
Neural Networks 152 (2022) 499–509

i
m
d
a
S

✩

N
(
★

k
(

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Amultivariate adaptive gradient algorithmwith reduced tuning
efforts✩,✩✩,★,★★

Samer Saab Jr a,∗, Khaled Saab b, Shashi Phoha c, Minghui Zhu a, Asok Ray d

a School of Electrical Engineering and Computer Engineering, The Pennsylvania State University, State College, PA, 16802, USA
b Department of Electrical Engineering, Stanford University, Stanford, CA, 94305, USA
c Applied Research Laboratory, The Pennsylvania State University, State College, PA, 16802, USA
d Department of Mechanical Engineering and Mathematics, The Pennsylvania State University, State College, PA, 16802, USA

a r t i c l e i n f o

Article history:
Received 2 November 2021
Received in revised form 14 March 2022
Accepted 15 May 2022
Available online 21 May 2022

Keywords:
Deep learning
Gradient descent optimization
Adaptive learning rate

a b s t r a c t

Large neural networks usually perform well for executing machine learning tasks. However, models
that achieve state-of-the-art performance involve arbitrarily large number of parameters and therefore
their training is very expensive. It is thus desired to implement methods with small per-iteration
costs, fast convergence rates, and reduced tuning. This paper proposes a multivariate adaptive gradient
descent method that meets the above attributes. The proposed method updates every element of the
model parameters separately in a computationally efficient manner using an adaptive vector-form
learning rate, resulting in low per-iteration cost. The adaptive learning rate computes the absolute
difference of current and previous model parameters over the difference in subgradients of current and
previous state estimates. In the deterministic setting, we show that the cost function value converges
at a linear rate for smooth and strongly convex cost functions. Whereas in both the deterministic
and stochastic setting, we show that the gradient converges in expectation at the order of O(1/

√
k)

for a non-convex cost function with Lipschitz continuous gradient. In addition, we show that after
T iterates, the cost function of the last iterate scales as O(log(T)/T) for non-smooth strongly convex
cost functions. Effectiveness of the proposed method is validated on convex functions, smooth non-
convex function, non-smooth convex function, and four image classification data sets, whilst showing
that its execution requires hardly any tuning unlike existing popular optimizers that entail relatively
large tuning efforts. Our empirical results show that our proposed algorithm provides the best overall
performance when comparing it to tuned state-of-the-art optimizers.

© 2022 Elsevier Ltd. All rights reserved.
1. Introduction

First-order optimization methods have proven to be effective
n large-scale systems, such as deep neural networks, due to their
odest computational costs. For example, stochastic gradient
escent (SGD) methods (Robbins & Monro, 1951) perform well
cross many applications in a cost-effective manner. However,
GD scales the gradient uniformly across all model parameters,

✩ The Walker Fellowship from the Applied Research Laboratory at the
Pennsylvania State University.

✩ Wu Tsai Neuroscience Stanford Interdisciplinary Graduate Fellowship (SIGF).
★ The U.S. Air Force Office of Scientific Research (AFOSR) under Grant
o. FA9550-15-1-040 in the area of dynamic data-driven application systems
DDDAS).
★ NSF CAREER award ECCS-1846706.
∗ Corresponding author.

E-mail addresses: samer.saab.1st@gmail.com (S. Saab Jr),
saab@stanford.edu (K. Saab), sxp26@psu.edu (S. Phoha), muz16@psu.edu
M. Zhu), axr2@psu.edu (A. Ray).
ttps://doi.org/10.1016/j.neunet.2022.05.016
893-6080/© 2022 Elsevier Ltd. All rights reserved.
which may lead to poor performance (Luo, Xiong, Liu, & Sun,
2019). In addition, tuning the hyper-parameters, e.g., step-size, of
such non-adaptive optimizers tends to be expensive, which need
to be fine-tuned for maximal performance (Probst, Boulesteix, &
Bischl, 2019). Various ways of choosing the step-size for SGD have
been proposed, which under certain assumptions have conver-
gence guarantees. Constant step-sizes have shown to guarantee
convergence to neighborhoods of local optimum, whereas de-
creasing step-sizes have shown to reach the exact optimum for
smooth functions (Ghadimi & Lan, 2013; Gower et al., 2019).
However, choosing a near-optimal step-size and decreasing step-
size strategy requires a generous amount of tuning, which may
be too expensive for models with a large number of parameters.

