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Abstract

Despite tangible advances in machine learning (ML) over the last few decades, many of the ML

techniques still su�er from fundamental issues like over�tting and lack of explainability. These

issues mandate requirements for mathematical rigor to ensure robust learning from observed data.

In this context, topological invariants in data manifolds provide a rich representation of the

underlying dynamical system, which can be utilized for developing a mathematically rigorous ML

tool to characterize the dynamical behaviour and operational phases of the underlying process.

This paper aims to investigate spectral invariants of symbolic systems for detecting changes in

topological characteristics of data manifolds. A novel ML approach is proposed, where

commutator norms are used on sequences of endomorphisms to symbolically describe dynamical

systems on probability spaces with ergodic measures. The objective here is to detect topological

invariants of data manifolds that can be used for signal processing, pattern recognition, and

anomaly detection. The proposed ML approach is validated on models of selected chaotic

dynamical systems for prompt detection of phase transitions.

This article is part of the theme issue ‘Data-driven prediction in dynamical systems’.

1. Introduction
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Among the tangible advances in software technologies, graphics processing units (GPUs) have

been a great enabler for learning from big data through parallelized computation [1]. This has led

to a noticeable success of deep learning to become one of the most important machine learning

(ML) methods that have been used in a wide range of disciplines (e.g. engineering [2], medicine [3]

and �nance [4]). Nevertheless, deep learning su�ers from fundamental issues that include over�t

[5] and lack of explainability [6], which has led researchers to further investigate alternative ways

of smart learning from observed data, instead of solely relying on big data. In this context, Vapnik

& Izmailov [7] have introduced the paradigm of learning using statistical invariants (LUSI), which

aims at developing a mathematically rigorous approach for regression and pattern recognition by

capturing statistical invariants to extract rich information about the underlying stochastic process

from observed data. This paradigm relies on weak convergence of risk functionals in the context

of reproducing kernel Hilbert spaces [7]; these concepts are intimately related to the topology of

data manifolds, generated by the dynamical system of the stochastic process.

Topological data analysis (TDA) is one of the important areas in applied mathematics, which can be

gainfully used for development of ML tools to provide an e�cient means of information extraction

from high-dimensional data in a manner that is insensitive to the selection of a particular metric; it

also provides dimensionality reduction and robustness to noise [8]. One of the most important

techniques in TDA is the method of persistent homology [9] for clustering and data analysis, which

makes use of homology groups of data manifolds to provide information about the underlying

dynamical system. For example, in the forced Du�ng system [10], a phase transition due to a small

change in the dissipation parameter may cause a bifurcation [11], which is associated with the

collapse of three homology groups to a single homology group in the data manifold of the phase

space, as explained later in the current paper.

The fundamental groups of topological spaces, introduced by Poincaré [12], are the �rst and

simplest homotopy groups [13], and are algebraic invariants that are critically important for

characterization and classi�cation of topological spaces [14]. Interestingly, fundamental groups

also provide information about the respective covering spaces; in fact, subgroups of the

fundamental groups can be used to classify the covering spaces [15]. Furthermore, fundamental

groups of a base space can be used to construct covering spaces by using the Lifting theorem

[15]. One may think of a base space as the space generated by measurements from  sensors,

and a covering space as the space generated by the measurements from these  sensors in

combination with additional  sensors. Then, the Lifting theorem can be gainfully used to describe

features in the data manifold of the  sensors by applying the concept of fundamental

groups to analyse the data manifold that is generated by the  sensors only. This is important for

dimensionality reduction [16], data compression [17] and estimation of dynamical systems with

malfunctioning sensor(s) [18].

While TDA techniques, like the persistent homology method, can be e�ciently used for

characterizing topological invariants by capturing spatial patterns in the data manifolds, these

topological invariants are often strongly related to the temporal and sequential behaviour of the

underlying dynamical systems which generate these data manifolds. A central theme in the current
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paper is to develop an ML method, in the setting of symbolic dynamics, that makes use of both

spatial and temporal patterns to detect topological invariants of data manifolds, which can be used

for downstream analytics (e.g. signal analysis and anomaly detection).

Symbolic dynamics deals with dynamical systems on shift spaces, which consist of semi-in�nite

and bi-in�nite sequences of symbols, de�ned by a shift-invariant constraint on �nite-length data

strings [16]. In this context, the concept of symbolic time series analysis (STSA) (e.g. [19,20]) has

been used to construct Markov models for anomaly and change detection from observed windows

of sensor time-series [11,21]. In the framework of STSA, a (�nite-length) time series is partitioned for

conversion into a (�nite-length) string of symbols from a (�nite-cardinality) alphabet  [22–25].

Subsequently, probabilistic �nite state automata (PFSA) are constructed from these symbol strings

[21,26,27], in which the probability distribution of the emitted symbols depends upon the

immediately preceding (at most)  symbols, where  is a positive integer called the Markov

depth. Such a PFSA is called a -Markov machine, which has found diverse applications in pattern

classi�cation and anomaly detection (e.g. [11,21,28,29]).

In the above setting of a -Markov machine, the selection of the window length, , of the time

series used to construct the PFSA largely depends on the Markov depth , the alphabet size ,

and the nature of the particular underlying process that generates the time series [21]. To �nd a

lower bound on the widow-length parameter , required to estimate the PFSA parameters, one

may consider an increasing sequence of ’s. Under the assumption of asymptotic statistical

stationarity [21], the computed state transition probability matrix converges to a constant matrix; as

a consequence,  may become arbitrarily large [11]. Thus, one may choose the smallest  at which

the stochastic matrix tends to be approximately time-invariant; the resulting model could be

treated as a time-homogeneous Markov chain [30]. However, this scenario would typically require

a large value of , which could be infeasible in many physical applications, where decisions need

to be made with low-delay tolerance [31].

