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Abstract: The paper presents a coupled machine learning and pattern recognition algorithm to en-
able early-stage fatigue damage detection in aerospace-grade aluminum alloys. U- and V-notched 
Al7075-T6 specimens are instrumented with a pair of ultrasonic sensors and, thereafter, tested on 
an MTS apparatus integrated with a confocal microscope and a digital microscope. The confocal 
microscope is focused on the notch root of the specimens, whereas the digital microscope is focused 
on the side of the notch. Two features, viz., the crack opening displacement (COD) and the crack 
length, are extracted during the tests in addition to the ultrasonic signal data. These signal data are 
analyzed using a machine learning framework that is built upon a symbolic time-series algorithm. 
This framework is interrogated for crack detection in the crack coalescence (CC) regime defined by 
COD of ~3 μm and detected through the confocal microscope. Additionally, the framework is 
probed in the crack propagation (CP) regime characterized by a crack length of ~0.2 mm and de-
tected via the digital microscope. For the CC regime, training accuracies of 79.82% and 81.94% are 
achieved, whereas testing accuracies of 68.18% and 74.12% are observed for the U- and V-notched 
specimens, respectively. For the CP regime, overall training accuracies of 88.3% and 91.85% are ob-
served, and accordingly, testing accuracies of 81.94% and 85.62% are obtained for the U- and V-
notched specimens, respectively. The results show that a combined machine learning and pattern 
recognition algorithm enables robust and reliable fatigue damage detection in aerospace structural 
components. 

Keywords: fatigue crack detection; Al7075-T6; ultrasonic sensors; confocal microscope; pattern 
recognition; symbolic time series analysis 
 

1. Introduction 
High-strength aluminum alloys such as Al2024, Al6061, and Al7075 are widely used 

in the fabrication of critical structural parts of aircraft components encompassing fuselage, 
fittings, gears, shafts, valves, etc. The critical failure mode of such structural components 
is often due to repetitive loadings, i.e., fatigue. Fatigue failures are challenging to predict 
and control due to their occurrence at seemingly safe loads where the structure operates 
well below the yield strength or the ultimate tensile strength of the material [1]. The mech-
anisms behind such failures are attributed to the cumulative accumulation of damage that 
leads to fatigue crack initiation and then eventually to fracture. The enigmatic character-
istics of the fatigue failure phenomenon have garnered a significant amount of interest 
from the industry and academia alike [1]. Due to the impact of uncertain operating con-
ditions, several parameters play critical roles in affecting the fatigue lives of aerospace 
structural components. Accommodating all such parameters during the product design 
and development stages, either via experimentation or through computational modeling, 
is rather challenging with the current understanding of the field [2]. 
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Fatigue damage detection using a sensor-based approach, therefore, presents an al-
ternative to ensure the reliable operation of critical aerospace components. Several sensors 
such as ultrasonics [3], acoustic emission sensors [4], eddy current sensors [5], laser Dop-
pler vibrometers (LDVs) [6], and strain gauges [7] have been used in the past to detect 
fatigue damages (e.g., cracks) in metallic components [5]. Most of these detection sensors 
provide information in the form of a time-series signal, and to calibrate the signal data, 
secondary sensors such as imaging microscopes are required [5,8]. Therefore, in a convo-
luted manner, the fatigue crack detection capability not only depends on the time-series 
data analysis algorithms but also pivots on the capability of the detection and imaging 
sensors. Hence, to improve the current capabilities of detecting smaller cracks, three major 
thrust areas exist, viz., the imaging sensors, the detection sensors, and the time-series data 
analysis algorithms. Within the current literature, the capability of fatigue crack detection 
has been approximately ~0.2 mm using ultrasonic sensors in conjunction with an optical 
microscope [3,5]. In the upcoming paragraphs, a review of the imaging sensors, detection 
sensors, and time-series data analysis algorithms is provided. 

Imaging Sensors: Figure 1a depicts the typical orientation of the microscopes used 
in sensor-based fatigue analyses. Figure 1b shows two critical features, e.g., the crack 
length and the crack opening displacement (COD), that can be characterized during test-
ing. COD corresponds to the distance between the end tips of a crack. The focus of damage 
detection techniques using sensors has been geared towards characterizing the crack 
length. Observing COD is difficult due to two main constraints. Firstly, it may not always 
be visually accessible, particularly inside the notches or holes that are inside the specimen 
where the fatigue crack usually originates [9]. Secondly, the dimensions of COD are in the 
micron-scale, which is not feasible with the prevalent imaging techniques such as an op-
tical or a digital microscope. However, with appropriate high-resolution microscopes [10], 
the analysis of COD can provide useful information toward early-stage damage detection 
if the microscope is focused at the notch root, as is schematically shown in Figure 1c [8,11]. 

 
Figure 1. (a) Schematic of a representative fatigue specimen with a one-sided V-notch illustrating the view area of the 
imaging sensors for fatigue crack detection; (b) Characterization of the crack length and the crack opening displacement 
(COD) used in the current work; (c) A potential alternative orientation of an imaging sensor to observe COD. 

Detection Sensors: Amongst the pool of available detection sensors, ultrasonic sen-
sors have been particularly prevalent in damage detection applications [12]. The basic 
principle of ultrasonics-based damage detection stems from the interaction of ultrasonic 
waves with the internal structures of components. The transmitter emits ultrasonic waves 
through the material. If a crack is present in the path of the waves, the signature of this 
crack gets encoded in the detected signals by the receiver [13]. The capability of damage 
detection, however, is dependent on the frequency of the sensors. Larger cracks can be 
detected by lower frequency ultrasonics while finer crack detection would require higher 
frequency ones [3,14]. A majority of the applications involving ultrasonics have used lin-
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ear operational principles. Research on the use of nonlinear techniques for detecting ear-
lier damage has also been studied, albeit with more sophisticated instrumentation [15]. 
However, the efficacy of such nonlinear sensors in detecting fatigue cracks is lacking in 
the literature. 