Adaptive methods have been successfully applied in several
machine learning applications (Li & Orabona, 2019) and when
training deep neural networks (Duchi, Hazan, & Singer, 2011;
Kingma & Ba, 2014; Loizou, Vaswani, Laradji, & Lacoste-Julien,
2020; Vaswani et al., 2019). Despite these application-specific
successes, adaptive methods suffer from two limitations. First,
adaptive methods, such as Adam, can be non-convergent even

https://doi.org/10.1016/j.neunet.2022.05.016
http://www.elsevier.com/locate/neunet
http://www.elsevier.com/locate/neunet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neunet.2022.05.016&domain=pdf
mailto:samer.saab.1st@gmail.com
mailto:ksaab@stanford.edu
mailto:sxp26@psu.edu
mailto:muz16@psu.edu
mailto:axr2@psu.edu
https://doi.org/10.1016/j.neunet.2022.05.016

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

i
t
s
a
S
o
e

o
a
o
m
p
p
a
p
w
i
s
h
u
c
t
a

1

o
h
B
g
s
0
i
t
a

n
t

n the convex setting (Luo et al., 2019). The restrictive condi-
ions that guarantee convergence of popular adaptive methods,
ee, e.g., Zou, Shen, Jie, Zhang, and Liu (2019), may limit their
pplication domains and may be difficult to justify in practice.
econd, the existing adaptive methods require tuning of at least
ne hyper parameter, which does not make them more tuning
fficient than SGD.
This paper aims to address the aforementioned two limitations

f existing adaptive methods. Inspired by the success stories of
daptive methods, and the robustness of gradient descent meth-
ds, we propose a novel multivariate adaptive gradient descent
ethod that yields global convergence for a class of optimization
roblems with competitive empirical performance when com-
ared to the state-of-the art optimizers. More specifically, we
nalytically and experimentally show that our proposed method
rovides convergence guarantees on non-convex cost functions
ithout restricting that the gradient is bounded. Furthermore,

t can perform comparably to the methods compared in Wil-
on, Roelofs, Stern, Srebro, and Recht (2017) while fixing its
yper-parameter for all image classification tasks and using a
nity step-size, and no hyper-parameter tuning whatsoever on
ommon challenging functions. Therefore, to the best of the au-
hors’ knowledge, our method requires less tuning efforts than all
forementioned methods including SGD and adaptive methods.

.1. Related work

To guarantee convergence, the selection of the step-size is one
f the most essential steps in gradient descent methods, which
as been investigated for decades (Robbins & Monro, 1951). In
ertsekas (1997) it was shown that under mild assumptions,
lobal convergence can be achieved when the step-size is square
ummable, but not summable, which was later replaced by αk →

when the gradients are noisy (Gaivoronski, 1994). For example
n Needell, Srebro, and Ward (2016), assuming a convex and con-
inuously differentiable cost function with L-Lipschitz gradients,
bound that is inversely proportional to L is derived for the

step-size of SGD to guarantee that the error converge linearly
to a non-zero term related to the chosen step-size. In Needell
and Ward (2016) a step-size relating to both of the extreme
Lipschitz bounds of the gradient is proposed, which also guar-
antees linear convergence to a region around the solution. In
any case, a constant step-size guarantees convergence to only a
local neighborhood around the solution. Whereas to reach the
exact optimum, a decreasing step-size is required (Ghadimi & Lan,
2013; Gower et al., 2019; Karimi, Nutini, & Schmidt, 2016; Lin &
Zhou, 2017). For example, it is shown (Bach & Moulines, 2011)
that convergence can be guaranteed when the step-size for SGD
is proportional to the inverse of the iteration number, where the
convergence rate changes according to the interval that the step-
size is chosen within. To go a step further, the work in Lei, Hu,
Li, and Tang (2019) establishes convergence rates for decreasing
step-sizes under more general settings, where the cost function
is assumed non-convex with unbounded gradients.