The notion of measure-preserving transformation (MPT) has evolved in the discipline of Statistical

Mechanics to represent Hamiltonian systems (e.g. Louisville Theorem [32]), where the total energy

of the dynamical system is invariant. A key concept in this regard is that, even though a measure-

preserving dynamical system is described by a transformation with time-varying eigenvalues, the

absolute values of the eigenvectors remain time-invariant under the ergodicity assumption [33].

Based on this rationale, Ghalyan & Ray [34,35] introduced a methodology for constructing PFSA,

from short-length windows of time series, which generate non-homogeneous Markov chain

models for describing the uncertain dynamics of a physical process. As a result, the time-

invariance of the eigenvectors, which re�ects measure-invariance and ergodicity of the dynamical

system, is used to decide the window length of the time series required to construct the PFSA.

Unlike the standard PFSA [11,21], which requires increasing the window length until the resulting

PFSA is no longer signi�cantly changing, the framework of MPT-based PFSA [34] can be used to

select a minimum window length for which the principal eigenvectors are nearly constant. In this

context, a measure of variation in the eigenvectors’ absolute values has been used as a metric for

an anomaly of the dynamical system [34]. The rationale is that anomalies could often be
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associated with variations in the system’s total energy, which naturally makes the system no longer

measure-invariant and thus the eigenvectors are no longer time-invariant. Later, Ghalyan & Ray

[35] used the concept of Cylinders that represent the topological bases of shift spaces to de�ne a

probability measure for the PFSA, produced by symbol strings generated from an ensemble of

sensor time-series data. This procedure provides a mathematical foundation for symbol-sequence

generation [33] and their relationships with the dynamics of the underlying physical process from a

measure-theoretic perspective [35].

The current paper focuses on developing a mathematically rigorous ML method that makes use of

topological invariants in data manifolds for pattern recognition and anomaly detection. In the view

of this formalism, changes within a given phase are produced by the action of topological (smooth)

transformations that preserve topological invariants (e.g. homology groups), while changes

between di�erent phases correspond to changes in these topological invariants. Likewise,

changes within a cluster or a class are viewed as topological changes that preserve some

topological invariants, while changes between di�erent clusters or classes are due to changes in

these topological invariants. Relying on this formalism, the paper proposes a symbolic dynamics-

based method for detecting topological invariants of data manifolds by investigating spectral

invariants of symbolic systems. It is shown that, under the assumptions of ergodicity and measure

preservation, commutator norms of a sequence of state transition probability matrices can be

e�ciently used to predict these topological invariants from the observed time series. This setting

is shown to provide a thorough understanding of the application results in dynamic models of

three chaotic systems, and lays a concrete mathematical foundation for future work on signal

analysis and pattern recognition from observed time series in physical systems such as those

reported in [34–36].

Contributions: Major contributions of the paper are summarized below:

(i)
Topological and measure-theoretic analysis of ergodic symbolic systems for ML: A

mathematical framework has been established for ML by relying on the concept of

spectral invariants of ergodic symbolic systems.

(ii)
Usage of the commutator norm for ML: The commutator norm of state transition

probability matrices is proposed as a metric for change detection in topological

invariants of data manifolds, which can then be used for pattern recognition and

anomaly detection.

(iii)
Validation of the proposed methodology on models of chaotic dynamical systems: The

main theme of the reported theoretical innovations is demonstrated on three di�erent
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standard models of chaotic dynamical systems (e.g. [10,37,38]), which represent a wide

range of applications in physics and engineering. In this way, the proposed

methodology lays a mathematically rigorous foundation for signal processing, pattern

recognition and anomaly detection in uncertain dynamical systems from observed time

series.

Organization: The paper is organized in four sections including the present section. Section 2

succinctly presents the mathematical principles of symbolic time series analysis (STSA) and

fundamental groups in algebraic topology. This section also develops a measure-theoretic

framework for spectral analysis of ergodic symbolic systems, generated from observed time

series, which plays a central role in developing the algorithms presented in this paper. Section 3

validates the proposed concept and the underlying algorithms on time-series data, generated from

three dynamical models of chaotic systems. Section 4 summarizes and concludes the paper along

with recommendations for future research.

2. Introduction to symbolic dynamics and algebraic topology

This section provides the essential mathematical analysis and technical background for modelling

dynamical systems in a symbolic setting from an ensemble of observed time series by relying on

tools of algebraic topology. The technical approach provides a convenient way to detect changes

in topological invariants of data manifolds, generated by dynamical systems. The development of

ML methods, which make use of these topological invariants, is important for establishing data-

driven models with mathematical rigor so that they are robust to over�t [7]. This is a central theme

of the current paper, in which the concept of symbolic dynamics is gainfully used for capturing

these topological invariants for signal processing, pattern recognition and anomaly detection in

uncertain dynamical systems. While a majority of the details are given in previous publications (e.g.

[11,21,35] and references therein), the core concepts are presented below for completeness of the

current paper.

(a) Dynamical systems

Let a dynamical system on the probability space  be described by a quadruple

, where the transformation  is a -measurable mapping of 

onto itself.

De�nition 2.1.

A measurable set  is called -invariant if , which implies that  for

-almost all . Furthermore, a function  is called -invariant if  for

-almost all . A measurable transformation  is called a measure-preserving transformation

(MPT) if . (Note:  is the symmetric di�erence on sets such that

.)

(Ω, E , P)
(Ω, E , P , T ) T : (Ω, E , P) → (Ω, E , P) P Ω

E ∈ E T P [E  Δ  E] = 0T −1 Tx ∈ E

P x ∈ E f : Ω → [0, ∞) T f(Tx) = f(x)
P x ∈ Ω T

P [ E] = P [E]  ∀E ∈ ET −1 Δ
AΔB ≜ (A ∖ B) ∪ (B ∖ A)
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The concept of MPT has been widely used to investigate the asymptotic properties of random

sequences in statistical mechanics [33]. For a measure-preserving endomorphism  on a (�nite)

measure space , every measurable set  has the recurrence property [32] in the

following sense:

De�nition 2.2.

A dynamical system  is recurrent if once  is visited, it would be revisited in�nitely

many times; that is, if , then there are in�nitely many values of  such that .

