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HIGHLIGHTS

e Formulated a machine learning frame-
work for predicting combustion instabil-
ities.

e A transfer learning approach demon-
strated using deep neural networks.

¢ A simple Rijke tube apparatus chosen as
a source domain for transfer learning.

e The target domain for transfer learning
is a more complex premixed combustor.

o Transfer learning results in better pre-
dictions with less training data require-
ment.
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GRAPHICAL ABSTRACT

Graphical Abstract: Transfer Learning from Rijke tube experiments to predict
thermoacoustic instabilities in a Lean premixed combustor (LPC)
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ABSTRACT

The intermittent nature of operation and unpredictable availability of renewable sources of energy (e.g., wind
and solar) would require the combustors in fossil-fuel power plants, sharing the same grid, to operate with large
turn-down ratios. This brings in new challenges of suppressing high-amplitude pressure oscillations (e.g., ther-
moacoustic instabilities (TAI)) in combustors. These pressure oscillations are usually self-sustained, as they occur
within a feedback loop, and may induce severe thermomechanical stresses in structural components of combus-
tors, which often lead to performance degradation and even system failures. Thus, prediction of thermoacoustic
instabilities is a critical issue for both design and operation of combustion systems. From this perspective, it
is important to identify operating conditions which can potentially lead to thermoacoustic instabilities. In this
regard, data-driven approaches have shown considerable success in predicting the instability map as a function
of operating conditions. However, often the available data are limited to learn such a relationship efficiently
in a data-driven approach for a practical combustion system. In this work, a proof-of-concept demonstration of
transfer learning is provided, whereby a deep neural network trained on relatively inexpensive experiments in an
electrically heated Rijke tube has been adapted to predict the unstable operating conditions for a swirl-stabilized
lean-premixed laboratory scaled combustor, for which data are expensive to obtain. The operating spaces and
underlying flow physics of these two combustion systems are different, and hence this work presents a strong
case of using transfer learning as a potential data-driven solution for transferring knowledge across domains. The
results show that the knowledge transfer from the electrically heated Rijke tube apparatus helps in formulating
an accurate data-driven surrogate model for predicting the unstable operating conditions in the swirl-stabilized
combustor, even though the available data are significantly less for the latter.
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Nomenclature

TAI thermoacoustic instabilities

CFD computational fluid dynamics

DNN deep neural network

ANN artificial neural network

AUC area under the curve

ROC receiver operating characteristics

SLPM standard liters per minute

MSE mean-squared error

RT the Rijke tube

LPC lean-premixed combustor

TL transfer learning

P, root-mean-squared pressure fluctuations
L length of the Rijke tube

X, primary heater location in the Rijke tube
X secondary heater location in the Rijke tube
E; power input to secondary heater

E, power input to primary heater

(0] air flow rate inside the Rijke tube

Uin inlet velocity to the LPC

¢ equivalence ratio

l, length of the LPC

Frr Rijke tube DNN

Fipc transfer learned DNN for LPC

activation at a layer of a DNN

weight matrix connecting 2 layers of a DNN
bias for a layer of a DNN

normalized L, error

set of trainable parameters for a DNN
regularization parameter

nonlinear activation function

training data fraction

coefficient of determination in regression
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1. Introduction

The energy portfolio is undergoing a major qualitative change world-
wide. International consensus over the need to curb environmental is-
sues like global warming and reducing carbon footprint has led to a de-
cisive shift towards renewable sources of energy. Increasing share of re-
newables like solar energy and wind energy is redefining the role of ther-
mal power plants to on-demand peak power plants [1]. This intermit-
tent nature of operation and unpredictability of renewable sources like
wind or solar energy would require thermal power plants, on the same
grid, to be designed to compensate for fluctuations in supply of renew-
able energy. Consequently, the combustors in fossil-fuel power plants
would have to operate with large turn-down ratios. This brings new chal-
lenges like thermoacoustic instabilities (TAI) in the design of combus-
tors. Moreover, to achieve carbon neutrality, thermal power plants are
increasingly looking for renewable fuels. Renewable fuels, apart from
having lower heat contents than common hydrocarbon fuels, suffer from
inherent limitations like wide variations in composition due to diver-
sity of energy sources. For example, biogas can contain 40-70% CO,
depending on its source. Even natural gas, one of the most commonly
used gaseous hydrocarbon fuels, shows significant variation in compo-
sition, depending on the source of extraction and refining process [2].
Since the goal of the combustor design is to ensure a stable operation
in spite of these adverse factors, the design of a modern-day combustor
requires high level of flexibility.