The work in Karimi et al. (2016) compares the convergence
rates of a constant step-size strategy to a decreasing step-size.
They report that the constant step-size strategy converges the
error to some non-zero term that is proportional to the step-
size, whereas the decreasing steps-size strategy converges the
error to zero. They do state however that for a desired fixed
accuracy, it is recommended to use a constant step-size, and de-
creasing it whenever the accuracy stalls. This is since the O(1/k)
convergence rate of a decreasing step-size strategy matches that
of SGD under the assumption of strong convexity. It remains
however that adaptive methods decrease the amount of attention
or tweaking required during training, and are especially beneficial
in machine learning applications (Li & Orabona, 2019).
500
We introduce some of the most frequently used adaptive
optimizers in everyday machine learning applications. AdaGrad
adjusts its step size at every iteration by decreasing or increasing
the step size for parameters that are connected to frequently or
infrequently occurring features, respectively (Duchi et al., 2011).
The step size is thus adapted according to the sum of accumu-
lated square gradients, which may be harmful as it aggressively
decays the learning rate. Adadelta reduces this aggressive decay
in learning rate by restricting the window of past gradient in-
formation that is accumulated to some fixed size (Zeiler, 2012).
RMSProp however automatically adjusts the learning rate for
each parameter using a moving average of the squared gradient,
where the gradient is normalized using the magnitude of recent
gradient descents. A norm version of the RMSProp algorithm with
penalty is proposed for the general nonconvex setting (Xu, Zhang,
Zhang, & Mandic, 2021). In contrast, Adam uses additional gradi-
ent information by utilizing the first and second moments of the
gradient. Unlike in AdaGrad, the learning rate in Adam is scaled
according to the exponential moving average of the gradients and
square gradients, which was shown to work better than other
adaptive methods (Kingma & Ba, 2014). However, even adaptive
methods, such as Adam, can be non-convergent in the convex
setting (Luo et al., 2019). More recently, Dubey et al. (2019)
propose the diffGrad, which adjusts its step-size based on the
difference between the present and the immediate past gradient.
Therefore, updates are smaller in low gradient changing regions
and vice versa. It is worthwhile noting that in some applications
where adaptive algorithms achieve better training accuracy than
the non-adaptive ones, in the long run, better accuracy on the test
data is obtained using the non-adaptive algorithms (Alecsa, Pinţa,
& Boros, 2020).

The work in Khan et al. (2018) proposes a method that intro-
duces perturbations to the network parameters during gradient
evaluations, as well as estimate uncertainty parameters, which
can be implemented in Adam. However, this algorithm adds an
additional precision hyper-parameter that needs to be approxi-
mated (e.g. using Bayesian optimization) prior, as well as require
memory to store the uncertainty estimates. The last-iterate con-
vergence of constrained convex functions for an adaptive heavy-
ball (HB) method is studied in Tao, Long, Wu, and Tao (2021),
where the step-size is updated using an exponential moving
average. Using β1t =

t
t+2 and β2t = 1 − γ

t , where t is the epoch
umber, they could achieve accelerated convergence. Specifically,
heir method attains a convergence rate of O(1

√
t
) as oppose to

O(log t√
t
) of SGD. However it remains that two hyper-parameters

(α and γ) need to be properly selected for the best performance.

1.2. Contributions

We make the following contributions:

• Development of a novel multivariate adaptive gradient descent
method, named MADAGRAD, whose learning rate is adap-
tively adjusted for each element of its parameter. The learn-
ing rate computation is based on the element-by-element
ratio of the difference in current and past parameters to
the difference in current and past subgradients of the cost
function, and thus does not pose any significant increase in
computational complexity.
• Smooth and strongly convex: In the non-stochastic setting, we

show that the cost function converges at a linear rate for
smooth and µ-strongly convex cost functions.
• Smooth and non-convex: Under both deterministic and

stochastic settings, we show that the gradient converges
in expectation at the order of O(1/

√
k) for a non-convex

cost function with Lipschitz continuous gradient. Of note,
under both settings, we do not assume boundedness of the
subgradients.

