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Optimal Window-Symbolic Time Series Analysis
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Abstract—This article proposes the optimal window-
symbolic time series analysis (OW-STSA) methodology to
optimize parameters of feature extraction and pattern clas-
sification in industrial processes. The underlying theory is
built upon minimization of an empirical risk function to dis-
criminate between nominal and anomalous operations of
the physical process under consideration. In particular, the
proposed methodology produces: optimized windows of
the time series used for pattern classification and anomaly
detection, and optimized identification of feature extractors
and classifier parameters. The algorithm is realized by seg-
menting a given time series into windows of equal size.
Then, the stationary state probability vector is computed
for each window in the sense of OW-STSA for anomaly
prediction with locally optimal accuracy of detection per-
formance. The proposed methodology has been experi-
mentally validated in laboratory environment with different
classifiers for two distinct industrial processes. The first
experiment addresses detection of fatigue failure in poly-
crystalline alloy structures using time series of ultrasonic
signals. The second experiment investigates detection of
thermoacoustic instability in an emulated combustion sys-
tem using time series of pressure-wave signals. In both
experiments, the proposed OW-STSA methodology yielded
excellent detection performance of anomalous behavior
with multiple classification techniques.

Index Terms—Anomaly detection, empirical risk function
(ERF), symbolic dynamics, time series signals.

I. INTRODUCTION

D ETECTION of anomalies by time series analysis has
attracted tangible attention in multiple disciplines, such

as engineering [1], medicine [2], and finance [3]. Such a wide
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spectrum of application domains brought in a significant impact
on the progress of the science and art of anomaly detection by
time series signals as described below.

Wang et al. [4] proposed an anomaly detection approach
for monitoring nonlinear and multimode industrial processes.
Their approach used a Dirichlet process Gaussian mixed model
to classify the modes of multimode processes from the moni-
tored data. Benkabou et al. [5] used a combination of entropy
and dynamic time warping to identify anomalies in signals.
Guo et al. [6] leveraged the gated recurrent unit to discriminate
between nominal and anomalous behaviors of data sequences.
Zhang et al. [1] used temporal dependence and cross-variable
association for anomaly detection in power plants, using sensed
time series signals. Convolutional neural network (CNN) was
used by Piekarski et al. [7] to detect anomalies of sensed signals,
such as instability in synchrotron radiation. Yin et al. [8] used a
fixed sliding window concatenated with hybrid CNN and recur-
rent autoencoder to classify nominal and anomalous regions of
data samples. Long short-term memory based techniques were
used to identify anomalies in time series [9]–[11]. Various other
techniques were proposed to detect anomalies in time series
signals, such as classical recurrent neural networks, generative
adversarial networks, among other techniques (e.g., Siegel et
al. [12] and the references therein). Anomalous behavior in data
of medical Internet of Things networks was detected by using a
rough set theory based fuzzy core vector machine technique [13].
Granular computing was used for detection and scoring anoma-
lous samples of a dataset, where fuzzy semantics produced a
degree of anomaly of data samples [14]. Despite their excellent
performance, most of the aforementioned techniques and the
references therein rely on magnitudes of signals for detection of
anomalous data samples.

Symbolic time series analysis (STSA) [15], [16] addresses
anomaly detection, based on both magnitude and texture (i.e.,
dynamical behavior) of sensed signals, where a time series is
converted into a string of symbols. Then, the state-transition
probability [system state probability (SSP)] vector is computed
from windows of symbol strings. The SSP is the feature of each
window, which is used to determine if the corresponding part
of the time series is nominal or anomalous [17]. Nevertheless,
in [17], the window length was selected to be long enough to
compute a realistic SSP vector, which enables reasonable clas-
sification of nominal and anomalous regions. Indeed, selection
of an insufficient window length may lead to lack of stationarity
in the SSP, which degrades the detection performance. A mea-
sure preserving transformation (MPT) based STSA technique
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addressed selection of window length for low-delay anomaly
detection [18], [19]; however, the satisfaction of required prop-
erties, such as measure preservation, may complicate its im-
plementation. Furthermore, there is no direct relation to the
recognition performance in the MPT-based STSA, potentially
leading to nonoptimal window length and detection accuracy.