One of the crucial issues in lean combustion systems used for low
NOx emission is the possibility of TAI. Large turndown ratios and wide
variations in fuel composition, leading to variations in flame speed,
make the combustion system more vulnerable to TAIL Although TAI have
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been investigated by a large number of researchers using state of the art
computational, experimental and analytical techniques, most of these
studies have focused on delineating the stable and unstable regimes or
identifying the route to the onset of instability. Stability maps for a fixed
design may often fail to clearly demonstrate the extent to which the
operating conditions can be modified in order to expect a satisfactory
performance in case the design in question fails to produce a stable op-
eration. Moreover, to the best of the authors’ knowledge, there does
not exist computationally inexpensive analytical or experimental corre-
lations which can provide accurate quantitative estimates of the degree
to which TAI can be mitigated as the controller input is varied over a
wide range of combustor operating conditions.

The availability of high performance computing systems has led to
widespread applications of computational fluid dynamics (CFD) as an
efficient design tool for a large variety of thermofluid devices includ-
ing combustion systems. However, simulation of practical combustion
systems under realistic operating conditions is, in general, computation-
ally very expensive owing to the existence of multiple spatial and tem-
poral scales and involvement of complex physics. Often, the physics-
based models, themselves, involve significant uncertainties, particularly
in estimated values of different parameters. For these reasons, low-order
data-driven models have been developed and successfully demonstrated
in the investigation of TAI in combustion systems. Kaess et al. [3] have
combined a high-fidelity CFD model with a low-order network model
to generate a map of combustor operations on the assumption of lin-
ear growth rates of both stable and unstable eigen modes, which are
then evaluated from a Nyquist plot. A mathematical technique, called
Cluster Treatment of Characteristic Roots (CTCR), has been used by
Olgac et al. [4] to develop stability charts. Matveev et al. [5] have
provided stability maps on a Rijke tube apparatus for various combi-
nations of power and flow-rate based on experimental data and com-
pleted the maps by using a reduced-order model of the Rijke tube. Ko-
pitz et al. [6] have performed experimental stability analysis on a model
combustor to generate a stability map as a function of equivalence ra-
tio and power output. While using a heat exchanger as a passive con-
troller, Surendran et al. [7] have generated stability maps for a com-
bustor under various configurations of the controller. However, most
of these low-order models suffer from a limited range of applicability.
Hence these low-order models can only be partially successful because
most of them are not based on the actual performance data of the com-
bustion system. To this end, data-driven modeling techniques that use
real experimental or system-generated data can be beneficial in predict-
ing the system response under a wide range of operating conditions.
Therefore, it is expected that a synergistic combination of model-based
and data-driven techniques will provide the designer with a quantitative
tool of statistical estimation of a combustion system’s probable behav-
ior when a particular control action is taken at operating conditions
for which no experimental/simulation data are available. This statisti-
cal tool can also be used to learn a stability map for the combustion
system, which is given by a data-driven generative model of machine
learning.

With the continued growth of computational power over the last
decade, deep neural networks (DNNs) have been successfully used in
a wide variety of application domains [8]. While data-driven models
(mostly based on deep learning) have seen a lot of success in fluid dy-
namics [8,9], atmospheric science [10], and dynamical systems [11],
a major shortcoming of these models is the inability to generalize be-
yond training distributions (the configuration of the system on which
they are trained). For example, a data-driven model trained on turbu-
lent flow with a particular Reynolds number or a particular level of
chaoticity cannot extrapolate to flows with higher Reynolds number or
to systems that are more chaotic than the one they are trained on. This
limits the practical usage of these data-driven models for physical sys-
tems since it is intractable to re-train the model on copious amounts of
data every time one needs to apply them to newer system configura-
tions. In the last few years, we have seen that such shortcomings can
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Fig. 1. Schematic diagram and isometric view of the experimental apparatus.

be addressed robustly and efficiently using transfer learning [12-14].
In transfer learning, we re-train (a few of) the layers of a pre-trained
deep neural network using a relatively small amount of data (typically
in the range of 1% to 10% of the original training size) from the new
distribution (new system configuration), but by initializing the network
parameters with the same weights as had been obtained during train-
ing on data from the initial distribution (old system configuration). In
this way, transfer learning allows deep neural networks to generalize to
systems involving different physics than what they have been trained
with, for example, to more chaotic systems [15], or to turbulent flow
with higher Reynolds number [16] with little training data from the
new applications and at low computational costs.

Most practical combustors are extremely complex large-scale sys-
tems and operate under very demanding conditions like high pressure
and temperature. So, it is generally not only difficult but unsafe to run
them under abnormal conditions to generate a large volume of training
data. Also, in case of practical operating systems, it is mostly not feasible
to employ a large number of sensors to characterise their behavior fully.
On the other hand, it is possible to develop smaller laboratory-scale sys-
tems with requisite instrumentation and operate them under less severe
conditions like moderate pressures and temperatures to generate a large
volume of training data for abnormal behavior.