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

I
s
d
s
d
p
t
1
t
c
d

2

l

h
m

w
T

x

I
W

B

d

a

u
a
p
s
f
p
r

1
1
1
1
1

3

u
(
1
v
y
a
a
r
c
a

3

a
K
w
p
q
c
t
c
t

• Non-smooth and strongly-convex: In the stochastic setting,
we show that after T iterates, the cost function of the
last iterate scales as O(log(T)/T) for non-smooth strongly
convex cost functions with bounded subgradients.
• Tuning reduction: We show that for the non-stochastic set-

ting, convergence can be achieved for smooth convex or
non-convex cost functions while setting γk = 1,∀k and
χk = φk. That is, absolutely no tuning is needed.

n addition, we empirically validate the proposed method on
mooth and strongly convex function, convex with non-twice-
ifferentiable gradients, a smooth non-convex function, non-
mooth convex function, and four image classification tasks using
eep neural networks. We show that our proposed method dis-
lays superior convergence properties on all toy examples. We
est our algorithm on MNIST, QMNIST, and CIFAR-10, and CIFAR-
00. We show that MADAGRAD with reduced tuning efforts yields
he best overall performance for deep neural networks when
omparing it to the state-of-the-art tuned optimizers such as NAG,
iffGrad, Adam and SGDm.

. Proposed adaptive method

We consider the following unconstrained optimization prob-
em

min
x∈Rd

f (x), (1)

where f : Rd
→ R is a differentiable function that is bounded

from below, and assume that (1) has a solution x∗, where we
denote its optimal value by f (x∗). For constrained optimization
problems, the interested readers are referred to Li and Bian (2021)
and the references therein.

We denote by Gk ≜ G (xk; ζk) a stochastic subgradient of f (x)
at xk depending on a random variable ζk, indexed by fixed k, we
ave ζ operates on sample space Ω , σ -algebra E , and probability
easure Pζ : E → [0, 1], such that ζ : (Ω, E, Pζ)→ (Rd,B(Rd)),

where B(Rd) is the Borel set on Rd. Thus, we have E[Gk] ∈ ∂ f (xk),
here ∂ f (x) denotes the set of subgradients of f at the point x.
he proposed optimizer is given by:

k+1 = xk − γkχk ⊙ Gk, (2)

where ⊙ denotes the element-wise multiplication of two vectors,
xk ∈ Rd, and the ith element of χk ∈ Rd is defined as follows:

χk =

⎧⎨⎩
1, φk ≥ 1
ϵ, φk ≤ ϵ

φk, otherwise,
(3)

where φk ≜
⏐⏐⏐ (xk−xk−1)i
(Gk−Gk−1)i

⏐⏐⏐, 0 < ϵ < 1, and γk is a scaling step size.
n this context, each element of xk is assigned a variable step size.
e define the matrix Bk such that χk ⊙ Gk = BkGk, where

k =

⎡⎢⎢⎣
(χk)1 0 · · · 0
0 (χk)2 · · · 0
...

. . .

0 · · · 0 (χk)d

⎤⎥⎥⎦ .

Thus, Bk is a positive-definite diagonal matrix, where the ith
iagonal element of Bk is equal to (χk)i > 0 ∀i.
In the deterministic setting, we assume that f is differentiable

nd replace Gk with ∇f (xk), and we use a constant step size, that
is, γk = γ , ∀k.

The idea behind our proposed algorithm is that the elements
of χk are positive and not larger than one. Thus, for sufficiently

small γ , convergence can be attained. Although our optimizer (2)

501
is considered as a first-order method, it mimics Newton’s method
where the diagonal matrix Bk (composed of elements of φk) is
sed instead of the inverse of the Hessian matrix, see, e.g., Saab
nd Shen (2019). For example, whenever f (x) is quadratic with
ositive diagonal quadratic matrix, Bk is considered to be a rea-
onable approximation of the inverse of the Hessian matrix. In
act, it can be shown that if f (x) is a quadratic function with a
ositive diagonal quadratic matrix, then the optimal solution is
eached in one iteration whenever γ = 1,∀k and χk = φk in (3).