Ergodicity is a stronger property than recurrence for dynamical systems, and a formal de�nition of

ergodicity follows.

De�nition 2.3 ([33]).

A dynamical system  is said to be ergodic if each -invariant set  is trivial, i.e.

either  or . Equivalently, the measure  is said to be -ergodic.

Remark 2.4.

The concept of ergodicity has been widely used in Statistical Mechanics and probabilistic

modelling of dynamical systems [33]. In an ergodic process, it is su�cient to have a single

adequately long realization in order to characterize the statistics of the underlying process. Given

a discrete-time realization of an ergodic process as , the time average

 converges -ae and in  to the ensemble average  as  [39].

De�nition 2.5 ([40]).

A function  is said to be an eigenfunction of a dynamical system  with the

eigenvalue  if  is a non-zero function and -ae for all .

Another useful formulation of ergodicity is as follows: Given a probability space , the

sequence of endomorphisms  is ergodic if and only if every invariant measurable function is

a constant -ae on . Based on this formulation, it can be tested whether a sequence  is

ergodic or not by looking at its eigenfunction  corresponding to the eigenvalue , for

which  for -almost all  and for all . Hence,  is invariant under 

and therefore is a constant function -ae if and only if  is ergodic.

An interesting property stronger than ergodicity is mixing, as de�ned below.

De�nition 2.6.

A dynamical system  is said to be mixing if for all sets  and , the following condition

holds:

T

(Ω, E , P) E

(Ω, E , P , T ) E ∈ E

x ∈ E n x ∈ ET (n)

(Ω, E , P , T ) T (n) E ∈ E

P [E] = 0 P [E] = 1∀n ∈ N P { }T (n)

{ : ∈ (P)}Xn Xn L1
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This means that a moving measurable set  tends to intersect with each �xed measurable set ,

and the measure of that part of  which is contained in  is asymptotically proportional to the

measure of . That is, a set  in its motion mixes uniformly in the phase space [33], and hence

tends to be stochastically independent of each �xed measurable set  as  [32].

Remark 2.7.

While mixing is stronger than ergodicity, it only requires asymptotic independence, which is

weaker than the iid assumption.

Between ergodicity and mixing, there lies a concept of technical signi�cance, called weak mixing
[32], as de�ned below.

De�nition 2.8.

A dynamical system  is called weak mixing if, for arbitrary measurable sets,  and ,

This concept has a strong and surprising in�uence on the spectral structure of the transformation

, as given by the following theorem.

Theorem 2.9.

A dynamical system is weak mixing if and only if every eigenfunction is equal to a
constant for -almost all .

Proof.

The proof of the theorem is given in [33]. ▪

(b) Measure-invariant symbolic systems

A symbolic representation of the dynamical system  can be generated by partitioning

the space .

P( A ∩ B) = P(A)P(B).lim
n→∞

T −n 2.1

A B

A B

B A

B n → ∞

(Ω, E , P , T ) A B

||P( A ∩ B) − P(A)P(B)|| = 0.lim
n→∞

1
n

∑
k=0

n−1

T −k
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T
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De�nition 2.10.

A partition of the probability space  is a (non-empty) �nite-cardinality family of pairwise

disjoint (non-empty) members of , whose union is .

Given a partition  of , an alphabet  is

constructed, where the symbols ’s bear a one-to-one correspondence to the members ’s of

the partition . Let  be the -algebra generated by the alphabet , and let  be a probability

measure such that , which de�nes the measure space .

Let , where , denote the set of all one-sided semi-in�nite symbol sequences,

i.e. . Hence, the transformation 

and a partition  of  together generate a (left) shift operator  de�ned as:

De�nition 2.11.

Let . A cylinder , generated by a block of symbols , where each

, is de�ned to be the collection of all members  such that the symbol block

 occurs at the location , i.e.

and is called a centred cylinder if it has the form .

Remark 2.12.

A cylinder is both an open and a closed subset of  [41]. Moreover, the centred cylinders

, , form a topological basis for  [42].

Let  denote the Cartesian product of countably in�nitely many copies of the measurable

space , where  is the product -algebra generated by the cylinders  for all

, corresponding to all feasible initial conditions of the dynamical system  [43].

Let  de�ne a probability measure on , given by:
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That is, the probability  of a symbol block is equal to the measure of the cylinder generated by

that symbol block. In this way, a probability measure space  and a shift system

 are de�ned. It follows from equation (2.5) that the symbolic representation of the

dynamical system  is stationary if and only if the measure  of the generated cylinders

is -invariant. In this context, a stationary symbolic system is the shift system 

whose cylinders are -invariant.

A partition  of the probability space of a dynamical system  generates a

( )-measurable coding (also called partitioning [33]) , which is de�ned as:

i.e. the nth element of a symbol sequence , where , is  if and only if

 and .

Let  and  be a stochastic process de�ned by the dynamical system . Then,

 is a random variable on the probability space , and  de�nes a

symbolic stochastic process on the shift space . Therefore, for every stochastic

process , there exists a symbolic representation  that is identi�ed by �nding a partition of

the measure space of the original stochastic process.  If the transformation  is measure-

preserving, the resulting symbolic representation is called a Measure-Invariant Symbolic System.

It is noted that the measure-invariance property of a sequence of transformations does not

guarantee stationarity of the corresponding symbolic stochastic process. Therefore, the

probabilistic �nite-state automata (PFSA) (see §2d) generated by partitioning the probability space

of the dynamical system  are non-stationary in general. Consequently, the resulting

state transition probability matrices of -Markov machines (see also §2d) are non-homogeneous

in general.

(c) Fundamental groups of data manifolds

This subsection provides a brief introduction to fundamental groups of data manifolds, which form

the backbone of the statistical pattern classi�cation and anomaly detection methodology,

presented in the current paper. While the details are given in standard literature on algebraic

topology (e.g. [12,13]), the essential concepts are presented below for completeness of the paper.

