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Abstract

This work proposes a novel recurrent neural network architecture, called the Dynamically
Stabilized Recurrent Neural Network (DSRNN). The developed DSRNN includes learnable
skip-connections across a specified number of time-steps, which allows for a state-space rep-
resentation of the network’s hidden-state trajectory, and a regularization term is introduced
in the loss function in the setting of Lyapunov stability theory. The regularizer enables the
placement of eigenvalues of the (linearized) transfer function matrix to desired locations
in the complex plane, thereby acting as an internal controller for the hidden-state trajecto-
ries. In this way, the DSRNN adjusts the weights of temporal skip-connections to achieve
recurrent hidden-state stability, which mitigates the problems of vanishing and exploding
gradients. The efficacy of the DSRNN is demonstrated on a forecasting task of a recorded
double-pendulum experimental model. The results show that the DSRNN outperforms both
the Long Short-Term Memory (LSTM) and vanilla recurrent neural networks, and the rel-
ative mean-squared error of the LSTM is reduced by up to ~99.64%. The DSRNN also
showed comparable results to the LSTM on a classification task of two Lorenz oscillator
systems.
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1 Introduction

Recurrent neural networks (RNN) have set the state-of-the-art on very large arrays of diverse
time-series tasks [1]. Many RNN architectures have been developed to model temporal data,
such as Long Short-Term Memory (LSTM) networks [2,3], and have shown great promise
in processing time-series data for applications like natural language processing (NLP) [4],
natural language generation [5], optimization (e.g., see [6—8]), human activity recognition
[9], and medical time series data [10]. Primitively, RNNs act as non-linear dynamical systems
intended to model sequential data. However, the stability of the dynamical system defined by
RNNSs is not guaranteed, as they notoriously fall victim to exploding or vanishing gradients.
This suggests that the way in which RNNSs are trained are often in a chaotic regime [11], and
thus the stability of RNNs are of high interest [12,13].

Methods exist to stabilize the recurrent hidden states, such as layer normalization (LN)
proposed by Ba et al. in [14], which fixes the mean and the variance of the summed inputs
within each layer of the recurrent network to reduce the “covariate shift” problem in a
computationally efficient manner. Other methods utilize direct connections, either spatially
or temporally, in RNNs which aid in stabilizing the flow of the hidden state signals [15,
16]. For example, the Highway LSTMs (HLSTMs) developed in [17] create direct links
between memory cells which allows information to flow between layers in a controlled
fashion. In other words, these direct links stabilize the hidden states of the network by
alleviating the vanishing gradients, allowing the HLSTM to train on data with arbitrary
lengths. The residual LSTM [18] extends the intuition behind the Highway LSTM by also
leveraging shortcut paths temporally by adding direct links between the output gates, while
permanently turning on highway paths. However, for both HLSTMs and residual LSTMs,
the performance degrades as the number of layers is increased. Furthermore, even though
the HLSTM and residual LSTM alleviate vanishing gradients, a problem that remains from
leveraging skip-connections in an RNN is that the hidden state trajectory is prone to diverging.
This phenomenon can occur due to the hidden states being a function of the summation of all
previously connected hidden states, which may result in oscillations. Such a situation prevents
the network from learning, since the blown-up values of the hidden states will saturate their
respective activation functions.

In view of the above motivation, this paper develops the Dynamically Stabilized Recur-
rent Neural Network, hereafter called the DSRNN, which is designed with a prespecified
number of weighted skip-connections through time, where the weights of skip-connections
are learnable parameters. Using this architecture of weighted skip-connections, we propose
a novel methodology to stabilize the hidden states’ trajectories; this is done by formulating
a state-space representation of the hidden states. Thus, the hidden states can be analyzed
as a discrete-time dynamical system, which is an efficient way to study the stability prop-
erties of the hidden states [19]. We then utilize Lyapunov’s linearization method [20] to
confine the hidden states’ values within an acceptable region. Using the linearized state-
space representation of the DSRNN, a novel regularizer is designed to adjust the weights of
the skip-connections such that the linearized state-space model is stable, which ensures the
non-divergence of hidden state trajectories.