MADAGRAD algorithm is summarized in Algorithm 1.
Algorithm 1 MADAGRAD
1: Choose γk; e.g., γk = 1,∀k, and 0 ≤ ϵ << 1
2: Initialize: x− ← x−1, x ← x0 with x−1 ̸= x0, and get g− ←

G−1
3: for iteration k = 1, 2, . . . do
4: g ← G

5: ∆g ← g − g−
6: ∆x← x− x−
7: g− ← g
8: x− ← x
9: for i = 1, 2, . . . , p do

10: (φ)i ←
⏐⏐⏐ (∆x)i
(∆g)i

⏐⏐⏐
11: (χ)i ← (φ)i
2: if (χ)i > 1, (χ)i ← 1 end if
3: if (χ)i < ϵ, (χ)i ← ϵ end if
4: (x)i ← (x)i − γ (χ)i(G)i
5: end for
6: end for
Examining Algorithm 1, we make the following observations:

• Little memory is required; in particular, storing only the
vectors G ∈ Rp and x ∈ Rp only for one iteration at a time.
• It is computationally efficient since it requires basic scalar

operations of the elements of few p-dimensional vectors
such as addition, division, multiplication, and absolute value.

. Global convergence

We assume that f (x) is L-smooth throughout this section. We
se a sufficiently small γk = γ , ∀k for the deterministic setting
Theorems 1 and 2), and a decreasing step-size given by γk ∝

/
√
k+ 1 for the stochastic setting (Theorem 3) to guarantee con-

ergence. However, such an aggressively decaying step-size may
ield poor performance, whereas a fixed step size, γk = 1, ∀k,
s analytically reflected in Corollaries 1 and 2, and Propositions 1
nd 2, performs well in practice as illustrated in our experimental
esults. Theorem 1, Corollary 1 and Proposition 1 assume strong
onvexity of f (x) whereas Theorem 2, Corollary 2, Proposition 2
nd Theorem 3 are applicable to non-convex functions.

.1. Deterministic setting

Motivation: Global convergence requires sufficiently small γk
nd the corresponding range depends on the value of L (Cohen,
aur, Li, Kolter, & Talwalkar, 2021) for L-smooth cost functions,
hich is practically inaccessible. A small step-size is usually ex-
ected when using gradient descent (GD) methods and also re-
uired for methods using momentum. For example, the global
onvergence of GD requires sufficiently small step size, α, and
he corresponding range depends on the value of L for L-smooth
ost functions. If the cost function is quadratic, it is shown that
he vanilla GD diverges whenever its step size α > 2

λi
, where

λi is any eigenvalue of the quadratic matrix, and NAG diverges
whenever its step size α > 1

λi

2+2β
1+2β > 4

3
1
λi
, where 0 ≤ β < 1

is NAG momentum hyper-parameter (Cohen et al., 2021). The

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

s

a

f

o
1
t
A
q

P

T

k

tep-size of the Heavy-Ball (HB) method needs to satisfy α ∈(
0, 2(1−β)

L

)
, where β ∈ (0, 1) is the momentum hyper-parameter

(Ghadimi, Feyzmahdavian, & Johansson, 2015) for deterministic
setting and the similar conditions apply for stochastic setting
(Yang, Lin, & Li, 2016) for SGD, stochastic HB (SHB), and stochastic
Nesterov accelerated gradient (SNAG) method. On the other hand,
we claim that our method does not require tuning of γk; by
simply setting γk = 1,∀k since φk tends to locally approximate
the corresponding value of ‘‘1/L’’ for each element of the gradient.
This choice of γk = 1 is also justified experimentally in the
following section. However, we rationalize our claim analytically
in Corollaries 1 and 2, and Propositions 1 and 2 with some tight
constraints on the cost function.

We first formally present the definitions that are used for
attaining convergence.

Definition 1. A differentiable function f (x) is called L-smooth if
and only if it has a Lipschitz continuous gradient, i.e., if and only
if there exists L <∞ such that ∀x, y ∈ Rd:

∥∇f (y)−∇f (x)∥ ≤ L∥y− x∥. (4)

Definition 2. The cost function f (x) is µ-strongly convex, if it is
differentiable, and there exists µ > 0 such that the following
inequality holds ∀x, y ∈ Rd,

f (y)− f (x) ≥ ⟨y− x,∇f (x)⟩ +
µ

2
∥y− x∥2. (5)

Theorem 1. Suppose f (x) is L-smooth and µ-strongly convex, and
let 0 < γk = γ < 2ϵ

L , ∀k. Then, the sequence {xk} generated by the
lgorithm described by (2) satisfies

(xk)− f (x∗) ≤ qk(f (x0)− f (x∗)), (6)

where the convergence factor q = 1+ 2µγ (L2γ − ϵ) ∈ (0, 1).