Time-Series Data Analysis: Several traditional processing algorithms such as Fast 
Fourier Transforms (FFTs) and wavelet decomposition have shown commendable results 
for detecting changes in frequency domains [16]. Moreover, with the recent develop-
ments, several machine learning algorithms, such as long short-term memory, recurrent 
neural networks, and symbolic time series analysis (STSA) have also been implemented 
for time-series classification [17]. Among these methods, STSA has shown a successful 
damage detection capability with ultrasonic signals [3]. STSA is a statistical signal pro-
cessing algorithm that uses symbolic dynamics, information theory, and pattern recogni-
tion to come up with features that can be used to detect the emergence of a fatigue crack 
[18]. STSA is particularly suitable for identifying the signal properties changing at a slow 
time-scale similar to the mechanisms observed in fatigue [19]. It has been demonstrated 
to be computationally efficient, with a fraction of data as compared to the traditional al-
gorithms such as neural networks [3]. To summarize the current literature in sensor-based 
damage detection, Table 1 shows the performance of some of the commonly used sensors 
and time-series data analysis algorithms with respect to their damage detection capability. 

Table 1. A comparison of the crack detection capabilities for various imaging and sensing techniques. 

Fatigue Crack Detection Paradigm 
Sensor Type (Detection 

Sensor + Imaging Sensor) 
Operational Principle of the 

Detection Sensor 
Data Analysis 

Algorithm 
Capability of Detection 

Using Image Calibration 
Reference 

Ultrasonic + Digital/Optical 
Change in material impedance or 
attenuation due to crack growth 

STSA 
~0.2 mm 

(crack length) 
[3] 

Acoustic Emission + Optical 
Change in ultrasonic stress waves 

released during loading 
Information 

entropy 
~0.25 mm  

(crack length) 
[4] 

LDV + Digital 
Change in characteristic frequency 
and mode-shapes during operation 

Peak-to-peak 
amplitude 

~0.3 mm  
(crack length) 

[6] 

Strain Gauge + Digital Local plastic deformation 
Peak-to-peak 
Amplitude 

~0.9 mm  
(crack length) 

[7] 

Eddy Current + Digital Change in conductivity 
Change in 

conductivity 
~0.5 mm  

(crack length) 
[5] 

To advance the state-of-the-art methods for fatigue damage detection, this article 
makes two critical contributions. Firstly, an experimental setup, equipped with a confocal 
microscope to observe COD and a digital microscope to observe the crack length, is de-
veloped. The specimens are instrumented with high-frequency ultrasonic sensors for 
crack detection. Although the use of a digital microscope is common in sensor-based fa-
tigue analysis [5], the use of a confocal microscope along with high-frequency ultrasonic 
sensors is a novel approach. Secondly, the efficacy of STSA has not yet been characterized 
with a micron-scale COD detection. The existing literature also does not document the 
potency of STSA in dealing with multiple different specimen geometries. The current 
framework, therefore, not only advances STSA by including a machine learning algorithm 
but also implements it successfully on two different specimen geometries. Such a demon-
stration makes it usable in an automated anomaly detection setting and therefore demon-
strates the broad applicability of STSA. The paper is organized into five sections including 
the present one. Section 2 describes the specimens, the fatigue testing apparatus, and the 
sensors. Section 3 provides the necessary background on STSA and the machine learning 
algorithm. Section 4 presents the results of the analysis. Finally, Section 5 summarizes the 
conclusions derived from the current work and lists a few potential future research areas. 
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2. Experimental Method 
2.1. Specimen Design 

The fatigue experiments are performed on two sets of specimens made of Al7075-T6 
(henceforth referred to as Al7075). This aluminum alloy has excellent mechanical proper-
ties, such as ultimate tensile strength of 572 MPa, tensile yield strength of 503 MPa, fatigue 
strength of 159 MPa, and fracture toughness of 29 MPa-m1/2 [20] leading to its extensive 
use in the aerospace industries. The design of the specimens, according to the ASTM 
standard E466 [21], is shown in Figure 2. The distinction between the two specimens is 
due to the notch geometries, with one having a rounded ‘V’ notch and the other having a 
‘U’ notch. Both notches create different stress concentrations and, therefore, affect the fa-
tigue life of the specimens. The one-sided notch geometries induce a high-stress concen-
tration observed in aerospace applications [22]. The objective to choose different notch 
geometries is to verify a wider application of the proposed damage detection framework 
across components with different failure characteristics. Through a finite element simula-
tion for static load in SolidWorks [23], the stress concentration factor is evaluated to be 8.3 
for the U-notched specimens and 7 for the V-notched specimens using the isotropic 
Al7075-T6 material library. Having a stress concentration on the specimen localizes the 
domain where a fatigue crack initiation is expected, thereby aiding in the study of damage 
detection. Although one-sided notch geometry under tensile-tensile load has the potential 
to induce bending [9], it is an inevitable characteristic in aerospace structural components, 
for example, in gears and shafts. Therefore, the current specimen design helps in studying 
the nature of fatigue that is industrially relevant. The specimens are extracted using water-
jet machining from cold-rolled and hardened Al7075 sheets acquired from McMaster-
Carr. Waterjet machining is preferred to avoid the accumulation of residual stresses at the 
notch tip [24]. 