Let  and , where , be continuous maps represented by two paths in a

data manifold . These two paths are said to be homotopic, denoted as , if each of these

two functions can be continually deformed into the other one. Formally speaking,  if there

exists a continuous map  such that:

ν
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H(s, 0) = f(s) and H(s, 1) = g(s)  ∀s ∈ I.
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The map  is called a homotopy between  and . If  and both functions have the same

initial point and the �nal point, i.e.

for some , then  and  are said to be path homotopic, which is denoted as . The

concepts of homotopy and path homotopy are illustrated in �gure 1a,b, respectively.

Figure 1. Concepts of (a) homotopy, (b) path homotopy, (c) multiloop classes of homotopy. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

If  is a path in  from  to  (i.e.  and , and  is a path in  from  to  (i.e.

 and , then the path product  is a binary operation de�ned as:

A loop based at  is a path that begins and ends at the same point . A loop that begins

and always stays at  is called a constant loop. Figure 1c displays the existence of multiple loops

in a data manifold , where  and  are homotopic but  and  are not. Furthermore,  is

homotopic to the constant loop based at . In this case,  is said to be nulhomotopic, and  is

contractible to . Referring to �gure 1c, although  may not be homotopic to  or , it can be

shown that  is path homotopic to  [41]. Further, since  is an equivalence relation, it follows

that , where  is the equivalence class that contains . In this context, the notion

of fundamental groups is introduced below.

De�nition 2.13.

(Fundamental Group) Let  be a topological space. The set of path homotopy classes of loops

based at a point , with the operation  of path product, is called the fundamental group of 

relative to the base point . It is denoted by .

A topological space  is said to be path connected if every pair of points of  can be connected

by a path in . For example, the topological spaces in �gure 1 are path connected. If  is path

connected and if  and  are two points of , then  is isomorphic to  [41].

H f g f ≃ g

H(0, t) = and H(1, t) =   ∀t ∈ I,x0 x1

, ∈ Xx0 x1 f g f g≃p

f X x0 x1 f(0) = x0 f(1) = )x1 g X x1 x2

g(0) = x1 g(1) = )x2 ∗
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⎧
⎩⎨
⎪⎪⎪
⎪⎪⎪

f(2s),

g(2s − 1),

for s ∈ [0, ] .
1
2

for s ∈ [ , 1] .
1
2 2.7

∈ Xx0 x0

x0

X f f ′ f g r

x0 r r

x0 w f g

w f ∗ g ≃p

w ∈ [f ∗ g] [f ∗ g] f ∗ g

X

∈ Xx0 ∗ X

x0 (X, )π1 x0

X X

X X

x0 x1 X (X, )π1 x0 (X, )π1 x1
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Therefore, it is logical to identify all the fundamental groups  and speak simply

of the fundamental group of , written as .

Remark 2.14.

Fundamental groups are algebraic invariants that remain unchanged under homeomorphisms.

They are critically important for understanding geometric properties of data manifolds. In this

context, the fundamental group measures ‘the number of holes’ in a space [13]. For example, the

fundamental group of the manifold shown in �gure 1c is homeomorphic to , written as

. On the other hand, the manifolds in �gure 1a,b have no holes and thus every loop is

homotopic to the constant loop. In this case, the manifold is called simply connected, and it has a

trivial fundamental group, often indicated as . In low-order dynamical systems,

fundamental groups can often be computed by visual inspection through observation of the

number of holes in the data manifold.

(d) Probabilistic �nite-state automata

As seen in §2b, a partition of the probability space  of a given dynamical system

 generates a symbol string from a time series, which in turn is used to construct a

probabilistic �nite state automaton (PFSA). The PFSA model describes the statistics of the

underlying stochastic process on the shift space . The probability of the generated

PFSA states is given by the measure of the corresponding cylinders in . The

following de�nitions, which are available in standard literature (e.g. [11,21]), are recalled here for

completeness of the paper.

De�nition 2.15.

A �nite-state automaton (FSA) , having a deterministic algebraic structure, is a triple ,

where

—
 is a (non-empty) �nite alphabet, i.e. .

—
 is a (non-empty) �nite set of states, i.e. .

—
 is a state transition map.

{ (X, x) : ∀x ∈ X}π1

X (X)π1

2

Z2

(X) ∼π1 Z2

(X) = 0π1

(Ω, E , P)
(Ω, E , P , T )

( , , m)A N FΠ

( , , m)A N FΠ

G (A , Q, δ)

A |A | ∈ N

Q |Q| ∈ N

δ : Q × A → Q
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De�nition 2.16.

A symbol block, also called a word, is a �nite-length string of symbols belonging to the alphabet

, where the length of a word  with each  is , and the length of the

empty word  is . The parameters of FSA are extended as:

—
The set of all words, constructed from symbols in  and including the empty word , is

denoted as .

—
The set of all words, whose su�x (respectively, pre�x) is the word , is denoted as

 (respectively, ).

—
The set of all words of (�nite) length , where , is denoted as .

Remark 2.17.

A symbol string (or word)  that occurs at time  generates a cylinder  in the symbol-sequence

space , and the probability of a string  is given by the measure of that cylinder, i.e.

 (see §b).

De�nition 2.18.

A probabilistic �nite state automaton (PFSA), , is a pair , where:

—
The deterministic FSA, , is the underlying algebraic structure of the PFSA, .

—
The morph function (also known as the symbol generation probability function)

 satis�es the condition:  for all .

The state transition probability mass function  is constructed by combining  and

, which can be structured as a  matrix . In that case, the PFSA can be described as

the triple .

A w ≜ ⋯s1s2 sℓ ∈ Asi |w| = ℓ
ϵ |ϵ| = 0

A ϵ

A ⋆

w

wA ⋆ wA ⋆

ℓ ℓ ∈ N A ℓ

w n C n
w

A N w

P(w) = m( )C n
w

K (G, π)

G K

π : Q × A → [0, 1] π(q, σ) = 1∑σ∈A q ∈ Q

κ : Q × Q → [0, 1] δ

π |Q| × |Q| M

K = (A , Q, M )
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When constructing a -Markov machine, the generation of the next symbol is assumed to depend

only on a �nite history of at most  consecutive symbols, i.e. a symbol block not exceeding the

speci�ed length . In this context, a -Markov machine [11,21] is de�ned as follows.