This article proposes an optimal window-STSA (OW-STSA)
methodology to jointly optimize the window length and the
empirical risk function (ERF) in the classification stage. The
joint optimization is realized by plugging the window length into
the ERF of the classification of nominal and anomalous parts;
then, the window length is estimated such that the ERF is mini-
mized. The OW-STSA technique is experimentally validated on
two laboratory-scale apparatuses: fatigue damage detection in
polycrystalline alloy structures and detection of thermoacoustic
instability (TAI) in an electrically heated Rijke tube [20], which
emulates an industrial-scale combustion system.

The main contributions of this article are as follows.
1) Development of a low time-latency methodology for

anomaly detection: The proposed OW-STSA method-
ology simultaneously optimizes the window length of
symbol strings and the ERF for accuracy of anomaly
classification.

2) Experimental validation of the methodology: The pro-
posed OW-STSA methodology has been successfully
validated, using multiple classification techniques, in the
laboratory environment for two industrial applications,
namely, fatigue crack detection in mechanical structures
and monitoring of TAI in combustion systems.

The rest of this article is organized as follows. Section II
explains the notion of STSA. Section III details the pro-
posed OW-STSA methodology. Section IV presents the results
of experimental validation. Finally, Section V concludes this
article.

II. SYMBOLIC TIME SERIES ANALYSIS

Let X = {x(1), . . . , x(T )} to be a time series of the signal
having length T , where x(t)’s are (possibly) noisy sensor mea-
surements generated by a dynamical system. The main objective
of STSA is to detect and identify the anomalous behavior, if
any, in the time series X . A schematic description of STSA is
depicted in Fig. 1, where the decision output ŷ is a binary signal
that identifies if a part of the time series represents the nominal
(indicated by blue solid lines) or anomalous (indicated by dotted
red lines) behavior. In STSA, a time series X is converted into a
string of symbolsS = {s1, . . . , sT }with si ∈ A, whereA is the
alphabet of finitely many (i.e., |A|) symbols. Such a conversion
is performed by partitioning the state space of the dynamical
system into |A| disjoint regions. Each region is assigned with
a distinct symbol from A. Several partitioning techniques can
be used; examples are uniform partitioning (UP), maximum
entropy partitioning (MEP), and K-means. In a UP process, the
state space is partitioned into regions with equal size, whereas in
MEP process, the time series is partitioned into segments with
equal probability such that the total entropy is maximized. In

Fig. 1. Schematic diagram for detection of nominal (solid blue lines)
and/or anomalous (dotted red lines) behavior of the dynamical system
as indicated by the time series of signals.

K-means, the state space is partitioned by using the K-means
clustering process.

For accurate discrimination between nominal and anoma-
lous behaviors of the dynamical system, the time series
is segmented into windows of measurements χt = {x((t−
1)Wd), . . . , x(tWd − 1)}, t = 1, 2, . . . , J , where J is the total
number of windows of length Wd, generated from the given
time series. It is possible that each window χt of X can be con-
verted into strings of symbols by different partitioning methods;
however, in this article, the same partitioning method has been
used for all windows. Now, one may use the notion of STSA to
extract features from these windows of measurements to draw
conclusions (i.e., nominal or anomalous) about the behavior of
the dynamical system.

To model the behavior of the generated string of symbols, D-
Markov machines have been employed to capture the sequential
behavior of symbol strings [15], [16]. The notion of D-Markov
machines uses an algebraic structure, called the probabilistic
finite-state automaton (PFSA), defined by K = (A,Q, δ,M),
whereA is a finite-cardinality alphabet,Q is a finite set of states,
δ : Q×A → Q is a state transition map, and M : Q×A →
[0, 1] generates individual entries of the emission (also called
morph) matrix. The maps δ andM determine the (|Q| × |Q|)
state transition probability matrix (STPM), which is used to
generate the SSP vector π as the (sum-normalized) left eigen-
vector corresponding to the unique eigenvalue 1, provided that
the constructed STPM is ergodic [18], [19]. Indeed, aD-Markov
machine is a PFSA for which the probability of the emitted sym-
bols depends only on the previous D consecutive symbols [15],
[16]. In this way, a time series X of sensor data is converted
to low-dimensional feature vectors that can efficiently detect
anomalies in the dynamical behavior of time series signals.
Algorithm 1 summarizes the STSA procedure and further details
are reported in [16] and references therein.