 
Figure 2. Geometry of the one-sided (a) V-notched; (b) U-notched specimens (all dimensions are in mm). 

2.2. Fatigue Testing Apparatus 
The fatigue testing apparatus for the experiments is shown in Figure 3. The speci-

mens are mounted using custom grips acquired from TESTRESOURCES (Shakopee, MN, 
USA) onto an MTS Elastomer 831.10 servo-hydraulic equipment rated at 25 kN. All spec-
imens are subjected to a constant amplitude of uniaxial tensile load, with a maximum load 
of 4 kN and a stress ratio of 0.5 at a frequency of 20 Hz. Since the cross-sectional area is 
identical for all specimens, the applied loads lead to a nominal mean stress of 82 MPa and 
a stress amplitude of 27.2 MPa. Based on the available literature data, the loads are chosen 
such that the fatigue life is long enough to ensure adequate data collection [25]. The tests 
are controlled through an automated routine in the Multi-Purpose TestWareTM software 
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suite available through the MTS controller. Since regular stops are essential for imaging 
data collection, the routine enables automatic periodical pauses at the maximum stress 
after every 500 load cycles. 

 
Figure 3. (a) Custom-built fatigue testing apparatus consisting of an MTS 831.10 servo-hydraulic frame, a confocal 
microscope mounted on a moving stage, and a digital microscope; (b) A zoomed-in view of the apparatus showing the 
orientation of the microscopes, the specimen, and the mounted ultrasonic transducers. 

2.3. Heterogeneous Sensors for Damage Detection 
To monitor the progression of fatigue damage, the test setup is equipped with a pair 

of ultrasonic sensors, a confocal microscope, and a digital microscope. Amongst these 
three sensors, ultrasonic transducers have the potential to be employed in operating envi-
ronments, whereas microscopes are required for calibrating the signal data. The following 
subsections elaborate on the individual functionality of these three sensors. 

2.3.1. Ultrasonic Sensors 
The capability of the ultrasonic sensors in detecting damage depends on the fre-

quency at which the ultrasonic waves are emitted. From a length scale perspective, higher 
frequency leads to better capability in detecting small damage/defects. Past studies in the 
literature have used smaller frequencies (~350 kHz) and have, thus, focused on larger 
cracks, which are in the order of a few millimeters [14]. To move to a micron-scale detec-
tion for a large component as experimented in this paper, sensors having frequencies in 
the range of ~10 MHz would be theoretically conducive and, are commercially available 

A schematic showing the placement of the ultrasonic sensors on the specimens is 
shown in Figure 4a. The distance between the receiver and the transmitter is kept identical 
for all experiments. Similarly, the distance from the side edge of the specimens to the ul-
trasonic sensors is also identical for all experiments. The sensors are acquired from Olym-
pus (Shinjuku, Tokyo, Japan) and are rated at a center frequency of 10 MHz. The angled 
wedges are rated at 45° and the sampling frequency for the data acquisition system is 100 
MHz. Higher center frequency for the sensors is chosen for this study to enable finer crack 
detection. Figure 4b shows representative signals at the transmitter and the receiver ends. 
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Figure 4. (a) A schematic (not to scale) showing the placement of the ultrasonic sensors on the specimens; (b) An alternate 
view of the specimens and the sensors. Representative transmitted and received signals are also illustrated. 

2.3.2. Confocal and Digital Microscope 
To pinpoint the instant of fatigue damage initiation on ultrasonic receiver signals (or 

any time series signals), it is essential to have a visual insight to capture the cracks near 
the notch. To that end, the present study uses a dual-imaging setup to monitor the fatigue 
damage progression near the notch from two perpendicular orientations as shown in Fig-
ure 5a [26]. The model of the digital microscope used in the experiments is Dino-Lite 
Premier, which is a commonly used PC-based USB instrument [27]. It is capable of cap-
turing features above a threshold of approximately 0.1 mm. The focus area of the micro-
scope and a representative image is shown in Figure 5b. A corresponding image for a 
cracked specimen indicating the crack length is shown in Figure 5c. The imaging through 
the microscope is carried out at regular intervals during the scheduled stoppages from the 
MTS system. The crack length is measured using the DinoCapture 2.0: Microscope Imag-
ing Software that is provided with the microscope. 

The confocal microscope model, IF-SensorR25, belongs to the InfiniteFocus series 
manufactured by Bruker Alicona (Graz, Austria). The microscope uses a novel focus var-
iation technology [28,29] enabling the procurement of high-resolution images across the 
depth of field. As compared to the digital microscope, this microscope is of a much higher 
resolution and is therefore suitable to observe COD, which is an order of magnitude 
smaller than the crack length. From an accuracy perspective, the microscope is capable to 
detect cracks with a COD of 3 μm. In the present study, the microscope is operated at a 
50X resolution, having a field of view of 400 μm × 400 μm. The microscope is focused on 
the notch root. Since the thickness of the specimen is about six times larger than the max-
imum length captured by the microscope, the microscope is translated along the notch 
root to monitor the entire surface during each periodical stop in the fatigue test. Such a 
translation is achieved using a high-precision moving stage (Aerotech, Inc., Pittsburgh, 
PA, USA) on which the confocal microscope is mounted. The stage can handle movements 
up to a micrometer scale aiding in precise measurements during the fatigue test. A collage 
of all images capturing the entire notch root is also shown in Figure 5d. With subsequent 
damage progression, a representative cracked surface and COD corresponding to the 6th 
segment of the collage is highlighted in Figure 5e. 