De�nition 2.19.

A -Markov machine is a PFSA, in the sense of de�nition 2.18, which generates symbols that

solely depend on the (most recent) history of at most  consecutive symbols, where the positive

integer  is called Markov depth of the machine. Equivalently, a -Markov machine is a stochastic

process , where the probability of occurrence of a new symbol depends only on

the last consecutive (at most)  symbols, i.e.

Consequently, for  (see de�nition 2.16), the equivalence class  of all (�nite-length)

words, whose su�x is , is quali�ed to be a -Markov state that is denoted as .

Remark 2.20.

Let  be a chaotic map with initial condition , which is randomly selected based

on a probability measure , where  generates a dynamical system . Then,

(i)
The probability of visiting  at time  is given by .

(ii)
Partitioning of the state space  generates a symbolic representation

described by a PFSA, , where  is the state transition probability

matrix which is a symbolic transformation of  to  under the action of

 and uncertain  with . This generates a

probabilistic transformation of a state  into a state  through the state

transition probability matrix .

(iii)
Let  denote the state probability vector (i.e. the left eigenvector of  with

respect to the (unique) unity eigenvalue) at time  such that . Now, by

denoting , it follows that .

D

D

D D

D

D

D D

S = ⋯ ⋯s−1s0s1

D

P [ ∣ ⋯ ⋯ ] = P [ ∣ ⋯ ].sn sn−D sn−1 sn sn−D sn−1
2.8

w ∈ A D wA ⋆

w D w

= T ( )xn+1 xn ∈ Ωx0

P ∼ Px0 (Ω, E , P , T )

E ∈ E n P( ∈ E) = P( ∈ E)T nx0 x0 T −n

(Ω, E , P)
K ≜ (A , Q, M ) M

xn xn+1

T : (Ω, E , P) → (Ω, E , P) ∈ Ωx0 ∼ Px0

∈ Qqn ∈ Qqn+1

M

v(n) M (n)

n =v(n+1) v(n)M (n)

≜ ⋯P(n) M (0)M (1) M (n) =v(n) v(0)P(n)
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(iv)
Let a sequence of PFSA be de�ned as . From de�nition 2.8

and de�nition 2.18, it follows that  is measure-preserving and weak mixing on

the probability space  provided that  is measure-preserving and weak

mixing .

A straightforward result [33], which is central to the current paper, is presented as follows:

Corollary 2.21.

Let be a sequence of PFSA with on a probability space , each of which satis�es the

measure-preserving and weak-mixing properties. Then, the (sum-normalized) left eigenvector of

each with respect to the (unique) unity eigenvalue is uniformly distributed, i.e.

Now the following claim is made based on the rudimentary principles of linear algebra.

Claim: Let , where  is a positive integer, serve as linear operators on a dynamical

system. Let  be a set of linearly independent  vectors in , where the positive

integer . Let the -dimensional subspace  be spanned by . If the linearly

independent  vectors  serve as common right eigenvectors of the matrix

operators  and , then  and  commute when they are restricted to operate in the subspace

, i.e. .

Justi�cation of claim: Given that the vectors  serve as common right eigenvectors of

the matrix operators  and , let  and  be the respective eigenvalues of

 and , corresponding to the (common) right eigenvectors .

Let  be arbitrary. Since the set  of  linearly independent vectors form a

basis of the vector space , there exist unique scalars  such that . Then, it

follows that

{ } ≜ {(A , Q, )}K (n) M (n)

{ }K (n)

(Q, E , P) M (n)

∀n ∈ N

{ }K (n) (Q, E , P)
v(n)

K (n)

= [ , … , ] ∀n.v(n) 1
|Q|

1
|Q|

A, B ∈ Rn×n n

{ , … , }v1 vm (n × 1) Rn

m ≤ n m V ⊆ Rn { , … , }v1 vm

(n × 1) { , … , }v1 vm

A B A B

V (AB − BA)y = 0  ∀y ∈ V

{ , … , }v1 vm

A B { , … , }μ1 μm { , … , }ν1 νm

A B { , … , }v1 vm

y ∈ V ∖ 0 { , … , }v1 vm m

V , … ,α1 αm y = ∑m
i=1 αiv

i

(AB − BA)y  = (AB − BA) ∑
i=1

m

αiv
i

  = ( − )  = 0∑
i=1

m

αi μiνi νiμi vi
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End of justi�cation of the claim

Corollary 2.22.

(Corollary 1 of the claim) The above claim is also true if the linearly

independent vectors in serve as common left eigenvectors of the matrix
operators and .

Corollary 2.23.

(Corollary 2 of the claim) If each of the matrices and has linearly independent eigenvectors
(i.e. ) and if all these eigenvectors are shared by and , then the matrix
operators and commute (i.e. ).

Remark 2.24.

The following two observations are made from the above analysis:

(i)
From corollaries 2.21 and 2.23, it follows that, for a sequence of measure-preserving

and weak-mixing PFSA, the state transition probability matrices tend to commute.

Therefore, the norms of commutators of the state transition matrices are expected to

be relatively small. In view of the fact that ergodicity is a mild relaxation of weak mixing

[32], it is conjectured that the commutator norm of the evolving state transition

probability matrices would be relatively small for ergodic and measure-preserving

PFSA.

(ii)
While the state space of a dynamical system can be partitioned to make the

constructed symbolic system be ergodic in the nominal phase, one may encounter

cases where the symbolic system is only recurrent (but not necessarily ergodic) in the

nominal phase; in those cases, there will be a subset of symbols , where , that

are persistently visited in the nominal phase. However, if the subset  of symbols

is never visited during the nominal phase, the symbolic system restricted to  could

still be ergodic in the nominal phase. In either case, whether the nominal-phase of the

symbolic system is ergodic on its own or after restriction, choosing a reference state

transition matrix for computing the commutator norm from the nominal phase would

make the commutator norm expected to be small in the nominal phase and relatively

larger upon occurrence of an anomaly, which may be the consequence of a phase

transition.