The above discussion motivates the theme of the paper, where we
seek an answer to the question: Can we learn a stability map with data
from a relatively simpler and easily accessible combustion apparatus, and
hope to use it to achieve generalizability in predicting the stability map for
a more complex combustion system where we have limited data? The tech-
nique of transfer learning, discussed herein, can prove to be a very useful
tool to generate a large volume of data on abnormal behavior like ther-
mosacoustic instability under laboratory conditions, train a predictive
model and translate the model to give predictions for full-scale industrial
systems. As a proof-of-concept, we have chosen an electrically heated
Rijke tube apparatus [17] as the baseline combustion system which is
easy and inexpensive to operate and generate data to learn a DNN for
predicting the stability map. Then, through transfer learning, the DNN
trained on the Rijke tube has been extended to predict the stability map
for a much more complex setup: a swirl-stabilized lean-premixed com-
busting system [18], for which the flow physics is significantly different
from that in the Rijke tube. The results have shown that transfer learn-
ing allows for better predictions of the steady state root-mean-squared
pressure (P,,,,) values as a function of the operating conditions with lim-
ited training data as compared to learning a new network altogether for
the swirl-stabilized combustion system.

The manuscript is structured as follows. First, the experimental ap-
paratuses of the electrically heated Rijke tube and the lean-premixed
combustor are described (Section 2). Then, the statement of the prob-
lem, addressed in this paper, is highlighted in Section 3. Next, the so-
lution methodology and transfer learning architecture is presented in
Section 4. Section 5 presents the key results of this work. The paper
ends with a summary of the important findings of this work, including
directions for future research (Section 6).

2. Description of experimental apparatuses

This section describes the two experimental apparatuses from which
data have been procured for demonstration of the transfer learning ap-
proach.

2.1. Electrically heated Rijke tube

The data for training the source model for predicting P, have been
generated from a laboratory-scale electrically heated Rijke tube appara-
tus as shown in Fig. 1. The nature of the acoustic signature obtained from
resonating Rijke tubes is very similar to the combustion instabilities ob-
tained in real-life combustors, making them useful laboratory-scale ap-
paratuses for studying thermoacoustics. Electrically heated Rijke tubes
possess some of the important characteristics of (fuel-burning) combus-
tion systems like gas turbine combustors (i.e., acoustically compact lo-
calized heat sources). The simplicity of the experimentation and their
capability of generating clean signals have made electrically heated Ri-
jke tubes popular for investigations on fundamental aspects of thermoa-
coustic instabilities and their control [19]. Moreover, it is much safer to
operate them as compared to their counterparts involving flames from
burning fuels.

The apparatus in Fig. 1 comprises a 1.50 m long horizontal Rijke tube
with an external (square) cross-section of 0.1 m x 0.1 m and a wall thick-
ness of approximately 6.35 mm. The inlet air flow is supplied by a com-
pressor, which is prone to pressure fluctuations and is also expected to
have impurities like moisture. A Parker P32E series air filter-regulator
is used to suppress the pressure fluctuations and to filter the impuri-
ties. The mean air flow is then controlled through a 0-1000 standard
liters per minute (SLPM) Alicat mass flow controller. The horizontal ar-
rangement of the tube allows an independent control of the flow rate
and the heater power. Two damping chambers are provided at the two
ends of the tube in order to ensure that the tube ends are maintained
at pressure nodes under open-open boundary conditions. The damping
chambers also serve in decoupling the acoustics of the tube from those of
the main air line. The chamber dimensions are 0.45 m x0.45 m x1.14 m.
The primary and secondary heating elements in the Rijke tube are a
couple of square weave 40 x 40 nichrome wire meshes which are brazed
to two copper strips each on machinable ceramic frames [5]. The pri-
mary heater is placed at about quarter length (L) of the tube from the
air input end (i.e., X, /L = 0.25), and the secondary (control) heater is
mounted to a sliding arrangement that can move it from x,/L = 0.58
to x,/L =0.93. This movable arrangement of the secondary heater is
aimed at modeling a distributed arrangement of pilot fuel injection as a
control measure that interferes with the thermoacoustics from the pri-
mary flame to dampen the oscillations. The heating elements are pow-
ered by TDK Lambda programmable (0-8 V DC, 0-400 Amps) DC power
sources [20]. The downstream half of the tube is insulated to reduce heat
loss and to guard against any accidental physical contact with the hot
metal surface.
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Eight (8) PCB-116B03 pressure sensors and fifteen (15) K-type
Omega thermocouple probes have been used for acquiring the acous-
tic pressure and temperature data from the experiments. The first and
the eighth pressure sensors are placed at a distance of 125 mm from
the tube ends, while the distance between two consecutive sensors is
approximately 180 mm. The sensors are powered through an 8-channel
unity gain signal conditioner. The pressure sensors have a high sensitiv-
ity of 6 pC/psi and are coupled with in-line charge converters having
an amplification of 100 mV/pC. The 13 out of the 15 thermocouple
probes are placed downstream of the heater with an intermediate spac-
ing of 90 mm, while the remaining two are placed upstream starting
with a distance of approximately 63 mm from the upstream tube end.
The thermocouple probes are capable of measurements up to 1360 °C.
All sensors are flush-mounted with the inner walls of the Rijke tube to
reduce friction in air flow path. The sensor data acquisition and the volt-
age input to the programmable power supply unit are automated using
data acquisition devices from National Instruments (NI) in conjunction
with NI LabVIEW 2016. The pressure sensor data is acquired through
an NI-9205 (C Series Voltage Input Module) and the thermocouple data
through an NI1-9213 (C Series Temperature Input Module). The DC volt-
age supply is controlled through an NI-9264 (C Series Voltage Output
Module).