Transmitter

Receiver

Transmitted Pulse Received Pulse

(a) (b)

Fixed Distance 
of ~ 10 mm

Specimen

Transmitter Receiver

Fixed Distance 
of ~ 4 mm
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Figure 5. (a) A schematic of the specimen illustrating the viewing areas of the digital and confocal microscopes; (b) A 
typical image area captured by the digital microscope and the corresponding image of a representative specimen; (c) A 
cracked version of the specimen as captured by the digital microscope indicating the crack length; (d) The region of interest 
of the confocal microscope with a collage of six individual images covering the entire notch root of a representative spec-
imen; (e) An image of the 6th segment (extreme right of (d)) of the collage showing the formation of a fatigue crack de-
picting the COD. 

3. Integration of Symbolic Time-Series Analysis (STSA) with Machine Learning 
The efficacy of the present research of developing a machine learning framework for 

damage detection depends on the capability of the time-series analysis algorithm. To ful-
fill all the objectives for damage detection, the algorithms need to be computationally ef-
ficient and savvy to deal with the ultrasonic signals that may be noisy. STSA has shown 
remarkable results [3] in dealing with such signals and, with minimal data. This section 
explains the basic algorithm for STSA and formulates the ensuing machine learning struc-
ture. 

3.1. Symbolic Time-Series Analysis (STSA) 
STSA is an amalgamation of the principles from symbolic dynamics, information the-

ory, and pattern recognition. It is a statistical signal processing algorithm that works by 
filtering a signal to a symbolic domain [3]. The main objective for STSA is to convert the 
given signals into some measurable unique features that enable a comparison between 
multiple signals. This measurable feature with STSA is the state transition matrix (STM). 
The procedure to extract STM from a signal can be broadly divided into four steps that 
are depicted in Figure 6. A dummy signal comprising two periods of a cosine curve gen-
erated with 40 points is shown in Figure 6a. The first step towards generating an STM is 
the normalization and segmentation of the signal into discrete partitions. The four parti-
tions, p, q, r, and s, are depicted in Figure 6a. The number of partitions depends on the 
practitioner with a higher number of partitions leading to a finer resolution for signal be-
havior but is often restricted by the total amount of training data volume. The normaliza-
tion before partition serves two main objectives: (i) mitigation of the effect of noise and 
bias, and (ii) ensuring a fixed partition boundary across all signals. These partitions are 
assigned to separate symbols (for namesake) and the signal is then reduced to a symbolic 
chain corresponding to different partitions, as illustrated in Figure 6b. For creating parti-
tions, there are several methods such as uniform, maximum entropy, and k-means [30] 
available in the open literature. Amongst these methods, the maximum entropy partition-
ing (MEP) scheme has been found to yield the best efficiency in predictions [3]. According 
to the set-theory formulation, ࣛ  is the set of symbols, and its cardinality, |ࣛ|, is the 
number of partitions. For the cosine signal in Figure 6a, ࣛ = {p, q, r, s} and |ࣛ| = 4. 



Machines 2021, 9, 211 8 of 23 
 

 

At the end of the symbolic transform step, the signal loses the time domain infor-
mation and is solely existent in the discrete symbolic domain. To develop the analysis 
further, the symbol chain is treated as being analogous to a series of state transitions akin 
to the representations in the finite state automata (FSA) theory [31]. Such FSAs are com-
monly studied in the robotics community [32] and the present analysis merely draws an 
abstraction from this structure. For the symbol chain, the symbols (or a collection of sym-
bols) can be treated as the states of the system. Correspondingly, the interactions can be 
shown through a state diagram (Figure 6c) by treating the symbols as states. Since the 
states and symbols can be distinct, the set of states is denoted by ࣫, and for the cosine 
series, ࣫ is the same as ࣛ. With this ingenious abstraction of an FSA, several possibilities 
(such as the STM) for a unique feature can be exploited. Accordingly, the transitions in 
the state diagram are quantified using a probabilistic analysis. The ensuing probabilistic 
FSA (or PFSA) comprises a probability map (or morph function), , which aids in compu-
ting the probability of transitioning between two states. Mathematically, the morph func-
tion is, therefore, a matrix. The morph function is equivalent to the state transition matrix 
(T) in the case where the number of symbols is equal to the number of states and is shown 
in Figure 6d for the cosine signal. It is to be noted that  and T can, in general, be different 
because the set of symbols and states can vary. The computation of the elements of is 
done by counting the number of transitions from present states to the next symbols. If Nij 
is denoted as the number of transitions from ith state to jth symbol, then ij is computed 
as: 

ߨ =
1 + ܰ

|ࣛ| + ∑ ܰ
 

The subscript k varies through the number of symbols. With the presented case study 
for the signal, it is straightforward to verify the computation. For example, the readers can 
verify from the symbol chain in Figure 6b, that there are just two transitions from the state 
p to state q. Therefore, Npq = 2. Accordingly, ∑ Npkk  = Npq + Npr + Nps + Npp = 2 + 0 + 0 + 9 
= 11, and |ࣛ| = 4. Subsequently, pq = (1 + 2)/(4 + 11) = 0.21. It should also be noted that 
the matrix is row-stochastic, meaning that the rows add up to 1. An important underlying 
assumption that makes the above formulation feasible is that of treating the entire concat-
enated signal as a Markov process. This assumption models the process such that the next 
state of the system is solely dependent on the present state. STSA builds on this definition 
and incorporates additional flexibility in allowing the dependence on the previous D 
steps. The parameter, D, is termed as the ‘depth’ of the analysis, and the resulting formu-
lation is also called as the D-Markov machine to differentiate it from the conventional 
Markov process. This assumption holds for the analysis of the ultrasonic signals because 
the transition from a ‘healthy’ state to a ‘cracked’ state is gradual and corresponds to the 
cumulative buildup of damage. Due to this gradual change, an estimate on the state of the 
specimen can be made from a small change of the most recent information. This is yet 
another advantage of STSA with ultrasonics because it converts a cumulative process into 
an intermittently tractable process without the need for the entire history. More details on 
the mathematical foundation of PFSA can be found in several pieces of literature [33–37]. 
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Figure 6. Steps in symbolic time-series analysis. (a) a dummy signal (cosine) with 40 points and four 
partitions; (b) the symbolic chain filtered from the signal; (c) a state diagram between four states 
from the partitions; (d) the state transition matrix showing the probability of transition between the 
current state and next state in the signal; (e) The state transition matrix in (d) is depicted as a 3D 
plot. 