(1 × n) { , … , }( )v1 ′ ( )vm ′ Rn

A B

A B n

m = n n A B

A B AB = BA

B B ⊂ A

A ∖B

B
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3. Validation with time series from models of chaotic systems

This section validates the conjecture in part (i) of remark 2.24 on three well-known chaotic

dynamical systems, namely, forced Du�ng [10], Lorenz attractor [37] and Rössler attractor [38],

whose model equations are numerically solved by the �xed-step fourth-order Runge–Kutta

integration algorithm. In these chaotic systems, the evidence of bifurcation is observed from the

Poincare section [44] in each of the phase plots that are constructed from the respective time

series of a state variable  and its time derivative , while a speci�c parameter of the

underlying chaotic system is varied over a given range.

The technical approach for low-latency detection of phase transitions in these chaotic systems

relies on using the di�erence norm , commutator norm , and a moving reference

commutator norm , which are de�ned on a sequence of evolving state transition probability

matrices  (see part (iii) of remark 2.20) as:

and

if  is taken as the reference point when the varying parameter at the instant  represents a

nominal (or healthy) condition. The intent here is to detect the occurrence of phase transitions. On

the other hand, for a prompt change detection, one may continuously replenish the reference

point  by the immediate past value  as:

Next a comparison of the above three anomaly measures is investigated for detection of phase

transitions in the aforementioned three chaotic systems.

(a) Du�ng system

The �rst chaotic system is described by the forced Du�ng equation [10], representing the

dynamics of a nonlinear spring, which is governed by a second-order di�erential equation as:

x dx/dt

ρdif ρcom

ρ~com

M (n)

difference norm:    ≜ || − ||ρ
(n)
dif M (n) M (0) 3.1

commutator norm:    ≜ || − ||,ρ
(n)
com M (n)M (0) M (0)M (n) 3.2

M (0) 0

M (0) M (n−1)

≜ || − ||.ρ~(n)
com M (n)M (n−1) M (n−1)M (n) 3.3

+ β + x + = A cos Ωt with initial conditions:  x(0) = 0;   (0) = 0.ẍ ẋ α1 α3x3 ẋ
3.4
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where the parameters , ,  and  are held �xed for all simulation

runs, and the dissipation parameter  is varied in the range of 0.10–0.50 at an increment of 0.01 for

individual simulation runs. It is noted that the forced Du�ng equation is a time-varying second-

order nonlinear system, in general, which can be treated as a time-invariant third-order nonlinear

system if time is considered as the third state [44].

The solution to equation (3.4) is sensitive to the dissipation parameter  and also to the initial

conditions. Figure 2 displays the steady-state solution for increasing values of the dissipation

parameter , where a phase transition of the system occurs due to a small perturbation in  (in the

vicinity of ), which causes a bifurcation [11] as shown in �gure 3a. Following the concept of

fundamental groups in §2c, it is seen in �gure 2 that, before occurrence of a phase transition, the

Du�ng system generates a data manifold with a fundamental group  for ,

which collapses into a fundamental group  for  after the phase transition.

Therefore, the fundamental group of the data manifold generated by the Du�ng system

represents a topological invariant that can be used for classifying a system’s phases as well as for

detection of phase transitions, if any.

Figure 2. Recurrence and ergodicity in the Du�ng system with uniform partitioning. (a) Ergodic symbolic system, (b) recurrent

symbolic system. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

Figure 3. Performance of di�erent norms for detection of phase transitions in the Du�ng system. (a) Bifurcation at , (b)

di�erence norm, (c) commutator norm, (d) norm with moving reference. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

While the Du�ng system is recurrent for the given initial condition and dissipation parameter , it

may not be ergodic (see de�nitions 2.2 and 2.3).

However, a simple uniform partition of the phase space, shown in �gure 2, generates a symbolic

system that is ergodic before the phase transition, where , and is only recurrent after the

phase transition, where .

Figure 3 shows the bifurcation diagram and presents the performance of three di�erent norms

(see equations (3.1)–(3.3)) for detection of phase transition in the Du�ng system in the vicinity of

. Figure 3b,c shows excellent performance of the commutator and di�erence norms, given

= 1.00α1 = 1.00α3 A = 22.0 Ω = 5.00
β

β

β β

β ≈ 0.31

∼π1 Z3 0.1 ≤ β ≤ 0.31
∼π1 Z1 0.32 ≤ β ≤ 0.50

β ≈ 0.31

β
3

∼π1 Z3

∼π1 Z1

β ≈ 0.31
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by equations (3.1) and (3.2), separating the two phases, where  in Phase 1 and  in

Phase 2. As a consequence, di�erence and commutator norms can be gainfully used for detection

of a change in the data manifold’s fundamental groups due to a phase transition in Du�ng system

based on a threshold that can be learned from a held-out validation set. Figure 3d shows the

performance of commutator norm with the reference state transition matrix  being continuously

updated with the immediate past value , which is ideally suited for identifying the instant of

change.

The method of persistent homology [13] may also be used for detection of the aforementioned

change in the fundamental groups of data manifolds by detecting the presence of holes in the

manifold, which can be accomplished by examining the spatial patterns in the phase plots of

respective dynamical systems. On the other hand, the anomaly metrics given by equations

(3.1)–(3.3) would make use of both the spatial and sequential patterns of the time series generated

by the dynamical system for detecting changes in the fundamental groups. This information could

be important when the time series of sensor data, used for generating the data manifold, are

corrupted by noise. In such situations, the holes in the phase plots may become undetectable.