The pressure sensor data are sampled at a rate of 8192 Hz and the
acquired data are filtered with a 4th order Butterworth high-pass filter
having a cutoff frequency of 40 Hz in order to eliminate low-frequency
noises and acoustics from the damping chambers along with other en-
vironmental effects. Experiments have been conducted by varying the
secondary heater power input (E,) and air flow rate (Q), for different
combinations of primary heater power input (E,) and secondary heater
location (x,). The ranges of the parameter variations are as follows:

* E, from 1400 W to 2000 W in steps of 200 W.

¢ E, from 200 W to 1400 W in steps of 400 W, along with E, =0 W
(no excitation)

e O from 140 LPM to 250 LPM in steps of 10 LPM.

¢ x, from 35 inches to 55 inches in steps of 5 inches.

A technique, similar to the one demonstrated by Rigas et al. [21],
has been used in this paper for data collection:

1. For every run, the air flow-rate (Q) is set at a constant value, with a
fixed primary heater power and secondary heater location.

2. First the Rijke tube system is heated to a steady state with the pri-
mary heater power input (E,) of ~ 200 W.

3. Then power inputs to both primary and secondary heaters are
abruptly increased to their respective set point values. For some of
the parameter combinations, there could be occurrence of TAI even
in the steady state, while most of the parameter combinations should
remain stable.

4. Pressure data are procured by acoustic sensors for 30 s of operation
at a sampling rate of 8192 Hz.

5. The acquired data are filtered with a 10th order Butterworth high-
pass filter having a cutoff frequency of 40 Hz in order to eliminate
low-frequency noise and acoustics from the damping chambers along
with other environmental effects.

After each experiment, a cool-off settling period is maintained to en-
sure similar steady-state initial temperature fields in the Rijke tube for
each experiment. Maintaining similar initial temperatures ensures that
the mean velocity of the sound waves in the air remain approximately
constant for each experiment, which in turn ensures that the fundamen-
tal frequency of the tube is kept constant.

Typically, in a real-life combustor, the location of the primary fuel
injector (main burner) is fixed by design, and the demand to be satisfied
by a combustor is a particular value of power or thrust output, which
in turn dictates the fuel flow-rate into the combustion system (i.e., the
chemical energy input into the system). In the Rijke tube, the respective
analogous parameters are the position of the primary heater (x,) and the
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power into the system via the primary heater power (E,). Given these
two parameters as fixed or demanded, the role of the (secondary heater)
controller is to prevent or quench as best as possible any possible ther-
moacoustic instabilites. In a real-life combustor, having an array of pilot
fuel injectors, the movement of the secondary heater would be equiva-
lent to activation and deactivation of selected pilot fuel injectors. Of late,
several researchers have looked into mitigating thermoacoustic oscilla-
tions using different open loop control strategies [22-26]. While Huhn
and Magri [22] have proposed an optimization strategy of minimizing
the acoustic energy of chaotic oscillaitons as means to controlling TAI,
Deshmukh and Sharma [23] have proposed a passive control strategy of
air injection into the unstable flame through radial microjets from the
combustor tube wall. Other passive control strategies include the use of
perforated liners [26], placing an electrically heated wire at strategic lo-
cations in the Rijke tube [25], and using multiple Helmholtz resonators
as passive dampers [24]. Rigas et al. [21] and Jamieson et al. [27] stud-
ied the stability characteristics of Rijke tubes quantified by measure-
ments of growth and decay rates when a secondary heat source is in-
troduced in the tube. The Rijke tube apparatus which has been consid-
ered in this work is a modification of the setup of Jamieson et al. [27],
whereby a horizontal Rijke tube with a movable secondary heater has
been constructed.

Keeping the primary heater power (E,) fixed, the variation of the air
flow-rate (Q) would be similar to varying the equivalence ratio in a real-
life (e.g., gas turbine) combustor, where a higher value of Q implies a
leaner fuel-air mixture. It is noted that, in a real-life combustor, Q cannot
be directly controlled as it is a function of the demanded thrust or power
as well as the ambient operating conditions. However, by exploring the
parameter space of Q, it is possible to determine the location-power
combination of the secondary source (e.g., pilot fuel) to suppress TAI
in the combustor. Although Q is an indirectly controlled parameter, it
can be used as a design parameter to quantify the control actions to be
undertaken at different equivalence ratios, if the TAI reach undesirable
proportions. Therefore, in a real-life combustor, the directly controllable
parameters, akin to the location-power combination of the secondary
heater in the Rijke tube apparatus, are the location of a pilot fuel injector
and flow-rate of the injected pilot fuel. Typically, it is undesirable to
have too high a flow rate of the pilot fuel injector because, being located
downstream in the flow path, the pilot fuel will tend to shift the flame
further downstream and this may cause damage to the blades of the
high-pressure turbine.