Following Hauser and Ray [21], skip-connections are weighted in such a way that the
network can learn up to kth-order smooth perturbation terms, where the intuitions behind
learning arbitrary-order perturbation terms are borrowed for implementation in the DSRNN.
However, unlike the layer-wise skip-connections in feedforward NNs, the weighted skip-
connections in the DSRNN are across time-steps, allowing the DSRNN to learn temporal
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order perturbation terms. Furthermore, unlike the LN method [14] which is rather restricted
by assuming that all channels in a layer make similar contributions, the DSRNN learns
the weights of the skip-coefficients, which allows the DSRNN to stabilize the hidden state
trajectory in a flexible manner.

In the context of control theory, the regularizer in the DSRNN acts as a stabilizer to the
system, which is not to be confused with gating functions that designers call a controller
cell. For example, in [22], the goal of their neural network is to learn a controller during
training, whereas we impose a controller in the designed DSRNN to stabilize the hidden state
trajectory through eigenvalue placement assignment of the linearized system.

The DSRNN is validated on an experimental dataset, obtained from [23], of a recorded
double pendulum system, as well as a classification task on two Lorenz oscillators, and is
compared against the LSTM and vanilla RNN. These are chaotic systems, making them
highly nonlinear and sensitive to initial conditions, and therefor are difficult for RNNs to
model due to long-term unpredictability. As pointed out in [24], deep RNNs are likely to
either converge prematurely or overfit when modeling a chaotic system. The results show that
the DSRNN can predict the future trajectory of the pendulum with errors orders of magnitude
less than both LSTM and vanilla RNN. We show that it reduces the mean squared error of the
LSTM on a test set by up to ~99.639%. We also show that the DSRNN achieves comparable
performance to the LSTM and vanilla RNN on the Lorenz system classification task.

Contributions The major contributions of this paper are as follows:

e Development of learnable coefficients for hidden state connections: This concept is intro-
duced and validated over a number of previous time-steps.

e Formulation of a nonlinear state-space representation of the hidden states of the recurrent
network: The hidden states of the network are treated as state variables in a novel state-
space representation of the network.

o Stabilization of hidden state trajectory: The eigenvalue placement of the linearized sys-
tem is introduced as a regularization term to the overall cost function, compelling the
eigenvalues to converge to their desired positions during training.

The rest of the manuscript is organized as follows. Section 2 presents the proposed
approach and architecture of the DSRNN. Furthermore, the state-space representation of
the hidden state trajectory is formulated, along with the regularizer used to stabilize the
model, and the backpropagation gradients of the DSRNN is also derived. Section 3 presents
the experimental study performed to analyze the DSRNN performance. Finally, conclusions
and final remarks are drawn in Sect. 4.

2 Problem Formulation and Preliminaries

To improve and control the flow of data through an RNN, we introduce the DSRNN architec-
ture which contains a parameter k € N that refers to the number of weighted skip connections
across time-steps, in the following manner:

k
he =Y {aihii} +onthi1, x) 1)

i=1
where o; € R"™",Vi = 1,...,k is a diagonal matrix with diagonal entries ozi(j), Vj =
1,...,n, and ¢p(-) is the activation function. The matrices «; are referred to as the skip-

coefficients, i, € R" are the hidden states of the network, and x; € R" is the input. Notice
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that if we set k = 0, the system reduces to a vanilla RNN. Whereas for k = 1 and o) = 1,
the system reduces to the constant error carousel structure in the original LSTM paper [2].
It should also be noted that the forget gate was added to the LSTM later [3], effective by
making o1 = f;, where f; is the forget gate value.

The skip-coefficients are set to be learnable parameters to allow the network to stabilize
the hidden states of the DSRNN. To ensure such control, we introduce a regularizer that is
added to the loss-function to update the skip-coefficients such that the states of the RNN
never diverge. Thus, we create a linearized state-space representation of the network and
build the regularizer to ensure that the absolute value of the eigenvalues of the linearized
state-space model are inside the unit circle. The following subsection will formulate the
state-space representation of the hidden states of the DSRNN.