(b) Lorenz attractor

The second chaotic system is Lorenz attractor, which is derived by reducing the order of Navier–

Stokes equation [37], and is governed by the following three coupled �rst-order di�erential

equations:

where the parameters  and  are held �xed for all simulation runs, and the

parameter  is varied in the range of 154 to 175 at an increment of 0.10 for individual runs.

Figure 4a,b shows two two-dimensional phase plots, each given by  and  as abscissa and

ordinate, respectively. Following the concept of fundamental groups in §2c, the data manifold in

�gure 4a has a fundamental group , geometrically represented by three holes in the �gure.

After phase transition, the manifold tends to have a fundamental group , by �lling up the

big hole and still retaining the two small ones, as shown in �gure 4b. A uniform partition, shown in

�gure 4a,b, generates a symbolic system that is recurrent for  and ergodic for .

This shows that, even with a simple partitioning of the phase space, the distinction between the

two topological invariants (i.e.  and ) of the data manifolds becomes quite obvious

in the symbolic dynamics setting.

∼π1 Z3 ∼π1 Z1

M0

Mn−1

= σ(y − x); = x(ρ − z) − y;   = xy − βz  with  x(0) = 1;   y(0) = 1;   z(0) = 1,ẋ ẏ ż
3.5

σ = 10.0 β = 8/3
ρ

x dx/dt

∼π1 Z3

∼π1 Z2

∼π1 Z3 ∼π1 Z2

∼π1 Z3 ∼π1 Z2
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Figure 4. Recurrence and ergodicity in the Lorenz system with uniform partitioning. (a) Recurrent symbolic system and (b) ergodic

symbolic system. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

Remark 3.1.

Following �gure 4a,b, the Lorenz attractor may have many separate trajectories that could look like

connected regions. The (possibly existing) holes between trajectories, which are very small relative

to the big holes, have been ignored in this paper, because their existence is questionable due to

the presence of numerical noise. In fact, implementation of persistent homology method is also

expected to yield  for �gure 4a and  for �gure 4b.

Figure 5a shows the bifurcation diagram exhibiting the Poincare section in the  phase

space as a function of the parameter  of the Lorenz attractor. It is noticed here that a phase

transition occurs around . This change point is clearly detected by using the three norms,

given by equations (3.1)–(3.3), as shown in �gure 5b–d, respectively.

Figure 5. Performance of di�erent norms for detection of phase transitions in the Lorenz system. (a) First bifurcation at ,

followed by more bifurcations, (b) di�erence norm, (c) commutator norm, (d) norm with moving reference. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

In the nominal phase (i.e. Phase 1), although the symbolic system is recurrent, it is not ergodic; this

is so because the only visited set of symbols is a symbolic subset , i.e.  and the remaining

symbols, belonging to , are not visited in Phase 1. In other words, the symbolic system

restricted to , which is persistently visited, would be ergodic in Phase 1, as pointed out in remark

2.24. Thus, by choosing an appropriate reference state transition matrix for computing the

anomaly, it is expected that the metrics in equations (3.1)–(3.3) would be small in the nominal

phase and relatively much larger after phase transition, as demonstrated in �gure 5b–d.

(c) Rössler attractor

The third chaotic system is the Rössler attractor [38] that represents chemical reaction kinetics.

The system dynamics is governed by the following three coupled �rst-order di�erential equations:

where the parameters  and  are held �xed for all simulation runs, and the parameter  is

∼π1 Z3 ∼π1 Z2

(x, dx/dt)
ρ

ρ ≈ 166

ρ ≈ 166

B B ⊊ A

A ∖B

B

= −y − z; = x + ay;   = b + z(x − c)  with  x(0) = 1;   y(0) = 1;   z(0) = 1,ẋ ẏ ż
3.6

b = 2 c = 4 a
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varied in the range of 0.25–0.55 at an increment of 0.005 for individual runs.

Figure 6 shows two phase plots, given by  and  as abscissa and ordinate, respectively.

Following the concept of fundamental groups in §2c, the phase plot in �gure 6a represents the

dynamics before a phase transition, where ; and the phase plot after the phase transition is

shown in �gure 6b, where the data manifold tends to be simply connected; in this case, every loop

is homotopic to the constant loop, and hence the manifold tends to have a trivial fundamental

group [13] (i.e. ) (see remark 2.14). Following remark 3.1 for Lorenz attractor, very small holes

between trajectories are ignored for Rössler attractor; this is a reason for postulating that 

for �gure 6b.

Figure 6. Recurrence and ergodicity in the Rössler system with uniform partitioning. (a) Recurrent symbolic system, (b) ergodic

symbolic system. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

A uniform partition of the phase space makes the symbolic system recurrent before phase

transition, and ergodic after phase transition. Figure 7a displays the characteristics of bifurcations

in the Rössler system, and �gure 7b–d show the performance of di�erent norms given by

equations (3.1), (3.2) and (3.3), respectively, for detection of phase transitions, if any. These �gures

clearly show an excellent performance of the proposed anomaly metrics to detect the

aforementioned topological changes. Moreover, the commutator norm shows a better

performance for detecting bifurcations within Phase 2, i.e. for .

Figure 7. Performance of di�erent norms for detection of phase transitions in the Rössler system. (a) First bifurcation at ,

followed by more bifurcations, (b) di�erence norm, (c) commutator norm, (d) norm with moving reference. (Online version in colour.)

Download �gure Open in new tab Download PowerPoint

4. Summary, conclusion and future work

This paper has proposed a novel ML method in the settings of symbolic dynamics and algebraic

topology for robust decision-making from an observed ensemble of time series data. In the

proposed approach, pattern recognition and anomaly detection are viewed from topological

perspectives, where changes within a phase are described by topological (smooth)

transformations that preserve topological invariants (e.g. homology groups), while changes

x dx/dt

∼π1 Z1

= 0π1

= 0π1

a > 0.31

a ≈ 0.31
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between di�erent phases imply changes in these topological invariants. Likewise, changes within

a cluster or class are obtained by the action of topological transformations that preserve some of

the topological invariants, while changes in di�erent clusters or classes correspond to changes in

these topological invariants. As a result, the tasks of clustering, classi�cation or phase change

detection are reduced to the detection of these topological invariants.