2.2. Lean-premixed combustor (LPC)

A swirl-stabilized, lean-premixed, laboratory-scale combustor has
been used for validation of the proposed algorithm with experimental
data. Fig. 2 depicts a schematic diagram of the variable-length combus-
tor apparatus [18], consisting of an inlet section, an injector, a combus-
tion chamber, and an exhaust section. There is an optically-accessible
quartz section followed by a variable-length steel section. High pressure
air is delivered to the apparatus from a compressor system after passing
through filters to remove any liquid or particles that might be present.
The air supply pressure is set to 180 psig (1.338 MPa) using a dome
pressure regulator. The air is pre-heated to a maximum temperature of
250 °C by an 88 kW electric heater. The fuel for this study is natural
gas (approximately 95% methane) which is supplied to the system at a
pressure of 200 psig (1.475 MPa). The flow rates of the air and natural
gas are measured by thermal mass flow meters. The desired equivalence
ratio and mean inlet velocity are set by adjusting the flow rates. Further
details about the experimental apparatus can be found in the work by
Kim et al [18]. Synchronized time series data of pressure oscillations
have been collected under different operating conditions, by varying
the following parameters:

1. Inlet velocity (v;,) from 25 to 50 m/s in steps of 5 m/s.
2. Equivalence ratio (¢) as 0.525, 0.550, 0.600 and 0.650.
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d) operating conditions of the Rijke tube. For (a) and (c): E,=2000 W, E, =0 W, x, =345 inches, Q =220 LPM ; and for (b) and (d): E,=1600 W, E; =200 W,

x, =50 inches, O = 170 LPM.

3. Combustor length (/,) from 25 to 59 inches in steps of 1 inch.

Time series data of pressure oscillations have been collected at a
sampling rate of 8192 Hz. The time span of data collection has been 8 s
(i.e., 65,536 measurement data per channel) after the system reaches a
steady state for each operating condition, which is within the safe limit
of operation of the combustor apparatus and which is long enough to
provide sufficient information for statistical analysis.

3. Problem statement

Fig. 3 shows a representative plot of the acoustic time series and their
respective frequency signatures for an unstable and a stable operating
condition of the Rijke tube at the steady state (between 25 s and 30 s

of operation). The unstable condition is characterized by a sharp ther-
moacoustic excitation of the Rijke tube’s natural frequency (~ 131 Hz)
and its harmonics, which is missing in the stable operation condition.
Fig. 4 shows the corresponding plots for a stable and unstable operation
of the LPC. An important thing to note is the difference in magnitude
of the amplitude of unsteady pressure oscillations in the LPC, which are
2 orders of magnitude higher than that of the Rijke tube. Also there
exist high frequency modes which are harmonics of the fundamental
frequency (~ 500 Hz) for the depicted unstable operating condition :
I, =30 inches, ¢ = 0.65 and v;,, = 50 m/s.

As an operator/designer of a combustor, it is desirable to have an es-
timate of the P,,,; value of the acoustic signature in the steady date for an
unknown operating condition. This is because P,,,, is strongly correlated
the level of limit cycle instability - higher P, indicates a more unstable
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system. From this perspective, a stability map can be learned, which is a
regression model that predicts P,,,, as a function of the operating condi-
tions of a combustor. In this paper, first a stability map is learned for the
Rijke tube, which is a DNN, mathematically denoted by Fgyr : R* — R
(since operating conditions of the Rijke tube lie in the 4-dimensional
space of (E,, E,, x,, Q). Then a transfer learning methodology is ap-
plied to extend Fgy to predict the stability map Fypc : R? — R for the
LPC (inputs to LPC lie in the 3-dimensional space of (/,, ¢, v;,)).

3.1. Comparison metrics

The metrics chosen for evaluating the performance of the regression
predictions are:

(a) Normalized L, error (¢): It is defined as the ratio of Euclidean norms
of the error of the predicted output ($) and the true value of the
output (y*), i.e. e = %
of ¢ is desired for a good iegressor.

(b) R? score: It is the Coefficient of Determination assessing the degree
to which the predicted output compares with the respective true val-
ues, calculated on the test set. A high R? score is desired for a good
regressor, with R? = 1 indicating that the regression predictions fit
the true data perfectly.