Proof. Since f (x) is L-smooth, it follows that (Nesterov, 2003)

f (xk+1)− f (xk) ≤ ⟨∇f (xk), (xk+1 − xk)⟩ +
L
2
∥xk+1 − xk∥2.

We have xk+1−xk = −γ Bk∇f (xk) where ϵI ⪯ Bk ⪯ I , which leads
to

⟨∇f (xk), xk+1 − xk⟩ = −γ ⟨∇f (xk), Bk∇f (xk)⟩

≤ −γ ϵ∥∇f (xk)∥2

and ∥xk+1− xk∥2 = γ 2
∥Bk∇f (xk)∥2 ≤ γ 2

∥∇f (xk)∥2. Therefore, we
obtain

f (xk+1)− f (xk) ≤
(L
2
γ 2
− γ ϵ

)
∥∇f (xk)∥2.

With 0 < γ < 2ϵ
L , we have L

2γ
2
− γ ϵ < 0 and since f (xk) is

µ-convex, then ∥∇f (xk)∥2 ≥ 2µ(f (xk)− f (x∗)), thus

f (xk+1)− f (xk) ≤ 2µγ (
L
2
γ − ϵ)(f (xk)− f (x∗)).

Subtracting f (x∗) from both sides leads to

f (xk+1)− f (x∗) ≤ (1+ 2µγ (
L
2
γ − ϵ))(f (xk)− f (x∗)) (7)

r equivalently, f (xk) − f (x∗) ≤ qk(f (x0) − f (x∗)), where q =
+ 2µγ (L2γ − ϵ); and 0 < q < 1 since 0 < γ < 2ϵ

L . It is noted
hat for 0 < γ < ϵ

L ,
dq(γ)
dγ = 2µ(Lγ − ϵ) < 0 for 0 < γ < ϵ

L .
t γ = 0 or γ = 2ϵ

L , we have q = 1, and at γ = ϵ
L , we have

= 1− µϵ2

L . Since 0 < µ ≤ L1 and 0 ≤ ϵ < 1, then at their limit

1 Since f (x) is L-smooth, then ∥∇f (y) − ∇f (x)∥ ≤ L∥y − x∥. In addition,
if f (x) is µ-strongly convex, then from Theorem 2.1.10 (Nesterov, 2003) we
502
values, µ = L and ϵ = 1, we have q = 0, which is the minimum
value of q. □

Corollary 1. If L < 2, by setting γk = 1 and ϵ such that L
2 < ϵ < 1,

then we attain the linear convergence in (6) with convergence factor
q = 1+ 2µ(L2 − ϵ) ∈ (0, 1).

roof. Since γ = 1 and L
2 < ϵ < 1, then the driving condition of

(7) is met. That is, q = 1+ 2µ(L2 − ϵ) ∈ (0, 1). □

heorem 2. Suppose f (x) is L-smooth but not necessarily convex,
and 0 < γk = γ < 2ϵ

L , ∀k. Then, the sequence {xk} generated by the
algorithm described by (2), satisfies

min
=0,...,K

∥∇f (xk)∥2 ≤
f (x0)− f (x∗)(

γ ϵ −
Lγ 2

2

) 1
K + 1

. (8)

Proof. Since f (x) is a L-smooth function, we have

f (xk+1)− f (xk) ≤ ⟨∇f (xk), xk+1 − xk⟩ +
L
2
∥xk+1 − xk∥2

= −γ ⟨∇f (xk), Bk∇f (xk)⟩

+
Lγ 2

2
∥Bk∇f (xk)∥2.

