
Window length (ms) 10 20 50 100 500 1000

Testing Time (in ms) 0.037 0.059 0.096 0.127 0.402 0.695
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the FFT method, there is no impact on the downsampling parameter or alphabet size 
\number of mixture components. It is apparent that the testing time increases as the 
window-length increases, as is expected. It is noted that the highest testing time is much 
less than 1 ms, i.e., the FFT method is the fastest of the three data-driven methods 
compared. However, as seen previously, this is indeed the most inaccurate method under 
the present formulation. Therefore, the time complexities of the STSA and HMM methods 
are truly of major interest and are listed in Tables 4 and 5, respectively, in tabular forms for 
ease of comparison and visualization.

Table 4 shows that, in STSA for each downsampling parameter, the higher window- 
lengths require longer time to train or test. As the downsampling parameter is increased, the 
training and testing time reduce, because the algorithm needs to handle fewer data points 
(see Table 2). It is interesting to note that the training and testing times (per window) are 
very close in value for STSA. The testing time is slightly higher because the algorithm has to 
compute the � matrix of the unknown data and compare it with two trained state transition 
matrices (i.e., stable and unstable), and then to use a threshold to make the final decision 
(see sub-section III-B).

A different observation can be made for HMM from Table 5. First, the training time of 
HMM is much higher for any given downsampling parameter or window length. In fact, the 
training time of HMM is about 2 orders of magnitude higher than that of STSA. Also, as 
HMM is an iterative method, there is no monotonic behavior with respect to window length 

Table 4. Training and testing times (per window) of the STSA method for different window lengths and 
four different values of downsampling parameters with �j j = 4.

STSA training time (ms) STSA testing time (ms)

Window length (ms) DS = 1 DS = 2 DS = 5 DS = 10 DS = 1 DS = 2 DS = 5 DS = 10

10 0.055 0.048 0.045 0.044 0.082 0.074 0.071 0.073
20 0.062 0.065 0.059 0.056 0.093 0.084 0.078 0.074
50 0.090 0.068 0.054 0.061 0.12 0.11 0.082 0.084
100 0.13 0.10 0.063 0.054 0.17 0.12 0.10 0.084
500 0.57 0.33 0.13 0.087 0.59 0.36 0.17 0.12
1000 0.91 0.51 0.25 0.12 1.00 0.57 0.30 0.17

Table 5. Training and testing times (per window) of the HMM method for different window lengths and 
four different downsampling parameters with N ¼ 4.

HMM training time (ms) HMM testing time (ms)

Window length (ms) DS = 1 DS = 2 DS = 5 DS = 10 DS = 1 DS = 2 DS = 5 DS = 10

10 17.29 8.59 3.98 1.91 1.013 0.70 0.52 0.49
20 21.42 10.16 4.58 2.44 1.85 1.08 0.72 0.58
50 16.76 8.15 4.45 2.28 3.46 2.13 1.01 0.80
100 20.01 7.92 3.64 2.29 6.16 3.42 1.76 1.01
500 19.43 9.77 4.39 2.02 27.97 14.54 6.08 3.30
1000 16.29 7.02 3.37 1.86 55.11 26.48 11.39 6.12

Table 6. Parameters and optimal thresholds for comparison of efficacy in early detection.
window length (in ms) DS �j j M Optimal ηFFT Optimal ηSTSA Optimal ηHMM

Case I 100 2 4 2 0.031 0.371 (-)440
Case II 10 2 4 2 0.176 0.346 (-)45.9
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for the same downsampling parameter. On the other hand, a simple algebraic structure of 
STSA allows a strong correlation between the number of data points and the training time. 
Similar to STSA, the training time of HMM reduces as the downsampling parameter is 
increased, but even then, on the average, the training time of HMM is still about 2 orders of 
magnitude higher than that of STSA. For the testing phase, the time complexity of HMM 
increases monotonically with window length and decreases monotonically as the down-
sampling parameter is increased. However, the forward method used to obtain the log- 
likelihood ratio (see sub-section III-C) is more complex than the simple distance norm used 
for STSA. Thus, the testing time of HMM is about 1 order of magnitude larger than that of 
STSA for the lower window lengths and creeps up to 2 orders of magnitude higher for 
longer window lengths. Thus, from a time complexity perspective, STSA is far superior to 
HMM for both training as well as testing.

It is also seen that both training and testing times of STSA increase as the alphabet size 
�j j is increased. Similarly, for HMM, both training and testing times increase as the number 

of hidden states N is increased. The relative trend of time complexity is largely similar for 
STSA and HMM, although the magnitude for HMM train and test times is several times 
larger than STSA with a very minor drop in accuracy.