Step 1 of Algorithm 1 is the partitioning process, where a
given time series is segmented into logical partitions by using
one of the aforementioned partitioning techniques [21]. Then,
each sample of the time series signal is converted into a symbol
assigned to its partition and as given in Step 1 of Algorithm 1.
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Fig. 2. Schematic diagram for implementation of STSA in Algorithm 1.

Algorithm 1: STSA Feature Extraction.
INPUT: An alphabet A, a Markov depth D, and a data
block {x((t− 1)Wd), . . . , x(tWd − 1)}.
OUTPUT: A feature vector πt.

1: Convert {x((t− 1)Wd), . . . , x(tWd − 1)} into a
symbol string {s0, . . . , sWd−1}, si ∈ A, using one of
the STSA partitioning methods.

2: Using frequency counting, construct a D-Markov
machine based on {s0, . . . , sWd−1} to obtain the
state-transition probability matrix P(t).

3: Find the feature vector as the state stationary
probability (SSP) vector πt computed as the left
eigenvector of P(t) corresponding to the eigenvalue
λ = 1, i.e., πt = πtP(t).

Step 2 of Algorithm 1 computes probabilities of transition be-
tween symbols to compute the STPM P . Step 3 of Algorithm 1
computes the SSP π as the left eigenvector corresponding to the
unity eigenvalue. The aforementioned explanation is reinforced
with a schematic diagram given by Fig. 2 that helps visualizing
the STSA algorithm.

A judicious choice of the window length Wd is essential for
early prediction of anomalies with low time-delay and accurate
performance. The next section presents an empirical approach
to optimize the selection of Wd to achieve low-delay prediction
of anomalies with good performance.

III. OPTIMAL WINDOW-STSA

This section develops the OW-STSA algorithm. Given a (time
series) window segment χ of length Wd, let L(y, f(χ,Wd)) be
a classification loss function described by the indicator function

L(y, f(χ,Wd)) =

{
0, for y = f(χ,Wd)

1, for y �= f(χ,Wd)
(1)

where y is the (discrete-valued) class label of χ, and f(χ,Wd)
is the estimated class label, i.e.,

ŷ = f(χ,Wd). (2)

Fig. 3. Schematic diagram of the proposed OW-STSA for detection of
nominal (solid blue lines) and/or anomalous (dotted red lines) behavior
of the dynamical system, as indicated by the time series of signals.

The risk functional R(z,Wd) is written as

R(z,Wd) =

∫
L(y, f(χ,Wd))dP (z) (3)

where z � (χ, y) and P (z) is the joint probability distribution.
Then, given a dataset zN = {(χ1, y1), . . . , (χN , yN )}, (3) is
approximated by the ERF

Remp(zN ,Wd) =
1
N

N∑
n=1

L(yn, f(χn,Wd)). (4)

An optimal value W ∗
d of the window length is obtained by

minimizing Remp(z,Wd) in (4) as

W ∗
d = argmin

Wd

Remp(z,Wd) (5)

for which it is necessary that the derivative ofRemp(z,Wd)with
respect to Wd is zero at the optimal point W ∗

d , i.e.,

∂Remp(z,Wd)

∂Wd

∣∣∣∣
Wd=W ∗

d

= 0 (6)

which leads to the fact that

lim
h→0

Remp(z,Wd + h)−Remp(z,Wd)

h
= 0. (7)

The limit in (7) implies that for every ε > 0, there exists δ > 0
such that for all 0 < h < δ∣∣∣Remp(z,Wd + h)−Remp(z,Wd)

h

∣∣∣ < ε. (8)

It follows from (8) that

|Remp(z,Wd + h)−Remp(z,Wd)| < hε � έ. (9)

Arbitrarily small choices of h and ε (and hence the choice
of έ) enable (9) to be a stopping condition to estimate W ∗

d ; the
sufficiency for minimization is established by checking that

∂2Remp(z,Wd)

∂W 2
d

∣∣∣∣
Wd=W ∗

d

> 0.