3.2. Machine Learning Framework 
The STSA formulation decomposes the signal into the state transition matrix T, which 

acts as the primary feature of the signal. In addition to T, the standard deviation, σand 
the mean, μ can also be considered as features. Since their computation is inexpensive, 
they are included in the current formulation and computed using the mean and std func-
tions in MATLAB®, respectively. Therefore, through STSA, any signal is decomposed into 
three features, viz. T, σ, and μ. To assess the state (i.e., ‘healthy’ or ‘cracked’) of a signal, 
these three feature definitions are required to be conditioned to some reference values that 
enable a comparison. Figure 7a schematically depicts the training process where the 
‘healthy’ part of an ith training signal is decomposed into its corresponding three features: 
THi, σHi, and μHi. These features are averaged over the entire training data to generate TH, 
σH, and μH. 
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Figure 7. (a) Framework for training the healthy features (TH, σH, and μH) using STSA; (b) A typical nature of  as observed 
through the analysis (for representative purposes) indicating the optimal threshold (ρopt); (c) The corresponding ROC 
curve. 

With the availability of these reference healthy features, i.e., TH, σH, and μH, the fol-
lowing composite metric i is defined for any ith test signal to assess its state (i.e., ‘healthy’ 
or ‘cracked’):ρi = ቚหTi − THห

e
, σi − σH, μi − μHቚ

e
. Here, | ⋆ | denotes the Euclidean norm, 

and Ti, σi, and μi correspond to the individual features of the ith test signal. For a single 
signal window such as the cosine signal shown in Figure 6a, ρi is a scalar. During the 
experiment, with sequential computation of i for every incoming signal window, a time-
series vector can be generated by stacking ρi for every window as follows: ρ = [ρ1, ρ2,…, 
ρi, …,ρn]. This is the outcome of the STSA algorithm that is used to create a classifier be-
tween the ‘healthy’ and ‘cracked’ signals. Figure 7b shows the typical behavior of  plotted 
for a representative ultrasonic signal. To perform a classification between ‘healthy’ and 
‘cracked’ signals, an appropriate optimal threshold (corresponding to the critical value of 
ρρopt, needs to be established. An avenue to determine the optimal threshold is via com-
puting the receiver operating characteristics curve (ROC) [38], such that the classification 
yields the lowest error in misclassifying the ‘healthy’ and ‘cracked’ signals. ROC curves 
plot the behavior of the true positive rate against the false-positive rate for a varying set 
of thresholds (e.g., ρ In the current context, the true positive rate corresponds to the de-
tection of a crack when the signal is actually ‘cracked’ and the false positive rate corre-
sponds to an erroneous detection. The ROC curve for Figure 7b is shown in Figure 7c. On 
Figure 7b, the instance of damage detection is when ρandρopt intersect. 

The value ofρopt estimated through ROC is expected to have some variability over all 
specimens. Therefore, to learn the best value of ρopt, a second round of training is per-
formed using the training data. The schematic of this training procedure is shown in Fig-
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ure 8a. The second set of training data is processed through STSA, and the extracted fea-
tures are compared with the trained ‘healthy’ parameters using the metric defined in the 
preceding paragraphs. A vector of monotonically increasing ρi is then calculated for the 
training data. Using ROC curves, ρopt for the training data is calculated. The final trained 
value of ρopt is then computed as an arithmetic mean of all the individual thresholds and 
is indicated by ρfinal. With the computation of ρfinal, the training phase of the procedure is 
concluded. To summarize, the training phase computes four parameters viz. ρfinal, TH, σH, 
and μH. The calculation of final and its effectiveness in predicting a failure is accompanied 
by a decision-making process, as shown in Figure 8b. A test signal is processed with STSA 
and then compared with the trained parameters, leading to the composite metric ρi. ρi is 
then compared with ρopt, and depending on its magnitude, the new signal is labeled as 
‘healthy’ or ‘cracked’. 

 
Figure 8. (a) Training algorithm for obtaining the optimal threshold; (b) Decision-making process for a test signal using 
the trained STSA model. 

4. Results and Discussion 
15 U-notched and 15 V-notched specimens are tested, and the corresponding ultra-

sonic time-series signal data, confocal images, and digital images are collected. The fol-
lowing sections explain the results and the subsequent crack detection capabilities of the 
proposed algorithm. 