Every element (χk)i is upper-bounded by 1, and lower-bounded
by ϵ. Thus, we have ϵI ⪯ Bk ⪯ I and ∥Bk∥ ≤ 1. For compactness of
presentation, we define gk ≜ ∇f (xk). Since Bk is a diagonal matrix,
we can write

f (xk+1)− f (xk) ≤ −γ ⟨Bkgk, gk⟩ +
Lγ 2

2
∥gk∥2

≤ −

(
γ ϵ −

Lγ 2

2

)
∥gk∥2,

or(
γ ϵ −

Lγ 2

2

)
∥gk∥2 ≤ f (xk)− f (xk+1).

Summing this inequality for k = 0, . . . , K while cancelling com-
mon terms, we obtain
K∑

k=0

(
γ ϵ −

Lγ 2

2

)
∥gk∥2 ≤ f (x0)− f (xK+1)

≤ f (x0)− f (x∗).

The last inequality is based on f (x∗) ≤ f (xK+1). Note that

min
k=0,...,K

∥gk∥2
K∑

k=0

(
γ ϵ −

Lγ 2

2

)
≤

K∑
k=0

(
γ ϵ −

Lγ 2

2

)
∥gk∥2.

Since γ < 2ϵ
L and thus

∑K
k=0(γ ϵ −

Lγ 2

2) > 0, it follows that

min
k=0,...,K

∥gk∥2 ≤
f (x0)− f (x∗)∑K
k=0

(
γ ϵ −

Lγ 2

2

)
=

f (x0)− f (x∗)

(K + 1)
(
γ ϵ −

Lγ 2

2

) .

This ends the proof. □

Corollary 2. If L < 2, by setting γk = γ = 1 and ϵ such that
L
2 < ϵ < 1, then we attain the convergence in (8).

have ∀ x, y ∈ Rd , 1
2µ ∥∇f (y) − ∇f (x)∥

2
≥ f (y) − f (x) − ⟨∇f (x), y − x⟩. From

Definition 2, we have f (y) − f (x) ≥ ⟨y − x,∇f (x)⟩ + µ

2 ∥y − x∥2 . Therefore,
∥∇f (y)−∇f (x)∥ ≥ µ∥y− x∥; hence 0 < µ ≤ L.

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

P
(

L

L
o
γ
a
c
m

L
−

i
t

P
l
−

b

f

S
µ

f

S

S

P
n

P
(
l

t
d

3

i
t

T
w

0

w

E

g
c

f

roof. Since γ = 1 and L
2 < ϵ < 1, then the driving condition of

8),
∑K

k=0

(
γ ϵ −

Lγ 2

2

)
> 0 is met. □

Let (Bk)ii = (χk)i. Define Li,k, L̄k, and Lk, such that (Bk)ii = 1
Li,k

,
¯k ≜ maxi Li,k and Lk ≜ mini Li,k.

In Propositions 1 and 2, we impose assumptions on L̄k and
k, which cannot be generally verified a priori. However, the
bjective of these propositions is only to show that with γk =

= 1, ∀k, we can attain convergence. Nonetheless, we provide
n example to show how the conditions of Propositions 1 and 2
an be met. Let f (xk) = 1

2x
T
kAxk + bT xk + c , where A is a diagonal

atrix with extreme eigenvalues L and µ ≤ L. It can be shown
that for this special case, (χk)i = 1

Aii
, ∀k. Therefore, L̄k = L and

k = µ. Let L = 1.2 and µ = 1. We find that−1 < 2µ
(L
2

1
L2k
−

1
L̄k

)
=

0.47 < 0, ∀k, which implies that the condition of Proposition 1
s satisfied. In addition, 2L2k

L̄k
= 1.67 > L, ∀k, which implies that

he condition of Proposition 2 is also satisfied.

roposition 1. Suppose f (x) is L-smooth and µ-strongly convex, and
et γk = 1,∀k and χk = φk in (3). If there exists η0 < 0 such that
1 < 2µ

(L
2

1
L2k
−

1
L̄k

)
≤ η0 < 0, then the sequence {xk} generated

y the algorithm described by (2) satisfies

(xk)− f (x∗) ≤ ρk(f (x0)− f (x∗)), (9)

where the convergence factor ρ = 1+ η0 ∈ (0, 1).