Thresholds

For each method there are a variety of parameters that need to be tuned, namely, window 
length for all of the three methods (i.e., FFT, STSA, and HMM), downsampling parameters 
for both STSA & HMM, and alphabet size, �j j, for STSA and number, N, of hidden states 
for HMM. Furthermore, there is an optimal threshold for each parameter combination, 
which yields the best performance. As mentioned earlier, the optimal threshold is computed 
as the threshold yielding the least errors (i.e., least number of misclassified data windows 
from the ROC curves). Thus, there is no “global threshold” that work across all the 
parameter sets, and instead the optimal threshold values is a strong function of the 
parameters, which must be determined from a training set before implementation of the 
algorithm. Optimal values of the three thresholds, ηFFT , ηSTSA, and ηHMM , are obtained from 
the respective ROC plots of FFT, STSA, and HMM, as listed in Table 6. In the following sub- 
section, results corresponding to a particular set of parameters and the corresponding 
optimal threshold have been discussed that elucidates this point further.

Classification versus early detection

This paper focuses on two important aspects of thermoacoustic instability (TAI) analysis of 
pressure time-series in combustors. The first is accurate classification of a given time series 
window into thermoacoustic stability or instability. The second aspect, which has not yet 
been addressed in this paper, is the need for efficient and prompt control of the thermo-
acoustic instabilities, namely, early detection of instability precursors and ability to predict 
the onset of a forthcoming instability as early as possible.

To study this second requirement, a set of parameters must be chosen and then the 
different methods (i.e., FFT, STSA, and HMM) need to be compared for evaluation of their 
performance and efficacy. As seen earlier, the window length of 100 ms yields the best 
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performance for all three methods. Similarly, the optimal alphabet size for STSA is 4 for this 
specific application, while the optimal number of hidden states for HMM is seen to be 2. 
A downsampling parameter of 1 or 2 is similar, but the downsampling parameter of 2 
requires a lower training and testing time for both STSA and HMM. Thus, this set of 
parameters should yield the best performance. However, since detection from short-length 
time series is a thrust of this paper, it is necessary to compare the efficacy of the methods 
using the same set of parameters but replacing the window length with the (smallest) 
window length of 10 ms. Table 6 lists the parameters and optimal thresholds used in the 
2 cases to compare the efficacy of the 3 methods when it comes to early detection of TAI. 
The windowing has been done at 50 Hz (i.e., once every 0.02 s) as discussed at the beginning 
of this section, which has been kept consistent throughout the paper.

It has been seen that the FFT method yielded poor results (as consistent with earlier 
findings). In order to reduce confusion, only the classification done by the STSA and HMM 
methods have been shown in the following images. In each of the images, the left hand plate 
shows the entire pressure time series with the true regime (based on the RMS value of the 
pressure) superimposed. The regime predicted by the STSA and HMM methods have also 
been superimposed. The right hand plate shows the same time series but zoomed into the 
portion where the regime changes from stable to unstable to appreciate how the algorithms 
are performing at the “change point.” Figures 16 and 17 show the classification on 2 sample 
time-series using a window length of 100 ms, while Figures 18 and 19 show the classification 
on the exact same 2 sample time-series but using a window length of 10 ms. the remaining 
method parameters are those listed in Table 6.

It is seen from Figures 16 and 17 that, for the 100 ms window, the HMM method goes 
closest to the the true regime, with the HMM method exactly matching the true state in 
Time Series 1 and with a very minor offset in Time Series 2. It can be seen from the zoomed 
plates that, in Time Series 1, STSA detects the change slightly late (by 0.02 s) while, for Time 
Series 2, it captures the impending change in regime far ahead of the change itself (0.08 
s earlier) and also ahead of the HMM method (which detects it 0.02 s in advance).

Figures 18 and 19 show that, the window-size 10 ms, the STSA oscillates slightly at a few 
places giving rise to false alarms (classifying a stable regime window as unstable) or mis- 
detections (classifying an unstable regime window as stable). However, these errors last for 

Figure 16. Sample time series 1 – Predicted vs actual regime with window length of 100 ms. Left: Entire 
time-series Right: Zoomed-in on the change point region
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Figure 17. Sample time series 2 – Predicted vs actual regime with window length of 100 ms. Left: Entire 
time-series Right: Zoomed-in on the change-point region

Figure 18. Sample time series 1 – Predicted vs actual regime with window length of 10 ms. Left: Entire 
time-series Right: Zoomed-in on the change-point region

Figure 19. Sample time series 2 – Predicted vs actual regime with window length of 10 ms. Left: Entire 
time-series Right: Zoomed-in on the change-point region
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a single window generally and then returns to a correct classification, so that would not 
cause a major issue of incorrect control. However, it is interesting to note that in both the 
time series shown, STSA detected the impending change to instability earlier than the RMS- 
based ground truth or the HMM method. In time series 1, the STSA method detects the 
change 0.06 s in advance, while the HMM method exactly traces the ground truth. In time 
series 2, STSA captures the impending change 0.04 s in advance and ahead of the HMM 
method, which detects it 0.02 s late.

Although only two pressure time series are reported here, it has been observed that, for 
smaller window lengths, STSA mainly detected the impending change in advance and, at 
most, coincided with the exact change in the system operation from a the stable to unstable 
regime. However, the HMM method could not detect the change so far in advance. For 
higher window lengths there was no clear winner between STSA and HMM for early 
detection.