4.1. Fatigue Failure Progression 
Using the dual-imaging setup, the experiments capture COD at the notch root with 

the confocal microscope. The crack length is characterized on the side of the notch with 
the digital microscope. During the fatigue failure, independent data from the microscopes 
reveal three distinct regimes of failure chronology as illustrated in Figure 9. The ‘healthy’ 
regime corresponds to the duration where no instance of a crack is observed in either of 
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the microscopes, as depicted in Figure 9a,b. After persistent loading, multiple fine cracks 
are observed at the notch root through the confocal microscope (Figure 9c,d). This initial 
crack corresponds to a COD of ~3 μm and the identification of these cracks becomes pos-
sible due to the high resolution of the confocal microscope. This emergence of cracks is 
termed as the start of the crack coalescence (CC) regime. It is important to note that the 
digital microscope has no apparent indication of damage. Going further with the loading, 
the crack coalescence regime culminates with a dominant crack that is ubiquitously ob-
served on both the microscopes (Figure 9e,f). This instance of a dominant crack emergence 
is termed as the start of the crack propagation (CP) regime. Owing to the resolution of the 
digital microscope, the crack length at the instant of detection corresponds to ~0.2 mm. In 
the later stages of the test, both the features show significant growth, as depicted in Figure 
9g,h. 

 
Figure 9. The chronology of failure as observed by the microscopes for a representative V-notched specimen—(a,b) a 
healthy specimen, (c,d) crack coalescence regime where fine cracks (~3 μm) appear at the notch root, (e,f) the cracks coa-
lesce, and a single crack is observed at the notch root and on the side of the specimen, and (g,h) crack growth continues. 
The arrows indicate the emergence of a crack on the images. In (b,d,h), images on the top row are obtained from the digital 
microscope, and on the bottom row, they are obtained from the confocal microscope. The images obtained from the U-
notched specimens are similar and are excluded for brevity. 

To illustrate the combined behavior, Figure 10 numerically plots both features 
against the normalized fatigue life of a representative V-notched specimen. Using this dis-
tinct observation, the plot highlights three main regimes which are henceforth defined as 
‘healthy’, ‘crack coalescence’, and ‘crack propagation’. Based on the short- and long-crack 
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bifurcation that has been used in many of the past pieces of literature [39], a crack length 
of the order of 1 mm can be considered as the initiation to a long-crack regime. In the 
subsequent sections, the capability of crack detection is therefore quantified for crack 
lengths of 1 mm as well. With respect to the fatigue life, the V-notched specimens sustain 
up to 65,000 cycles before fracture as opposed to 40,000 cycles for the U-notched speci-
mens. The variability in the fatigue life across both sets of specimens is shown in Figure 
11. Broadly, the larger fatigue life of the V-notch specimens can be attributed to the lower 
stress concentration near the notch root. The variability in the CC and CP regimes is also 
shown against the fatigue life in Figure 11. On average, it is observed that the CC regime 
sets in at around 30% and 45% of the fatigue life in U-notch and V-notch specimens, re-
spectively. Similarly, the CP region initiates at 51% and 58% of the fatigue life in U-notch 
and V-notch specimens, respectively. An ability to detect cracks in the CC regime thus 
enables an additional ~13–21% fatigue life (i.e., number of load cycles) buffer for mainte-
nance purposes for the V- and U-notched specimens, respectively. This analysis, therefore, 
sets up the basis for the benefits of an early-stage crack detection. The next sections eval-
uate the combined capability of the ultrasonic sensors and STSA to detect the emergence 
of cracks for CC, CP, and CP > 1 mm regimes. 

 
Figure 10. The variation of crack length and COD against the normalized fatigue life divided into 
three regimes, viz. healthy, crack coalescence (CC), and crack propagation (CP). The bifurcation of 
the CP regime beyond the crack length of 1 mm indicated by CP > 1 mm is also highlighted. The 
data obtained from the U-notched specimens is similar and is excluded for brevity. 

 
Figure 11. Distribution of the total fatigue life (or load cycles) in the CC, CP, and fracture regimes with respect to the total 
number of load cycles for the (a) U-notched; (b) V-notched specimens. The red lines denote the medians of the distribution. 
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4.2. Ultrasonic Time-Series Signal 
During the entirety of the fatigue life of the specimens, the ultrasonic receiver contin-

uously accrues the time-series signal carrying the signature of the fatigue damage. Figure 
12a shows the behavior of the time-series data obtained from the receiver and segregated 
into the four predefined regimes (i.e., healthy, CC, CP, and CP > 1 mm). The signal is 
plotted against the timesteps which correspond to the number of data points that consti-
tute the signal. Since the signal is regularly sampled at a very high rate (100 MHz), the 
number of points through a complete fatigue experiment of one specimen amounts to a 
time-series consisting of ~105 data points. Therefore, by experimenting with 15 specimens, 
a total of ~15 × 105 points are accrued for each notch type, proving a rich resource to 
execute the machine learning algorithm described in the upcoming sections. As opposed 
to the microscopes which can directly show the fatigue cracks, the ultrasonic signals are 
implicitly dependent on the in-sync imaging capabilities for accurate calibration. The 
points of transition between the healthy, CC, CP, and CP > 1 mm phases are obtained from 
the transitions observed in Figure 10. Zoomed-in versions of the signals in these three 
regimes are shown in Figure 12b–d. The ultrasonic signal attenuates significantly as the 
crack size increases. 

 
Figure 12. (a) Ultrasonic receiver data for a representative U-notched specimen depicting the four regimes, viz. healthy, 
crack coalescence (CC), crack propagation (CP), and crack length exceeding 1 mm (CP > 1 mm). Zoomed-in views showing 
the ultrasonic signal in (b) healthy, (c) CC, and (d) CP regimes. The CP > 1 mm regime is marked on (a). The V-notched 
data are similar and are excluded for brevity. 