2.1 State-Space Representation of DSRNN Architecture

With the architecture described above, we define the state-vectors as connected hidden states,
in the following manner g; := h;—;,¥i = 1, ..., k. The resulting state vector can therefore

be written as g; = [qtl, cos gy k1T Thus, the state-space formulation of the the hidden states
becomes:
CI,;H ar ar @3 ..o [q) on(ql, x0)
q,3+1 10 0...0 qé 0
qt-H — 0O 1 O0...0 q; + 0 (2)
k., 00 ...1 0]]|gf 0

where 0 and 1 are the n x n zero and identity matrices, respectively. For simplicity, the state
vectors can be re-written as ¢; 1 = f(g:, X;) Vt. The system in Eq. (2) is a nonlinear time-
varying dynamical system, which makes it difficult to figure out whether or not the states q,i
fori =1, ..., k will eventually diverge.

In order to study the nonlinear system’s states, one may use Lyapunov’s Indirect Method to
draw conclusions about stability in local regions around an equilibrium pair, (¢¢, x¢). A state
g and input x; are said to be an equilibrium pair if the state g; remains constant in the future
(i.e. ¢¢ = f(q° x°) Vt) provided that there are no exogenous disturbances. Lyapunov’s
Indirect Method considers the nonlinear system ¢;+1 = f(q;), where f(-) : D — R"is
continuously differentiable and D is a neighborhood of the equilibrium point, ¢¢, which for
simplicity will be assumed to be the origin. Using the mean value theorem, and for some
point z € D, where if the line connecting z to the equilibrium point is entirely inside D, then

for each element i € {1, ..., n} of fit follows that
fitg) = o L e = Ll 20+ [8f’( o - o 0l
where g;(q) £ [f’f' (zi) — 3 L (0)]g satisfies
sl < |2 o @) —(0>H||q||

Therefore, f(q) = Aq + g(q), where A = %—{;(0). Since the gradient %—{; is also continuous,

then ”ﬁ(qu)” — 0as ||g|| — 0 [25]. Therefore, inside a neighborhood, or region, around the
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equilibrium point, the nonlinear system can be approximated by ¢,+1 = Ag,. This can be
summarized in the following theorem:

Theorem 1 [25] Let ¢ = 0 be an equilibrium point for the nonlinear system q;+1 = f(qr),
where f(-) : D — R" is continuously differentiable and D is a neighborhood of the equilib-

rium point. Let the Jacobian matrix A = %‘Z (@) }q=qe' Then, the linearized systemq; 1 = Aq;

is asymptotically stable if each eigenvalue of A is inside the unit circle, or |A;| < 1 for all i.

In the case of neural networks, the equilibrium points will vary according to the chosen
activation function. The activation function chosen however is assumed to be continuously
differentiable and locally Lipschitz. For example, the hyperbolic tangent function, which is
both continuously differentiable and locally Lipschitz, has an equilibrium point at the origin.
We therefore evaluate the stability of the network using Lyapunov’s indirect method above,
where the equilibrium point is an equilibrium pair (g€, x¢). Therefore, the linearized system
is found by taking the Jacobian of the functions f(g;, x;) with respect to the states and inputs
of the system evaluated at the equilibrium points, as such:

qr+1 = Vq f(qs, xt)| a=e¢ qt + Vi f(qr, xt)| q=qe Xt +h.o.t. 3)
xp=x¢ xp=x¢
where h.o.t. are the higher order terms of the true nonlinear system. In matrix form, after
neglecting the higher order terms, the linearized system is written as:

dp() 3p()

o] + 9q] ) a3 ... 0 T
1 0 0 ...0 )

gr+1 X 0 1 0 ...0 q: + Xy “4)
: e T 0
0 ... 0 10 0
——
A(nkxn-k) B(nkx1)

where A and B are evaluated at the equilibrium points. In our experiments, the activation

function chosen is the hyperbolic tangent, meaning the equilibrium pair is located at the

origin, i.e., (¢, x¢) = (0,0), and % 4¢=0 = Wpec, where W, is the recurrent weight
t

. x¢=0
matrix. )
From Theorem 1, it is possible to determine whether the states g; will converge or not
Vj = 1,2,...,k, by studying the eigenvalues, L(A), of the state-transition matrix A in

equation (4) above. Since the system is discrete, to ensure convergence of the states, we
require [A7(A)| < 1,Vi =1, ..., n -k, where Af(A) is the ith desired eigenvalue of A.