If the nominal PFSA is stationary, the state transition probability matrix would be time-invariant,

which would make the commutator norm zero. However, this norm is expected to be very small so

long as the symbolic system is ergodic even though the generated PFSA may not be stationary. In

this case, rather than waiting for too long to generate a time series of su�cient length as required

for constructing stationary PFSA that correspond to homogeneous D-Markov machines, one may

use short-length time series that can generate non-homogeneous D-Markov machines such that

the commutator norm is small under a nominal condition, although the state transition probability

matrix is allowed to be time-varying. This property is important for anomaly detection with strict

delay tolerance. An example is to avert a system failure, where recovery to the nominal condition

is extremely di�cult or perhaps practically impossible.

Although a potentially viable alternative approach is the usage of cohomology groups, which may

simplify the computation of their dual homology groups [13], the methodology proposed in this

paper is also computationally e�cient for change detection in these homology groups via usage of

-Markov machines [21] in a symbolic-dynamics setting. This approach lays a foundation, which is

both mathematically rigorous and computationally e�cient, for signal processing, pattern

recognition, and anomaly detection in uncertain dynamical systems from an observed ensemble of

time series.

Furthermore, TDA methods, like persistent homology, provide e�cient means for detecting

topological invariants in data manifolds. However, they may fail to capture temporal and sequential

patterns of the underlying dynamical system that generates the data manifold. This issue can

potentially make the detection of topological invariants very di�cult if the generated data are

corrupted by noise, which may distort the observed data manifold. In view of the ML method,

proposed in this paper, this issue can be largely mitigated if both the spatial and temporal patterns

of the dynamical system are used for detecting these topological invariants, which would make the

process of learning from observed data more optimal and robust to measurement noise. A key

concept here is that the detection of topological invariants in data manifolds can be largely

facilitated by the detection of spectral invariants of an ergodic sequence of endomorphisms that

symbolically describe the dynamical system that generates the data manifold. These spectral

invariants can be e�ciently detected by anomaly metrics, proposed here, given by the

commutator norm of the state transition matrices of the generated PFSA. In the nominal phase, this

norm tends to be zero or very small, which would signi�cantly increase upon occurrence of an

anomaly.

The main theme of the theoretical innovation in this paper is demonstrated for three di�erent

types of chaotic systems, which represent a wide range of dynamical systems in physics and

engineering applications (e.g. [37]). While there are many areas of theoretical and experimental

D
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research to enhance the work reported in this paper, the authors suggest the following topics for

future research:

(i)
Extension of the reported analysis to three-dimensional phase spaces from two-
dimensional phase spaces: This paper has analysed two-dimensional phase spaces for

illustration of an algebraic topology-based method for ML, although each of the three

chaotic dynamical systems is essentially three-dimensional time-invariant. The concept

of the �rst homotopy group (i.e. fundamental group ) has been used to detect two-

dimensional holes in the respective manifolds. Further research is necessary for

investigation of the proposed symbolic dynamics approach for detection of topological

invariants in the three-dimensional manifolds of the chaotic maps considered in this

paper. In this case, it would be interesting to make a comparison of the proposed

approach with the method of persistent homology for detecting changes in  and 

for these three-dimensional chaotic systems [13].

(ii)
Investigation of ML problems in high-dimensional chaotic dynamical systems: Major

di�culties are anticipated in the implementation of the proposed algorithms for ML in

high-dimensional chaotic dynamical systems. Therefore, identi�cation of potential

problems and their solution methods are recommended as topics of future research.

(iii)
Extension to chaotic dynamical systems with di�erent initial conditions: Response of

chaotic systems could be extremely sensitive to change in initial conditions [10,43].

Di�erent initial conditions may result in entirely di�erent types of trajectories and

phase plots within the same dynamical system, which can make the analysis

challenging. A future work is recommended for extending the methodology

established in this paper for handling chaotic dynamical systems with various initial

conditions.

(iv)
Comparison of the proposed methodology with standard ML techniques: A thorough

investigation is recommended for comparison of the proposed methodology with

standard ML techniques, like various con�gurations of deep learning [7], standard

methods of TDA and hidden Markov models [17,30], for anomaly detection &

prediction as well as phase classi�cation from di�erent perspectives (e.g. robustness

to over-�tting), based on noisy sensor data in real-life situations.

π1

π1 π2
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(v)
Validation of the proposed methodology for anomaly prediction and pattern
classi�cation in diverse applications: The proposed methodology needs to be

validated for both detection and prediction of forthcoming anomalies as well as their

classi�cation in diverse engineering applications (e.g. fatigue damage detection in

polycrystalline alloys [34], and timely detection of thermo-acoustic instabilities in

combustion systems [35]).
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Footnotes

1 If a stochastic process is de�ned over both positive and non-positive times, i.e. , a

coding map  can be used to generate a symbolic representation given by the two-

sided shift system . In this case, the centred cylinders take the form

2 A homeomorphism is a bijective function  between two topological spaces, where both  and

{ : n ∈ Z}Xn

: Ω →Φα A Z

( , , m, Σ)A Z FΠ

C −N
{ , …,  , , , …,  }.σ−N σ−1 σ0 σ1 σN

f f
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 are continuous in their respective topologies [41].

3 The steady-state symbolic Du�ng system, for �xed initial condition and some of the system

parameters, is recurrent, because once a segment in the phase-space is visited, it will be revisited

in�nitely many times. However, the system may not visit every segment in the phase-space (as

seen in �gure 2b) and therefore is not ergodic. It is noted that the system in �gure 2a is ergodic.

The symbolic representation could be recurrent or ergodic depending on the way the phase

space is partitioned. Figure 2 shows a uniform partition (UP) [22] of the system’s phase space,

where the generated symbolic system is ergodic for , and is recurrent (but not

ergodic) for .
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