, calculated on the test set. A low value

First, the regressor Fyr is learned till we have a satisfactory regres-
sion performance as gauged by e and R? score on the Rijke tube dataset.
Then, the regressor 7 p¢ is transfer learned from Fyr, and the regression
performance of 7| pc is gauged by using the aforementioned metrics on
the test dataset from the LPC. Fig. 5 shows a schematic of the transfer
learning approach proposed in this paper. More details of the transfer
learning framework is provided in the subsequent Section 4.

4. Methodology

This section briefly describes the DNN-based regression framework
and transfer learning methodology adopted in this paper. For further
details regarding transfer learning and the applicability in different ap-
plication domains, an interested reader is referred to a comprehensive
survey of transfer learning applied to DNNs [28].

4.1. Deep learning with artificial neural networks

An artificial neural network (ANN) [29], is a directed acyclic graph
of vertices and edges that propagates an input through successive layers
of affine transformation (typically through weight matrices that are opti-
mized through a training process) and non-linear activations to produce
an output, so as to learn a functional relationship between the input and
output. Typically, these networks have multiple layers of weights which
are optimized over many samples of input-output data pairs and are thus
very expressive in terms of learning complicated functional relation-
ships. Generally we write neural network functions in linear-algebraic
forms as:

Z=o(W'Z™ +b) 1)

where z/ is the activation at layer /, W/ is the weight matrix connecting
layer I and layer I — 1, b' is the bias at each layer /, and ¢ is the non-
linear activation function. In this work, the network that is trained on
experimental data from the Rijke tube (Fgy) has a total of 9 hidden
layers. So, / ranges from 1 to 10. The number of neurons in the hidden
layers are 4, 8, 16, 64, 128, 64, 32, 16, and 4, respectively. Each layer
has an exponential linear unit (ELU) activation function [30] except
for the last layer which has a linear activation. To avoid overfitting of
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Fig. 5. Schematic overview of the proposed transfer learning approach.

the network, we apply L,- regularization in each of the layers except
for the last one, with a regularizing coefficient 1 x 10->. Although 700
epochs are chosen for the training routine, we employ early stopping
criterion [31] during the training phase to track the validation score and
stop the training process if overfitting is detected. The hyperparameters
such as the size of the layers, activation function, and the learning rate
(chosen to be 1 x 10™#) has been chosen after exhaustive trial and error.
During training, W' and b/, where / € [1,2,... 10] are obtained using
ADAM optimizer [32] through backpropagation [33], to minimize the
regluarized mean-squared error (MSE) loss function:
n
L(y.5:0)= |1y = llyse + 4 D07 @
i=1

Here © = {6,},_, , denotes the set of trainable parameters of the
regressor (with total number of parameters = n). We refer to the trained
parameters, which are the weights and biases of the trained model Fyy
as thr ainea A0 bﬁmme 4> Tespectively. 4 is the regularization parameter,
which controls the weights and biases and reduces the likelihood of
overfitting. The DNN framework is implemented via Python using Ten-
sorflow [34] - an open source library for large-scale machine learning.

4.2. Transfer learning

As discussed in Section 1, transfer learning has been
shown [15,16] to be a robust technique to generalize trained models
beyond the training distribution from a simpler system (in this case,
data obtained from the Rijke tube experiment) to other, often more
complicated systems (in this case, the LPC). When re-training the
trained model (Frr) using data from the LPC, we need to account for
the fact that the input dimension of the data from this system has
changed from 4 (in the Rijke tube experiment) to 3 (in the LPC). In

order to do that, we introduce a new layer with weights and biases W°
and ° in the network with random numbers generated from a Gaussian
distribution and re-train this layer and the last three layers of Fyr, i.e.,
we re-estimate W' and b’ for I € [7,8,9, 10] using ADAM optimizer with
a learning rate of 5 x 10~*. The weights and biases of this new network,
Fipc are W! and B respectively, where / € [2,... 10] are initialized to
Wtiame , and bfmine 4+ Moreover, only weights and biases corresponding
to! =[7,8,9,10] are re-trained, while weights and biases corresponding
to I =[1,2,... 6] are not updated (often referred to as freezing these
layers). Similar to the Rijke tube, overfitting is avoided by employing
L, regularizer in all layers but the last, with a regularizing coefficient
of 1 x 1075, Moreover, early stopping is employed as a means to prevent
overfitting, along with setting the maximum number of training epochs
to 500 and batch size to 16. The batch size for the network is set to 16.
The transfer learned model, 7 pc, is then used to make predictions on
the data obtained from the LPC.