2.2 Regularizer for Desired Eigenvalues

Since the linearized model of the system is updated at every training iteration, the skip-
coefficients constantly need to be adjusted in order to maintain all desired eigenvalues, A}
fori =1,...,n -k, of the system. For this reason, a regularizer is designed and embedded
into the loss function of the DSRNN, which is built to enforce eigenvalue placement. The
regularizer is a function of both the skip-coefficients as well as the desired eigenvalues. With
this formulation, all parameters are updated such that the eigenvalues A(A) converge towards
A*(A), as well as minimize the objective error of the network.

The eigenvalue regularizer is designed to minimize the distance between A} for i =
1,...,n - k and the eigenvalues of A in (4) as a function of the skip-coefficients, A(«), by
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using the Euclidean norm C; (A*, A(«)) = \/ Zl - 1 — A\ (oz))z. The cost-function (or loss)
of the DSRNN, Cpsrnn(+), is therefore extended, and the resulting cost function becomes
CpsrnN(-) = CyN () + B - C).(+), where B is a constant regularizer parameter and can
be simply chosen to be 1 as in our experiments, and Cyx (+) is a cost function between the
output of the DSRNN and the ground-truth, which in our experiments is chosen to be the L,
norm. We note that the complexity for computing the eigenvalues of a square m x m matrix
increases by the order of O@m?).

Remark 1 The skip-coefficients and all parameters of the DSRNN are updated simultane-
ously, which indicates that the latest skip-coefficients no longer yield the desired eigenvalues
of the new linearized model. However, this does not pose an alarming problem if the learning
rate is small enough. This is because the parameters will be updated slow enough such that
AMATDY are in a region close enough to A(AD), where the superscript (¢) refers to the
training iteration. O

Remark 2 The closer the eigenvalues of A are chosen to the origin, the faster the states
converge towards the equilibrium points, whereas eigenvalues chosen very close to 1 require
a large number of time-steps for /; to converge. Hence, intuitively one would choose a small
desired eigenvalue, 0 < |[A*(A)| < 1, to ensure a more stable trajectory of hidden states,
which effectively allows the RNN to better learn. O

Remark 3 Although there is no straightforward way of knowing whether the values of the
hidden states are within that local region D around the equilibrium pair, it is likely that the
initial training iterations return hidden state values that are close enough to the equilibrium
pair. This assumes that the equilibrium point is located at the origin (as in the case of the
hyperbolic tangent function), initializing all the parameters of the network using a normal
distribution, and scaling down or normalizing the input data in order to return small hidden
states values in the initial training iterations, and consequently within reasonable proximity
of D. Assumptions can also be made about the step-size chosen for the optimizer, or the value
of the regularizer parameter, to ensure that the weights are modified to reduce the hidden state
values till they enter D. Therefore, without loss of generality, we assume that the operation
is inside the region, D. O

2.3 Backpropagation Through Time with DSRNN

Back-propagation through time (BPTT) is well understood and established [26], especially for
a standard RNN with no skip connections. However, when skip-connections are introduced
into the architecture, as in the DSRNN, the derivation of the BPTT becomes more complex
to expand as a function of time. This is because the chain-rule adapted in the standard BPTT
needs to be reapplied to all k£ previously connected hidden states. In equation form, by letting
Ah] = gZ’ the back-propagation expands to include multiple nested summation terms
Wthh have_the following structure:

0E  3E
dh_r ol ( Z AR ( Z Ah"*”)) ©

i1=1 ir=1

(- (T aie))

ZTI
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h

he—1 he_2
":/ \"2 n;/ \(\2
he—o he—3 he—z  hi—q
o;/ \02 a;/ a;/
he—z  hi_a  hi_y hi_4
n;/
hi—4

Fig.1 Tree diagram of to expand the BPTT for DSRNN with k =2 and 7' = 4

where T > k and & is the error of the RNN at time-step f. Once the equation is
expanded to the T'th time- step, the following substitutions are recommended: ah’

o) + Wricdlag(<p (h~1)) and ah =g forl <i <k.