A training–testing split of 60%–40% is used for both types of specimens (i.e., ‘U’ and 
‘V’ notches). Owing to this ratio, the training of STSA is accomplished using the signal 
data obtained from 9 (out of 15) specimens and the testing is performed on the signal data 
obtained from the remaining 6 specimens. A comparatively higher (6) number of testing 
specimens ensures an unbiased estimate of the accuracy of the algorithm and is beneficial 

(a) (b)

(c) (d)

CP > 1 mm
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due to the larger variability exhibited during a fatigue test. The hyperparameters (# of 
partitions (N), depth (D), and partitioning scheme) are optimized and the STSA metrics 
(TH, σH, and μH) are then obtained to create a ‘healthy’ reference. Based on an in-depth 
understanding of STSA [19], the hyperparameters used in this work are N = 10 and D = 1, 
with MEP partitioning. It is often possible to bias the results of such machine learning 
framework by a biased train-test split. To avoid such biases, a hold-out validation using 
20 iterations of random train-test splits is performed and the average accuracy across all 
the iterations is presented. 

4.3. Regime-Specific Fatigue Crack Detection 
Using the STSA-based machine learning framework established in Section 3, the 

crack detection capability using the ultrasonic response is now evaluated for each of the 
specific regimes (CC, CP, and CP > 1 mm). In general, the application of STSA begins with 
the generation of labeled training and testing datasets from the pool of 15 specimens for 
each type of notch. The datasets are created by using a moving window of fixed width, 
each encompassing a predefined number of ultrasonic signals. Figure 12b–d demonstrates 
the example datasets for the healthy and the cracked regime, each consisting of 20 signals. 
Due to the nature of defining the labeled datasets, for each regime, the bifurcation between 
a ‘healthy’ signal and a ‘cracked’ one is defined individually, as shown in Figure 13. The 
original signal with three regimes (Figure 13a) is converted to a labeled signal, e.g., 
‘healthy’ and ‘cracked’, with varying transition points as illustrated in Figure 13b–d. Ac-
cordingly, detecting a cracked specimen in the CC regime would correspond to the most 
challenging goals among the alternatives. In the CP regime, the detection goal becomes 
simpler. As the crack length increases, a significant amount of signal attenuation is ob-
served, which is much easier to detect. 

 
Figure 13. (a) The original ultrasonic signal depicting four different regimes. The labeled data for the (b) CC, (c) CP, and 
(d) CP > 1 mm regimes, illustrating the transition point between a healthy and cracked regime. 

Healthy Cracked

(a)

(b) (c) (d)

CP > 1 mm



Machines 2021, 9, 211 16 of 23 
 

 

4.3.1. Fatigue Crack Detection in the CC Regime 
For analysis in the CC regime, the transition point corresponding to Figure 13b is 

used. Figure 14a,b shows the variation of  superimposed on an ultrasonic signal for a 
representative U- and V-notched specimen, respectively. As indicated earlier, the location 
where the curve for ρ intersects the ρoptline corresponds to the instance of crack detection 
by the algorithm. The performances exhibited by the ROC for 9 test specimens for each 
notch type are plotted in Figure 14c,d. Intuitively, ρopt is chosen as the one which maxim-
izes the accuracy of classification. 

 
Figure 14. Performance of the training algorithm superimposed on a representative (a) U-notched 
and (b) V-notched ultrasonic time-series signal in the CC regime. The values of ρ and ρopt are plotted 
on the right axis. ROC curves for 9 individual (c) U-notched and (d) V-notched training specimens 
in the CC regime. 

The distribution of all opt values derived from all the training data is shown in Figure 
15a. The final ρopt (i.e., ρfinal) used further in the analysis is calculated as the statistical mean 
of all ρopt values. For the U-notched specimens, ρfinal is 2.36, and for the V-notched speci-
mens, it is 2.93. The testing performance for representative U- and V-notched specimens 
is shown in Figure 15b,c using ρfinal. It is important to note that while classifying the data 
from the test specimens, the training parameters are the only information that is used. In 
this manner, through the training paradigm, any new ultrasonic signal can be tested for 
its health using just four parameters, viz. TH, σH, μH, and ρfinal. The ensuing accuracies, 
through a hold-out validation, are shown through boxplots in Figure 16 for both sets of 
notches. The U-notch specimens demonstrate an average training and testing accuracy of 
79.82% and 68.18%, respectively, whereas the V-notch specimens exhibit a training and 
testing accuracy of 81.94% and 74.12%, respectively in detecting cracks in the CC regime. 

(a) (b)

Healthy Cracked roptr

(c) (d)

Point of Detection Point of Detection
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The variation in testing accuracy is larger as compared to training because the testing 
specimens use the optimal thresholds based on the training specimens. 

 
Figure 15. (a) Distribution ρopt for both sets of specimens in the CC regime. Performance of the testing algorithm on a 
representative (b) U-notched and (c) V-notched specimen in the CC regime. The red line in (a) denotes the medians of the 
distributions. 



Machines 2021, 9, 211 18 of 23 
 

 

 
Figure 16. Average training and testing accuracy across all hold-out-based validation iterations for (a) U-notched and (b) 
V-notched specimens in the CC regime. The red lines denote the medians of the distributions. 