The window-length optimality of OW-STSA is realized from
the stopping condition of (9), as detailed in Algorithm 2.

The realization of Algorithm 2 simultaneously yields minimal
window length W ∗

d and local optimal accuracy of anomaly
detection. The schematic diagram in Fig. 3 helps visualization
of how OW-STSA is applied in Algorithm 2.
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Algorithm 2: Optimal Window-Symbolic Time Series
Analysis (OW-STSA).

INPUT: Nominal Xh and anomalous Xf components of
a time series signal, step size ΔW , tolerance έ, initial
value of window length Wd and its lower and upper
bounds {W,W}
OUTPUT: Optimal parameters – window length W ∗

d ,
symbolic state probability (SSP) vector P ∗t , and
classifier C∗

1: Initialize: Wd ←W
2: Segment Xh and Xf into windows of size Wd

3: Compute the corresponding SSP vector Pt of each
window using Algorithm 1.

4: Compose the training input Xtr to be matrix of vectors
of SSP of Xh and Xf

5: Compose the corresponding output targets Ztr of Xtr

6: Develop the classifier C given the data (Xtr, Ztr)
7: Compute the empirical risk R∗emp of C
8: repeat
9: Wd ←Wd +ΔW

10: Segment Xh and Xf into windows of size Wd

11: Compute the SSP vector πt of each window using
Algorithm.1.

12: Compose the training input Xtr to consist of SSP
vectors Xh and Xf

13: Compose the corresponding output targets Ztr of Xtr

14: Develop the classifier C given the data (Xtr, Ztr)
15: Compute the empirical risk function Remp of C
16: if Remp < R∗emp then
17: Ro ← R∗emp, R∗emp ← Remp

18: end if
19: until |R∗emp −Ro| < έ or Wd ≥W
20: W ∗

d ←Wd, π∗t ← πt, and C∗ ← C

IV. VALIDATION OF THE OW-STSA METHODOLOGY

This section validates the OW-STSA methodology with two
laboratory experiments: fatigue damage in polycrystalline alloy
structures and TAI in an emulated combustion system. Time
series signals were acquired for both experiments, which have
healthy (or stable) and damaged (or unstable) phases. The clas-
sification model uses ten-fold cross-validation [22]. In Experi-
ments #1 and #2, the number of states was selected to be 8, i.e.,
the dimension of the STPM P is 8× 8.

A. Experiment #1: Fatigue Damage Detection

The test apparatus for fatigue damage detection is depicted
in Fig. 4(a).The apparatus is equipped with an ultrasonic sensor
that has a sender and a receiver of ultrasonic signal waves to
monitor the health of tested materials. Fig. 4(b) depicts the mech-
anism of capturing the ultrasonic signal of a specimen made
of polycrystalline aluminum alloy AL7075-T6. The specimen
has dimensions of 3-mm thickness and 50-mm width with a
side-notch of 1.58× 4.57 mm2, to increase the stress concen-
tration factor and thereby ensure local crack initiation at the

Fig. 4. Test apparatus of Experiment #1. (a) Fatigue testing machine.
(b) Details of a (aluminum alloy 7075-T6) test specimen with the ultra-
sonic sensor.

Fig. 5. Ultrasonic signal for a specimen with fatigue onset at approxi-
mately cycle number 4525.

notch end. To gradually initiate and propagate fatigue damage,
a cyclic sinusoidal load under tension–tension stress is applied
at the specimen, with a frequency of 12.5 Hz using the MTS
831.1 fatigue testing machine in Fig. 4(a). When the specimen
is healthy, the receiver captures the nominal signal generated
by the sender. Once fatigue damage is initiated, the behavior
of the ultrasonic signal, captured by the receiver, drifts toward
the anomalous mode of operation. Twenty four specimens were
tested and Fig. 5 shows the ultrasonic time series signal that is
generated on a typical specimen. As the fatigue damage accu-
mulates, the observed behavior of the time series changes, for
which OW-STSA is used to distinguish between the nominal and
anomalous behaviors of the signal time series, thereby providing
a proxy to detect fatigue damage. In this article, each time
series of signals under consideration has been downsampled to
∼ 10000 data samples, as shown in Fig. 5. The stochastic nature
of fatigue damage in polycrystalline alloys randomizes the onset
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Fig. 6. Classification performance in Experiment #1. (a) Performance
of AdapBoost. (b) ERF of AdapBoost. (c) Performance of BagEns.
(d) ERF of BagEns. (e) Performance of NB. (f) ERF of NB. (g) Perfor-
mance of DT. (h) ERF of DT.