We present two examples to illustrate BPTT for the DSRNN for the cases where k = 1
and 2. For the k = 1 case, we show the effect of the BPTT on the gradient by borrowing
notations from the proof in [27], as follows:

We know that the Jacobian matrix 32?1 = + W,T“diag(gal(h,_l)). Let Ay, = % be
the largest singular value of the recurrent welght matrix Wy, and A, be the largest singular

value of the skip-coefficient ;. Then Vz:

Ohy1
oh;

< leorl + | W,

diag(¢' (h))| < Ag + ly @)
| | <pat

Let n € R be such that || ’dzag <p (h,) H = 1. Then it can be shown that

~|

& ﬁ Ohi1

Bh, ; ah,
i=T

For the k = 2 case, we give an example of BPTT for T = 6. Using equation (6) and

the recommended substitutions, and defining o1 + mdlag ((p (hy— 1)) £ af, the example
unfolds as follows:

0&;
oh,

< (Ag+n)' T ®)

A& A& (., 0
= Ah Ah
oh; 3ht < * (9)
85, 0 0 2 2
= 3 AR ARY + ARY | + ARS( ARG + ARG (10)
= (@)’ + 5P (@) +6(@])* (@) + (@2)? (11)

We present methods using combinatorics to simplify the calculations relating to the expan-
sion of the BPTT. Due to space constraints, we will show the example of k =2 and T = 4
here; this can be easily generalized to multiple time-steps and different k values. For this
case, the DSRNN has the following structure: 7, = a1h;—1 + o2h;—2 + @p(hi—1, x;). We
can draw the tree shown in Fig. 1.
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Starting at i,, where hy = f(h;—1, hy—2), the error being backpropagated will split to both
h;—1 (leftchild) and h,_» (right child), with the edge of the tree denoting the respective partial
derivatives. The error can be traced back through several branches until /;_4 is reached. By
summing up all the branches we get the total error propagated to 7 = 4 time-steps back.
a?f_’A = (oz’f)“ + C)’(o:T)Z(ozz)1 + (a)?. Note, the value of k dictates the number of branches
each edge splits into, meaning for k = 1 trees or k = O trees (vanilla RNN), they will only
have the left child because the current hidden state only depends on its immediate previous
hidden state, i.e. h; = f(h;—1).

For the case (k = 2 and T = 4), we can alternatively treat this problem as attempting
to go back 4 time-steps in total, going back 1 step (dh;/dh,—_1) or 2 steps (dh;/dh;—3) at a
time. This becomes a problem of finding the pair of natural numbers (i, j) such that

T=ixl+jx 2|l.yj€[N (12)

IfT =4,thenwehave4d =4 x 1 =2x14+1x2=2x2,0r (i, j) € (4,0), (2, 1), (0, 2)).
Looking back at the tree graph, since going left is 1 step and going right is 2 steps, we can
take 4 left steps, or 2 left steps and 1 right step, or 2 right steps to reach /;_4. Once we’ve
settled for each pair of (i, j) values, the associated term is given by

i+ i/ ok \' [ oh \’
( i )(ahm> '(ah,,) (13)

For example, when (i, j) = (2, 1), by using combinatorics we can easily determine that
coefficient for the term (oef)z(az)l is (2;1) = 3 (basically we are taking 2 left children and 1
right child from the tree, and we need to choose the locations of the two left children among
all three children).

Then for the derivation of 3‘;’“5:6 for a DSRNN of parameter k = 2, we can write the BPTT
as follows, without having to expand every term

9€, 6 oh 6 5 oh 4/, 0h 1
ah,i6 - (6)(8}1,11) + <4)(8h,i1> (ah,i)
2 2 3
()G G () Gs) 1
= (@)’ + 5@ (@) +6(e])? (@) + (@2)?

This can also be generalized to larger values of k.

3 Simulations and Experimental Study

In this section, we test the performance of the DSRNN on a forecasting and a classification
task. We compare the results of the DSRNN with a vanilla RNN and an LSTM. We choose
to use two chaotic systems for our experiments, a double pendulum for the forecasting
task and a Lorenz oscillator for the classification task. Since chaotic systems are extremely
sensitive to initial conditions and are unpredictable in the long-term [28], the networks need to
maintain stable hidden state trajectories to model such long-term unpredictability. The double
pendulum dataset is obtained from [23], where the networks must forecast the positions of
the two dynamic joints of the double pendulum system. The Lorenz systems are simulated,
and the objective is to map short segments of the state signals to their corresponding oscillator
system that produced them. The final loss and the mean and standard deviations of the test
errors are used to compare the networks against one another.
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1800 A