4.3.2. Fatigue Crack Detection in the CP and CP > 1 Regimes 
Following a chronology identical to the CC section, the efficacy of the proposed al-

gorithm is now evaluated for the CP regime. The generation of the datasets and the train-
ing methodology follow the same steps as used in the preceding section. The only differ-
ence with the CP regime is that all the data appearing after the CP detection are classified 
as cracked, as shown in Figure 13c. The threshold distributions for both sets of specimens 
are shown in Figure 17a. The newly trained thresholds for the CP regime are 3.82 and 3.07 
for the U- and V-notched specimens, respectively. Like the CC regime, a hold-out valida-
tion analysis is performed over 20 random 60%–40% splits of train-test datasets for the CP 
regime as well. The variation in accuracy of the training and testing datasets is shown in 
Figure 17b,c. The U-notched specimens demonstrate an average training and testing ac-
curacy of 88.3% and 81.94%, respectively, whereas the V-notched specimens exhibit a 
training and testing accuracy of 91.85% and 85.62%, respectively in detecting cracks in the 
CP regime. The distributions also depict the outliers in the prediction accuracy across dif-
ferent iterations with the testing accuracy of the V-notched specimens ranging from 54% 
to 87%, which is compensated by using such a hold-out validation. 
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Figure 17. (a) Optimal threshold distribution for both sets of specimens for the CP regime. Average training and testing 
accuracy across all hold-out-based validation iterations for (b) U-notched and (c) V-notched specimens in the CP regime. 
The red lines denote the medians of the distributions. 

From the preceding analysis of crack detection in the CC and CP regime, it is evident 
that the ultrasonic sensors are more accurate in detecting the larger of the two cracks (CP 
regime). From the behavior of the ultrasonic attenuation, it is also clear that beyond the 
CP regime, the signal attenuation is much more significant, and crack detection can be 
achieved with higher accuracy. To quantify this observation, an analysis of the accuracy 
of detection at a crack length of 1 mm in the CP regime is performed. Figure 18 shows the 
variation of average accuracy across 20 iterations for both the specimens using the same 
hold-out validation scheme as used before. Using this variation, the average training ac-
curacy of detecting a crack of length 1 mm is calculated to be 95.48% and 97.76% for the 
U- and V-notched specimens, respectively. The testing accuracies are 90.07% and 91.38% 
for the U- and V-notched specimens, respectively. Although, this clearly demonstrates the 
excellent capability of ultrasonic sensors in detecting larger cracks, the caveat, from a 
maintenance perspective, is the smaller reaction time for taking preventive measures. In 
this problem, with 1 mm crack, the specimens have already completed ~80% of their fa-
tigue lives which is fairly high as compared to ~ 30–50% fatigue life accrued before the CC 
regime. 
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Figure 18. Average training and testing accuracy across all hold-out-based validation iterations for (a) U-notched and (b) 
V-notched specimens in the CP > 1 mm regime. The red lines denote the medians of the distributions. 

5. Summary, Conclusions, and Future Work 
The article primarily presents the efficacy of a time-series algorithm using STSA in-

tegrated with a machine learning-based architecture for fatigue crack detection in a pop-
ular aluminum alloy, Al7075. Two sets of Al7075 specimens (15 each) are studied. The 
fatigue propagation, based on a dual-imaging setup, is divided into three main regimes, 
(i) healthy, (ii) crack coalescence (CC), and (iii) crack propagation (CP). The CC regime is 
characterized by the detection of a crack with COD of ~3 μm. The CP regime is character-
ized by the detection of a crack with a length of ~0.2 mm. The performance of the STSA 
algorithm for crack detection is studied for CC and CP regimes. In the CP regime, the 
performance is also analyzed for a longer crack corresponding to CP > 1 mm. The training 
and testing accuracies observed for all the regimes and specimens are summarized in Fig-
ure 19. Overall, the performance of STSA for the CC regime is observed to be lower than 
the CP regime, indicating the difficulty in detecting finer cracks with COD ~3 μm. In the 
CP regime for larger crack lengths (>1 mm), the performance of STSA is beyond 90%. The 
contributions of the current paper are succinctly documented in Table 2. 

 
Figure 19. Summary of the training and testing accuracies in the CC and CP regimes for the U- and 
V-notched specimens. 
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Table 2. The contributions of the current article with the methods described in Table 1. 

Contribution of the Article 
Sensor Type (Detection 

Sensor + Imaging Sensor) 
Sensor Operational Principle 

Data Analysis 
Technique 

Capability of Detection 
Using Image Calibration 

Reference 

Ultrasonic + Confocal + 
Digital 

Change in material impedance or 
attenuation due to crack growth 

STSA + Machine 
Learning 

~0.2 mm (crack length) with 
~82% testing accuracy 

~3 μm (COD) with ~ testing 
71% accuracy 

Current 

The presented method is particularly useful due to the low amounts of data (based 
on 15 specimens) needed for the trained model as compared to neural network-based 
analysis. The computation time observed during the training is negligible (~1 min on an 
Intel® Core™ i7-4790 CPU@ 3.60 GHz with 16 GB RAM). The computation also does not 
require a GPU, which is almost essential for all neural network-based models. An im-
portant outcome of the research that needs to be addressed in the future is the low accu-
racy of detection in the CC regime. From the progression of the data, it is evident that 
ultrasonic signals show minimal changes while transitioning to the CC regime. Therefore, 
to address this issue, the research can either be directed toward superior data analysis 
algorithms or improved sensing techniques. From a data analysis perspective, several 
complex algorithms such as auto-encoders, long short-term memory, and recurrent neural 
networks will be investigated in the future to assess the improvement in accuracy. It is 
plausible that these techniques may not achieve the required accuracy if the sensors are 
unaffected by the minuscule damages observed through the confocal microscope. There-
fore, a logical approach to improve the accuracy is to use advanced ultrasonic sensors that 
detect the nonlinear effects during the fatigue failure evolution [15]. In the future, non-
linear ultrasonics will be explored to investigate their efficacy in detecting finer cracks. 
The investigation in the current research is focused on Al7075. In the future, other critical 
structural materials such as steels will also be investigated. 
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