TABLE I
EXPERIMENT 1: OPTIMAL WINDOW LENGTH AND ACCURACY OF OW-STSA

AND CONVENTIONAL STSA AT Wd = {1000, 6000}WITH MULTIPLE
CLASSIFICATION TECHNIQUES

points of failure in individual specimens, even under identical
loading conditions. Furthermore, the change in the signal pattern
at the failure onset is relatively small, as shown in Fig. 5, which
makes identification of the onset points a challenging task [18].

To detect and identify the anomalous behavior in polycrys-
talline alloys due to accumulation of fatigue damage, the pro-
posed OW-STSA methodology was implemented with multi-
ple classification techniques, namely, adaptive boosting (Adap-
Boost), bagged ensemble (BagEns), naive Bayes (NB), deci-
sion tree (DT), k-nearest neighbor (k-NN), linear discriminant
analysis (LDA), logistic regression (LR), and support vector
machine (SVM) (see machine learning and statistical modeling
literature, such as the works in [22] and [23], for further details
about the aforementioned classification techniques). Figs. 6
and 7 show the performance and ERF of the aforementioned
eight classification techniques, with respective optimal widow
lengths, obtained using OW-STSA. In each case, the conver-
gence parameter έ [see (9)] was selected to be 0.01. Using the
OW-STSA, pairs of optimal window length (in # of samples)
and accuracy [in percent (%)] (W ∗

d ,Acc) are listed in Table I.
For comparison of OW-STSA with conventional STSA, where
window length is manually selected, both relatively small (e.g.,

Fig. 7. Classification performance in Experiment #1. (a) Performance
of k-NN. (b) ERF of k-NN. (c) Performance of LDA. (d) ERF of LDA.
(e) Performance of LR. (f) ERF of LR. (g) Performance of SVM. (h) ERF
of SVM.

Fig. 8. Test apparatus of Experiment #2: Electrically heated Rijke tube.

Wd = 1000 samples) and large (e.g.,Wd = 6000 samples) were
investigated; these results are also listed in Table I.

It is worth mentioning that image analysis techniques can be
efficiently used to identify abrupt behavioral changes in many
industrial systems (e.g., thermal imaging to detect faults in
machines [24]). However, for fatigue damage detection, online
capturing of microscope images of the materials under consider-
ation are needed, which requires more sophisticated, expensive,
and fragile devices to capture such kind of images that limit
its practical applications [25]. Furthermore, image-based tech-
niques can detect fatigue damage on specific spots of the material
under the coverage of microscopes, which adds more constraints
in their usage to detect fatigue damage. Thus, behavioral changes
of sensed ultrasonic signals can provide a more efficient and
realistic means to detect fatigue damage.

B. Experiment #2: Detection of TAI

This experiment serves to detect TAI, by using sensed time se-
ries signals from a laboratory-scale electrically heated Rijke tube
apparatus, as depicted in Fig. 8, which emulates commercial-
scale combustion systems [20]. The apparatus consists of a
1.5-m-long horizontal tube with an external cross-section of
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Fig. 9. Unsteady pressure signals showing the transience from stable
(nominal) to unstable limit cycle (anomalous) behavior.