1600 A

1400 41

1200 A

1000 H

800 ~

600 -

400 -

250 500 750 1000 1250 1500 1750 2000 2250

Fig.2 A visualization of the double pendulum joints’ trajectories at three random instances, each with a time-
series length of 10 steps. Each joint is represented by a black circle, where the direction of travel is illustrated
as travelling from the lightly shaded joints to the darker ones. The five black cross-markers, shown after each
moving joint, represent the true positions of the joints 7 € {1, 5, 10, 15, 20} time-steps ahead. The value of
each T is marked, where the red numbers correspond to the second (middle) joint, and the green numbers
correspond to the third (last) joint

Model Parameters: The networks are chosen after a basic hyperparameter search, where
the batch size, learning rate, and number of LSTM blocks are varied. Batch sizes of
[100, 250, 500, 1000], learning rates of [0.1, 0.01, 0.001, 0.0001], and LSTMs with 1 and
2 stacked layers are all considered. All networks contain 128 hidden units and the weight
matrices of the DSRNN models are initialized with Glorot initializers [29]. All networks use
the Adam optimizer [30] and their gradients clipped to 5 [27]. All models are implemented
in Tensorflow [31]. Our open-source implementation is publicly available at: https://github.
com/samersaabjr/DSRNN.

3.1 Forecasting the Double Pendulum

The double pendulum (DP) is a simple yet dramatically chaotic dynamical system, consisting
of one pendulum attached to the end of another. The dataset used in our experiments can be
found in [23], where 21 videos of a double pendulum are recorded, and positions of the three
joints are extracted and provided for all frames. In order to test the networks’ ability to model
the DP, the training set is constructed using the first 20 videos of the dataset, and the test set
contains data extracted from the last video, to ensure that the testing data has different initial
conditions from the training data. The input into the network are trajectories of the x and y
positions of the three joints of the DP with a time-series length of 10 time-steps. The outputs
fed into the network are the x and y positions of the two dynamic joints 7 € {1, 5, 10, 15, 20}
time-steps into the future from the last time-step of the input trajectory. Figure 2 shows an
example of three distinct input trajectories, along with their corresponding outputs to the
RNN models.

For each network, 5 independent runs are computed, where the average results over the 5
trained models are presented. All the networks use a batch size of 250. The DSRNN models
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Table 1 Final test loss results for

double pendulum forecasting r k=1 k=2 k=3 LST™ RNN
1.03e5 7.88e4 7.16e4 1.98¢7 2.75¢8
5 1.18e6 8.52e5 9.14e5 3.57e7 3.00e8
10 5.89¢6 5.22¢6 5.15e6 1.07e8 2.76e8
15 1.62¢7 1.53e7 1.52¢7 7.43€7 3.00e8
20 2.94e8 3.29¢7 3.29¢7 1.06e8 2.98¢8
3 —F— ’
108 4
@
S
- 107 i
3
[
o
[)]
o
[
Z 1064
—J— DSRNN k=1
—F— DSRNN k=2
—J— DSRNN k=3
1054 —J— LS™™
—J— RNN
i é 1|0 1'5 ZIO

Forecast Steps

Fig.3 Average test errors over the 5 independent runs returned by each network model as the number of steps
to forecast is increased, with the standard deviations across each 5 network models indicated by the error bars

have a learning rate of 0.0001. The LSTM and vanilla RNN use a learning rate of 0.001, and
the LSTM utilizes 2 stacked layers.

The final test losses of the recurrent models are summarized in Table 1 and Fig. 3. The
lowest test losses are shown in bold text. The test losses are calculated using half the L,-norm
(without the square-root). It is clear that the DSRNN’s outperform the LSTM and Vanilla
RNN, where the DSRNN with k = 3 achieves the most dominant performance. The k = 3
DSRNN reduces the test error of the LSTM by up to 99.639% for forecasting 7 = 1 time-step
ahead, and as low as 69.107% reduction in error for the 7' = 20 case. As for the RNN, the
relative test error is reduced by up to 99.974% for T = 1, and as low as 88.961% reduction
in error for 7' = 20.