4.3. Selection of model hyperparameters

Hyperparameters are model parameters which are not learned dur-
ing the model training process; these parameters are chosen by the user
beforehand. In this paper, the number of hidden layers, number of neu-
rons in each layer, the type of activation function in each layer, L,-
regularization coefficient, maximum number of training epochs, batch
size, and early stopping scheme are all hyperparameters in the setting of
neural networks. In order to select the hyperparameters for the DNNs,
a pre-defined grid search strategy has been employed, which is a com-
monly followed strategy for choosing neural network architectures in
practice. The values of hyperparameters which resulted in the best per-
formance (lowest MSE loss for each network) without overfitting have
been chosen for each network.
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5. Results and discussions
5.1. Regression performance on Rijke tube data

The Rijke tube data had in total 764 operating conditions for which
the steady state P, values were recorded. 90% of the available data
from the Rijke tube was randomly selected and used for training and
validation of Fyy, while remaining 10% data was used for testing. Since
a well-trained baseline regression model from the source domain is as-
sumed for the transfer learning task, 90% of the data from the Rijke tube
has been used to train Fyy in this paper. € in the training and test sets
are 0.20 and 0.19, respectively, which shows satisfactory prediction per-
formance without evidence of overfitting. Fig. 6 shows the parity plot
comparing the predicted P,,,, outputs with the true outputs in the test
dataset of the Rijke tube. An R? score of 0.90 was achieved by the pre-
dictions on the test dataset.

5.2. Transfer learning for LPC

Fig. 7 shows the performance of transfer learning whereby Fyr is
suitably adapted to predict the stability map for LPC, as described in
Section 4. The effect of transfer learning (red markers, labelled as ‘with

TL’) has been highlighted by comparing the predictions with DNNs
learned on the LPC data without any transfer learning (black markers, la-
belled as ‘without TL’). For networks learned without any transfer learn-
ing, the same architecture as Fj p¢ is maintained, except that the weights
and nodes for all the layers are randomly initialized from a Gaussian
distribution and updated through backpropagation, i.e., amounting to
training a fresh network.

There were 780 datapoints in total for the LPC for which P,,,; values
were known for the corresponding operating conditions. Hence, transfer
learning is performed over a range of training data sizes to investigate
its effect as the training data size varies from low to high. It is seen that
transfer learning improves the prediction performance, as indicated by
lower ¢ and higher R? score than when a fresh network is trained (i.e.
without transfer learning). The fraction of training data from the LPC has
been varied from 0.3 to 0.7, with the transfer learned networks perform-
ing better for all training sizes. Care is taken through regularization and
early stopping for each network to ensure that overfitting is prevented
during the training phase. It is observed that with increasing training
data size there is a greater reduction in e¢ with transfer learning. The
absolute reduction in € is ~15% when the training size = 0.3, and ~35%
when the training size = 0.7. This is possibly due to the fact that with
an informed initialization from Fyy, the trainable layers of Fjpc- can
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capture the input-output relationship between the operating conditions
and P, of LPC more efficiently when there is higher data availability,
and this makes sense because e is directly related to the MSE error loss
function which is minimized during the training phase of the regres-
sor 2. The corresponding increase in R? score is ~36% at training size
= 0.3 and ~16% at training size = 0.7. This result highlights that trans-
fer learning can be effectively employed for training a regression model
with satisfactory accuracy for a different application where there might
be a paucity of training data to effectively train a good model. Moreover,
this application indicates that although the physics inside a Rijke tube
is fundamentally very different from that inside a swirl-stabilized lean-
premixed combustor, still there is transferable knowledge which can be
extracted in the hidden layers of a neural network, and can be gainfully
utilized to predict the level of instability for a combustion system.

Fig. 8 shows the predictions of 7| p- when the training data size =
0.5. The predictions provide the operator with an a priori estimate of
the expected level of pressure oscillations in the steady state for a design
set of unknown operating conditions, which can be extremely beneficial
for the design process. For example, based on the prediction of the P,,,
a designer can be conservative and rule out the design choices that do
not meet the requirements such as an acceptable threshold of limit-cycle
oscillations.

5.3. Response surface projections of predicted P,

Fipc serves as an inexpensive surrogate model for predicting P,,,,
over the space of operating conditions (/., ¢, v;,). Fig. 9 shows the projec-
tions of the predicted response surface P, (., ¢, v;,) from the transfer-
learned DNN (7} pc) on different 2-D slices. It is seen in Fig. 9(a) that
high values of P, (P,,, > 8000 Pa) are predicted for 0.55 < ¢ < 0.65 at
the highest velocity level (i.e., v;, = 50 m/s). Fig. 9(e) and (f) show simi-
lar high values of P,,,, at higher velocity ranges (40 < v;, < 50 m/s), but
at low values of /, (30 </, < 35 inches). Such projection maps can be
useful for an operator/designer to estimate how the combustor would
behave for a range of operating conditions. Moreover, TL provides an ef-
ficient way of learning a model that can provide such response surface
estimates almost instantaneously, thereby saving the expense of gen-
erating sufficiently large amount of data in order to learn an accurate
data-driven model.