10 × 10 cm and a wall thickness of 6 mm. The apparatus has a
controller that regulates the flow of air (Q) at atmospheric pres-
sure through the tube, a heating element, and a programmable dc
power supply that controls the power input (Ein) to the heater.
Multiple experiments were conducted with flow rates ranging
from 130 to 250 L/min with increment of 20 L/min. First, the
system is heated to a steady state, using the primary heater power
input Ein with a power of approximately 200 W. Then, the
power input is abruptly increased to a higher value to have a
limit-cycle behavior (see Mondal et al. [20] for further details).
For multiple air-flow rates and heat inputs, bifurcating transition
from stable to unstable behavior results in the acoustic response
of the chamber. Pressure sensors are installed in the tube to check
TAI of the underlying system.

Fifteen experiments were conducted on the Rijke tube ap-
paratus. In each experiment, the process started with nominal
(i.e., stable) behavior and gradually drifted to anomalous (i.e.,
unstable) state, and a time series of pressure oscillations was
captured over 30 s, sampled at 8192 Hz, filtered to attenuate
the effects of low-frequency environmental acoustics. A typical
profile of the pressure time series is shown in Fig. 9, where
the process started with a stable behavior, then entered into a
transient mode, and finally transitioned into the unstable state.

Similar to what was done in Experiment #1, the proposed
OW-STSA methodology was tested with the data collected from
Experiment #2. Setting the convergence parameter έ = 0.01 [see
(9)], Figs. 10 and 11 show the performance and ERF of the
aforementioned eight classification techniques, with respective
optimal window length W ∗

d , obtained by OW-STSA. Pairs of
optimal window length (in # of samples) and accuracy [in
percent (%)] (W ∗

d ,Acc) are listed in Table II. For comparison
of OW-STSA with conventional STSA, where window length
is manually selected, both relatively small (e.g., Wd = 200
samples) and relatively large (e.g., Wd = 3000 samples) were
investigated; these results are also listed in Table II.

C. Discussion of Results of Experiments #1 and #2

Referring to Figs. 6 and 7 with respect to Experiment #1, and
from Figs. 10 and 11 with respect to Experiment #2, it is seen
that an increase of the window length Wd in the construction

Fig. 10. Classification performance in Experiment #2. (a) Performance
of AdapBoost. (b) ERF of AdapBoost. (c) Performance of BagEns.
(d) ERF of BagEns. (e) Performance of NB. (f) ERF of NB. (g) Perfor-
mance of DT. (h) ERF of DT.

Fig. 11. Classification performance in Experiment #2. (a) Performance
of k-NN. (b) ERF of k-NN. (c) Performance of LDA. (d) ERF of LDA.
(e) Performance of LR. (f) ERF of LR. (g) Performance of SVM. (h) ERF
of SVM.

TABLE II
EXPERIMENT 2: OPTIMAL WINDOW LENGTH AND ACCURACY OF OW-STSA

AND CONVENTIONAL STSA AT Wd = {200, 3000}WITH MULTIPLE
CLASSIFICATION TECHNIQUES
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of STSA leads to enhanced accuracy with reduced ERF. As Wd

increases, a higher discrimination capability of the D-Markov
machine is obtained due to the following.

1) Richer information to capture the dynamical behavior.
2) Reduced dominance of the effect of transient on the onset

of anomalies.
3) Better convergence of the probability transition matrix to

a constant matrix.
Experiments #1 and #2 validated identification of optimal

window length by using OW-STSA, as summarized in Tables I
and II. Nevertheless, the improvement in accuracy beyond the
estimated optimal window lengths W ∗

d of OW-STSA is not
significant but it considerably increases the delay in detection
of anomalies. Indeed, Tables I and II show that by comparison
of OW-STSA results with those of conventional STSA, very
slight increase in the accuracy is obtained for all classification
techniques with a tangible delay of detection. On the other
hand, selection of a relatively small window length significantly
degrades the classification accuracy, which compromises the
reliability of anomaly detection. Tables I and II also verify this
fact when comparing the conventional STSA with relatively
small manual selection of window length, where tangible perfor-
mance degradation is caused with all classification techniques.
As a result, the use of conventional STSA with nonoptimal
window length may either lead to delayed detection of anomalies
or compromised accuracy of detection. Therefore, the use of
optimal window length (for a specific classification method) in
the proposed OW-STSA methodology is reasonable, because
it provides early prediction of anomalies with locally optimal
accuracy of detection.