The p-value is calculated in order to show whether or not there are significant statistical
differences between the DSRNN models and both the LSTM and vanilla RNN, where every
model was run over 5 random seeds. Since all three DSRNN models performed within close
proximity of one another, the LSTM and vanilla RNN are compared with the DSRNN where
k = 3. The t-test was used to compare the means of the networks, as shown in Table 2.

Figure 4 shows a visual spot of the likely regions that each recurrent network model would
predict. The regions are centered around the true prediction plus the average error around
each jointat T € {1, 5, 10, 15, 20} time-step prediction. The height and width of the circular
regions are proportional in magnitude to 1 standard deviation of the x and y error predictions.
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Table2 Statistical comparisons between the DSRNN k = 3 and both the LSTM and vanilla RNN via p-value
using the 7-test

Model T=1 T=5 T=10 T=15 T=20

LSTM 0.0193 0.0014 0.0065 0.0003 5.8le—6

RNN 4.75e—7 1.50e—7 4.62e—8 8.07e—10 7.20e—11
0 k=3
m LSTM

12
00 1800 A

1100 1400
1700

1000

1600 A
200 1200

1500 A
800

1000 -

700 1400 ©

600 1300

800 A

500
1200 A

260 4(I)0 G(IJO 860 10‘00 12I00 G(I)O 8(I)0 10b0 12‘00 14‘00 1200 1400 1600 1800 2000 2200

Fig.4 Visualization of the predicted locations of the dynamic joints of the double pendulum at three different
instances by the DSRNN with £ = 3 and the LSTM. The highlighted regions corresponding to each recur-
rent network architecture are centered around the average prediction for each joint, corresponding to every
T € {1,5,10, 15, 20} time-step predictions. The height and width of the circular regions are proportional in
magnitude to 1 standard deviation of the x and y error predictions

Clearly, the vanilla RNN performs the worst in this task. The DSRNN however performs the
best in all cases, with the k = 3 architecture performing the best.

The results from forecasting the double pendulum suggests that the LSTM, although
extremely powerful when modeling systems with an internal memory, has significant diffi-
culty in modeling this chaotic system, as its structure does not lend itself well to this task.
Conversely, the DSRNN is capable of modeling such a system with long-term unpredictabil-

1ty.

3.2 Lorenz Oscillator Classification

The Lorenz system is a chaotic dynamical system governed by the following three coupled
differential equations:

fl—f=o<y—x>

dy

Y (-2 — 1
5 ==y 5)
dz

a Y
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Table 3 The average test accuracy results obtained over the last 10 epochs for all networks

T DSRNNk =1(%) DSRNNk=2(%) DSRNNk=3(%) LSTM (%) VanillaRNN (%)

5 57.49 57.41 56.93 68.15 67.73
+0.004 +0.002 +0.002 +0.007 +0.006
10 69.04 69.06 67.59 69.44 66.95
+0.007 +0.007 40.005 +0.003 +0.005
15 7123 70.22 68.99 69.43 69.08
+0.007 +0.005 +0.006 +0.006 +0.004
20 69.12 69.20 67.95 69.41 68.85
+0.007 +0.005 +0.008 +0.006 +0.005

For this experiment, we created two Lorenz systems with parameters (a) o = 10, p =
28,8 =8/3and (b)o = 11, p = 29, B = 3 for classification. The samples from both classes
were generated with the same initial conditions of x = 1,y = 1,z = 1 and integration
step of At = 0.01. The lengths of the time-steps T consist of these following values:
T € {10, 20, 50, 100, 200, 500}. Starting at the initial conditions, T time-steps of {x, y, z}
values are generated as one sample in the dataset. Subsequently, we repeat 20, 000 times for
each T value to get 10,000 training data (randomly chosen from all samples) and testing
data.

For each network, 10 independent runs are computed, where the average results over the
10 trained models are presented. All the DSRNN models use a batch size of 500, and the
LSTM and vanilla RNN use a batch size of 250. The DSRNN models have a learning rate of
0.0001. The LSTM and vanilla RNN use a learning rate of 0.001, and the LSTM utilizes 2
stacked layers.