In the experiments, the staging fuel was injected 3.75 inch (i.e., 95.25 mm) upstream of 
the flame. The bulk flow speed of the air, which would roughly be the same speed at which 
the control fuel would convect, was 26 m/s (Culler et al. 2018b). This implies that the time 
taken for the control fuel to convect from the control nozzle to the burning zone would be 
about 3.6 ms. The actuator delay was found to be about 6 ms. Allowing for a data 
assimilation delay of 1 ms, STSA data processing delay of 0.074 ms (Table 4), the total 
time taken for the control to be implemented and take effect in the burning zone is about 
11 ms.

Thus, being able to detect the impending changes from the stable to the unstable 
regime ,40 ms in advance allows for control to be implemented before the instability 
starts growing to dangerously high amplitudes. For the purpose of preemptive control 
using short time series data, STSA would be preferable. The FFT method yields poor 
results in general for short time-series data and should be used only as a baseline 
method.

Summary, conclusions, and future research

In this research, three standard data-driven methods, namely, fast Fourier transform 
(FFT), symbolic time series analysis (STSA), and hidden Markov modeling (HMM), 
have been investigated for detection of thermoacoustic instability (TAI). These methods 
are compared for their efficacy and accuracy for fast detection and early detection of 
instability using short data lengths. The effects of various algorithm parameters (e.g., 
window length and downsampling parameter of time series), used in STSA and HMM, 
have been studied to identify an optimal set of algorithm parameters. The time complexity 
for training as well as testing a given data window has also been investigated. Finally 
a comparison has been made to find which method is best for predicting impending 
instability to be included in an (active) control policy. The following conclusions are 
drawn from this investigation: 

• The HMM method reports highest detection accuracy, very closely followed by the 
STSA method. The FFT method is found to be most inacurate for the windowed 
analysis. However, it must also be noted that the FFT method method produces high 
accuracy (,95%) for 100 ms windows, which compares well to PFSA (,97%) and 
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HMM (,99%) for the same window length. This occurs due to the two primary 
drawbacks of the FFT methods traditionally used, (1) for accurate FFT plots, adequate 
length of signal is needed and (2) being an averaging method, it reduces the applic-
ability of FFT-based methods for analysis of non-stationary signals using longer 
window lengths.

• The FFT method is the fastest for testing, with the STSA method having slightly higher, 
but comparable CPU execution time. The HMM method requires at least 1 order of 
magnitude larger CPU execution time for testing.

• For training, CPU execution time of STSA is about 2 orders of magnitude smaller than 
that of HMM. This makes STSA a clear winner in the computational speed of both 
training and testing as compared to HMM, with a very small loss of accuracy. This 
property of STSAs finds use in the concept of online regime discovery which may be 
used to detect additional sub-regimes as demonstrated by Bhattacharya and Ray 
(2020b) where the authors ‘discovered’ anomalous operation in a Rijke tube (Rijke 
1859) in an online and partly supervised manner.

• For STSA, the alphabet size �j j should be greater than or equal to 4 to be able to 
accurately capture the dynamics of the signal for the combustion TAI detection. For 
HMM, 2 hidden states (N) and a 2 mixture emission (M) are sufficient for achieving 
similar accuracy.

• The ideal downsampling parameter for both STSA and HMM is found to be 2.
• The window length of 100 ms yields the best detection performance for both STSA and 

HMM; but even a 10 ms window (i.e., 82 data points at a downsampling parameter of 2) 
also produces almost comparable results.

• For predictive analysis (i.e., detection of precursors to impending thermoacoustic 
instability (TAI)), the STSA is superior to both FFT and HMM. However, the results 
do not indicate a clear superiority for the larger window lengths. This early detection 
capability of STSA is achieved at an apparent cost of loss of TAI detection accuracy. It is 
to be noted that TAI detection accuracy is not sufficient in deciding the “best” method 
for early detection.

• If the computational speed is of prime importance, or if it is essential to have early 
detection of TAI (especially in an online setting), then STSA is recommended for use 
with carefully tuned model parameters. If, however, the goal is to have a classification 
algorithm that closely matches the ground truth, and if there is no strict time constraints 
in the training or testing phases, the HMM method appears to be preferable. The FFT 
method should be used as a baseline, because it does not act as a good online detector 
with short-length time series.

While there are many topics of both theoretical and experimental research, the authors 
suggest the following topics for research in the near future: 

a) Topic 1: Finding a method to have a global set of thresholds to work across a range of 
window lengths.

b) Topic 2: Development of more powerful and accurate FFT based methods as it has the 
lowest computation time.

c) Topic 3: Testing these algorithms in a three regime setting; stable, unstable and 
unstable (increasing and decreasing).
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d) Topic 4: Exploring other pre-processing techniques and study if they improve the 
accuracy of the PFSA and HMM methods mentioned here, e.g., using wavelet trans-
forms for noise removal, etc.

e) Topic 5: Study other genres of data-driven tools, namely neural networks, such as 
Recurrent Neural networks (RNNs) and Long Short-Term Memory (LSTM) 
networks.
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