5.4. Binary classification: detection of instabilities

The P, predictions from the ANNs can be utilized for detection of
thermoacoustic instabilities in the LPC, based on a user-defined thresh-

old (7). For a binary classification problem, where the classes ‘A’ and ‘B’

~2500 5000 7500 10000

Table 1

Comparison of AUCs for binary classification
using P,,,, predictions for the LPC from regres-
sors with and without TL at different values of
training data fraction (&).

& AUC without TL AUC with TL
0.3 0.65 0.85
0.4 0.83 0.86
0.5 0.85 0.90
0.6 0.83 0.94
0.7 0.85 0.95

denote stable and unstable operating conditions, respectively, an algo-
rithm can be designed to classify each input combination of (/., ¢, v;,)
into either class based on the following hypothesis:

B
Pose, &, 0i) % T 3

The true labels of instability (i.e., binary labels for the input operat-
ing conditions based on whether they result in an unstable operation
or not) are obtained based on a threshold of 480 Pa [35], which has
been provided by the experiments on the LPC. A popularly used cri-
terion for choosing r for a classifier is the Receiver Operating Char-
acteristics (ROC) curve [36] that is obtained by varying = so as to
reach a trade-off between the probability of successful detection (pj, £
Prob[Decided Class = B|True Class = B]) and the probability of false
alarms (pp £ Prob[Decided Class = B|True Class = A]). Fig. 10 shows
the ROC curves using DNN regressor predictions of P, for the LPC, with
and without TL. The range of training data fraction (¢), as explored in
Fig. 7, is also studied in Fig. 10 to understand how the classificaiton per-
formance behaves as a function of the amount of training data from the
LPC. In an ROC curve, it is typically desired to have a sharp increase in
pp to a value close to 1 at low values of p (ideally, it is desired to have
pp = 1 for pp = 0, which results in a perfect classification). It is seen that
the classifier using the predictions from transfer-learned networks (e.g.,
Fipc) reaches close to p;, = 0.90 along with having py < 0.10 for &€ = 0.7.
But, even with the highest amount of training data (¢ = 0.7), pp < 0.70
with p = 0.10 for the classifier that relies on the DNN predictions with-
out TL.

A commonly used metric for gauging the performance of classi-
fiers is the area under the curve (AUC) of receiver operating charac-
teristics (ROC) for each classifier [37]. Higher AUC is generally asso-
ciated with a better overall performance of a classifier, with AUC = 1
for a perfect classifier. Table 1 enlists the AUC for the ROC curves at
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Probability of False Alarm

different values of £. As can be evinced from Fig. 10, it is also seen
from Table 1 that when TL is utilized, even with lower training sizes
(e.g., £ =0.4 and 0.5) it is possible to have classification performance
similar to/better than that using high training sizes (e.g., £ = 0.6 or
0.7) in the ANNs without TL. Moreover, the classifier with the lowest
training size (¢ = 0.3) performs poorly when TL is not utilized (AUC
= 0.65), but has a significantly improved performance (AUC = 0.85)

when TL is utilized. These observations clearly highlight the impor-
tance of TL in providing better predictions which can serve as a crit-
ical tool in improving the performance of combustion systems by ac-
curately classifying which design conditions can lead to potential in-
stabilities. With such a tool, an operator can have quick and accurate
estimates of the of the safe running conditions of the combustor over
a wide range of design conditions, which can serve as a key resource

10
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in defining the operational regimes for efficient performance of the
combustor.

6. Summary, conclusions and future work

This paper addresses the issue of suppressing high-amplitude pres-
sure oscillations (e.g., those due to thermoacoustic instabilities (TAI)) in
power plants and gas turbine engines. A transfer learning methodology
is proposed, by virtue of which regression models predicting stability
maps in a relatively simple and easy to operate electrically heated Rijke
tube apparatus is efficiently adapted to predict the level of instability for
unknown operating conditions in a swirl-stabilized lean-premixed com-
bustion (LPC) system. The average reduction in normalized L,-error in
P, prediction is found to be ~ 25%, and the average increase in the R?
score ~ 22% using transfer learning on the combustion system, across
different training sizes of the datasets investigated. A classifier based on
the P, predictions for the LPC is formulated, and it is found that trans-
fer learning significantly improves the accuracy of classification, even
with low training data sizes.

The results show that transfer learning can be a potential methodol-
ogy for transferring knowledge from a simpler to a more complex com-
bustion system. It also highlights the convenience of using such a learn-
ing methodology for having reliable estimates of the stability maps over
a range of operating conditions, which has a potential of accelerating
and improving engine design and performance. A future study can fo-
cus on determining the optimum combination of simpler systems and
volume of training data needed for satisfactory results on a complex
system. For example, training with relatively smaller volume of data on
a simple laboratory combustor may give similar accuracy as training
with a larger volume of data generated on an electrically heated Rijke
tube. A challenging future step would be to combine training data from
multiple laboratory-scale systems of increasing complexities like electri-
cally heated Rijke tubes and laboratory-scale turbulent combustors and
use them to train a full-scale industrial system for which limited training
data would be available.
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