Table 3 lists the test accuracies for different values of k parameter in the DSRNN as well
as for the LSTM and vanilla RNN. The results are also visualized in Fig. 5. For this task,
the LSTM seems to perform the best overall, however for the 7 = 15 case, we find that
the DSRNN with both, k¥ = 1 and k = 2, outperforms the LSTM and vanilla RNN. The
best performance achieved for this task is 71.23% % 0.007% when using the DSRNN with
k =1, and is highlighted in bold in the table. Otherwise, the performance of the DSRNN is
comparable to the well-tuned LSTM network, which is understandable since, as previously
discussed in Sect. 2, an LSTM is a DSRNN with £ = 1 network with additional gating
functions. It is also interesting to note that with smaller sequence length inputs, the DSRNN
performs significantly worse, but as the sequence length grows, it performs as well, if not
better, than the other networks. Since the performance does not deteriorate, this could be an
indication that the DSRNN is robust to long inputs that could possess long-term dependencies.
We note that the LSTM converges faster than the DSRNN, as shown in Fig. 5, however the
final steady-state performance is very similar. This experiment shows that the DSRNN is
well suited for modeling nonlinear systems.

Taking a closer look at just the DSRNN results, we find that the DSRNN with k = 1 yields
the best overall performance for this classification task. It is consistent with the Lorenz System
equations (15) since the current state of the Lorenz states only depends on the one time-step
previous states. In other words, the Lorenz system is a first-order dynamical equation, and
whenever k is chosen such that it matches the order of the system being learned, one can
expect better results. Enforcing additional structures on the hidden states by adding hidden
states further back in history would lead to worse results.
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Fig.5 The average test accuracy over 10 random initializations of the network parameters at every epoch for
the DSRNN models, LSTM, and vanilla RNN for the 7 = 10 time-steps case

4 Summary, Conclusions, and Future Work

This paper has developed a new RNN architecture, called the Dynamically Stabilized Recur-
rent Neural Network (DSRNN), which is designed to stabilize the recurrent hidden-state
trajectory. The DSRNN is a generalization of the vanilla RNN, where weighted skip con-
nections across k previous hidden states are utilized. From the perspectives of dynamical
systems and control theory, the notion of Lyapunov stability is introduced as an eigenvalue
regularization term in the overall loss function, which imposes a controller for the hidden
state trajectory. Experimental results show that the DSRNN outperforms both the LSTM and
vanilla RNN in forecasting the chaotic dynamical double pendulum system, by a substan-
tial margin. Specifically, the DSRNN reduces the relative mean squared errors of both the
LSTM and vanilla RNN by up to 99.639% and 99.974%, respectively. The performance of
the DSRNN is also validated on a classification task of two Lorenz oscillators, where it was
shown that the DSRNN performed comparably well to the LSTM. In fact, the DSRNN out-
performs the LSTM in the case where the input sequence length was 7 = 15 time-steps. The
DSRNN greatly outperforms the LSTM in the double pendulum. The DSRNN also achieves
the best test accuracy for the Lorenz system for input sequence lengths of 7 = 15, but is
slightly outperformed by the LSTM for the remaining input sequence lengths. This makes
sense when dissecting the nature of the two experiments. In the double pendulum case, the
data is obtained using various initial conditions, which result in widely different trajectories.
Whereas in the classification task, the initial conditions of the two systems are fixed, and only
snippets of the trajectory are used as input. Thus, the Lorenz classification problem can more
easily be solved using memory than the double pendulum forecasting task, since the sampled
trajectories appear very random in comparison to each other, and so a memory unit will not
serve much help. Therefore, although the LSTM lends itself better to memory-based tasks,
the memory structure in the LSTM may be its own Achilles” heel when modeling chaotic
dynamical systems, because trying to remember trajectories without learning the dynamical
structure is ineffective. The DSRNN however does not possess a memory structure, but the
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learnable skip-coefficients could be adjusted to better learn temporal dependencies with k
time delays. The latter is due to the fact that the weight matrices are shared through time.

Future extensions of this work envision capitalizing on layer-wise smoothness by adding

(spatial) skip-connections across the hidden layers of the recurrent network. Such an archi-
tecture may allow the network to distinguish temporal dynamics from spatial ones, giving
the network flexibility in modeling many complex nonlinear dynamical systems.
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