Table I shows thatW ∗
d depends on the classification technique

used in the detection process. Thus, Wd might vary from one
classification technique to another. Such a variation is caused
by the difference in reaching the steady-state performance of
a classification technique as Wd increases. Therefore, usage of
OW-STSA to estimate optimal window length is influenced by
the selection of a classification technique, which justifies the
notion of the ERF in the optimization process. The minimal
window length obtained in Experiment #1 was attained with the
LR technique, where the optimal window length was computed
to be 2700 with corresponding accuracy of 83.75%. However,
the highest accuracy was found to be 85.56% when using the
bagged ensemble classification technique with optimal window
length of 3000. Therefore, for Experiment #1, bagged ensemble
apparently produces the most reliable detection, yet the earliest
detection of anomalies can be attained with LR.

Similarly for Experiment #2, Table II demonstrates that both
optimal window length and classification accuracy might change
for one classification technique to another, emphasizing the im-
pact of the classification stage to the optimal window length and
accuracy of detection. Here also, the minimal optimal window
length W ∗

d is attained with the use of LR, which is 600 samples
with the corresponding accuracy of 96.37%. Indeed, the highest
accuracy is obtained with the use of LR, which achieves both
early prediction of anomalies and highest accuracy compared
to other classification techniques. It is obvious from Tables I
and II that values of W ∗

d in Experiment #2 are less than those in
Experiment #1. Likewise for detection accuracy, values obtained

in Experiment #2 are more than those in Experiment #1. Such
minimal window lengths and enhanced values of accuracy in
Experiment #2 give a clear evidence of the challenge in discrim-
inating between the measurements of healthy and anomalous
phases of Experiment #1. Indeed, the nature of the datasets itself
plays a key role to determine both optimal window length and
accuracy of detection.

Optimal window length was shown to be different from one
experiment to another, even if the same classification technique
is used. Indeed, each process has its own dynamical behavior,
which generates its own time series signal, rendering the nature
of optimal description of features, such as window length, to
vary from an application to another. However, the algorithm
remains the same and it is apparently capable of estimating a
local value of W ∗

d for optimal detection of anomalous behavior.
Therefore, it is conjectured that OW-STSA would be applicable
for similar problems, provided that a sufficient number of time
series samples are available, and the system generating the signal
exhibits variations in its dynamical behavior after an anomalous
behavior is encountered.

V. CONCLUSION

This article proposed the OW-STSA technique for detection
of anomalous behavior in dynamical systems, using sensed
time series signals. To detect an anomalous behavior, the time
series was first converted into a string of symbols, by one
of the available partitioning processes. A specific window of
resulting string of symbols was used to compute the STPM,
by computing the frequency of transition from a symbol to
another over the given window of symbol strings. Then, the
state stationary probability vector was determined, which was
the (sum-normalized) left eigenvector corresponding to unity
eigenvalue of the STPM. The resulting state stationary probabil-
ity vector was considered as input features for the classification
stage to detect if the corresponding window of symbol strings
was anomalous. The window length of the symbol string was
optimized by minimizing the ERF of the classification process
that discriminates between the nominal and anomalous phases
of time series signals of the physical process.

The OW-STSA methodology was experimentally validated
for two industrial processes, namely, detection of fatigue damage
in polycrystalline alloy structures and detection and prediction
of TAI in combustion systems. In both experiments, OW-STSA
demonstrated not only less time delay to detect anomalous be-
havior in typical industrial processes, but also enhanced accuracy
in the anomaly detection from the respective time series.

Despite the excellent performance of the proposed OW-STSA
methodology, future research is recommended on the following
topics.

1) Problem formulation for global optimization: This re-
search could be realized by selecting convex ERFs, where
derivative-free optimization would prevent being trapped
into local optima.

2) Inclusion of window length in the models of STPM: This
research could be realized by rigorously constructing an
appropriate risk functional, instead of using the ERF, and
then by minimizing the risk functional.
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3) Integration of the OW-STSA and classification stages:
This research will make the optimization problem non-
convex, which would require reformulation of the OW-
STSA and classification processes as a more challenging
multiobjective optimization problem.
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