Proof. Since f (x) is L-smooth, we have ∥∇f (xk+1) − ∇f (xk)∥ ≤
L∥xk+1 − xk∥ ∀k. We have 1

L̄k
I ⪯ Bk ⪯

1
Lk
I , and we get the two

following inequalities

⟨∇f (xk), xk+1 − xk⟩ = −⟨∇f (xk), Bk∇f (xk)⟩

≤ −
1
L̄k
∥∇f (xk)∥2,

and ∥xk+1 − xk∥2 = ∥Bk∇f (xk)∥2 ≤ 1
L2k
∥∇f (xk)∥2.

Since f (x) is L-smooth, it follows that

f (xk+1)− f (xk) ≤ ⟨∇f (xk), (xk+1 − xk)⟩ +
L
2
∥xk+1 − xk∥2

≤

(L
2

1
L2k
−

1
L̄k

)
∥∇f (xk)∥2. (10)

ince η0 < 0 (and µ > 0), then L
2

1
L2k
−

1
L̄k

< 0. Since f (x) is
-strongly convex, we obtain

(xk+1)− f (xk) ≤ 2µ
(L
2

1
L2k
−

1
L̄k

)
(f (xk)− f (x∗)).

ubtracting f (x∗) on both sides leads us to

f (xk+1)− f (x∗) ≤
(
1+ 2µ

(L
2

1
L2k
−

1
L̄k

))
(f (xk)− f (x∗)). (11)

ince −1 < 2µ
(L
2

1
L2k
−

1
L̄k

)
≤ η0 < 0, this ends the proof. □

roposition 2. Suppose that f (x) is L-smooth function and not
ecessarily convex. Let γk = 1,∀k and χk = φk in (3). If L <

2L2k
L̄k
∀k,

then the sequence {xk} generated by the algorithm described by (2)
satisfies

f (xk+1)− f (x∗) < f (xk)− f (x∗),∀k. (12)

roof. By assuming that L <
2L2k
L̄k

, we get L
2

1
L2k
−

1
L̄k

< 0, then from
10), we have f (xk+1) < f (xk). Subtracting f (x∗) from both sides
eads to (12). □
503
In Propositions 1 and 2, the assumption of L <
2L2k
L̄k

and µ ≤
L̄k
2

limits the class of cost functions.

3.2. Stochastic setting

In what follows, we denote by Ek[·] the expectation over
the randomness in ζ[k] ≜ (ζ1, . . . , ζk) and let Ek|k−1[·] denote
he expectation over ζk given ζ1, . . . , ζk−1 fixed. We use E[·] to
enote all randomness.

.2.1. Smooth and non-convex functions
The subsequent theorem is useful for selecting the number of

terations a priori, K , where the step size is fixed depending on
he value of K .

heorem 3. Suppose f (x) is L-smooth but not necessarily convex,
ith E

[
G (x; ζ)−∇f (x)

]
= 0, E[ζ T

i ζj] = 0∀i ̸= j, and E
[
∥G (x; ζ)−

∇f (x)∥2
]
≤ δ2, ∀x. Then, by setting γk = min{ ϵL ,

C
δ
√
K+1
} for k =

, 1, . . . , K, the sequence {xk} generated by the algorithm described
by (2), satisfies

min
k=0,...,K

E
[
∥∇f (xk)∥2

]
≤

Df

ϵ(K + 1)
max

{ L
ϵ
,
δ
√
K + 1
C

}
+

Lδ2

2ϵ
min

{ϵ

L
,

C
δ
√
K + 1

}
, (13)

here Df ≜ E[f (x0)− f (x∗)].

Proof. The proof follows a similar approach as in Ghadimi and
Lan (2013).

Since f (x) is a L-smooth function, we have

f (xk+1)− f (xk) ≤ ⟨∇f (xk), xk+1 − xk⟩ +
L
2
∥xk+1 − xk∥2

= −γk⟨∇f (xk), BkGk⟩ +
Lγ 2

k

2
∥BkGk∥

2.

very element (χk)i is upper-bounded by 1, and lower-bounded
by ϵ. Therefore, we have ϵI ⪯ Bk ⪯ I and ∥Bk∥ ≤ 1. By defining
k ≜ ∇f (xk) and δk ≜ Gk − gk. Since Bk is a diagonal matrix, we
an write

(xk+1)− f (xk) ≤ −γk⟨Bkgk, δk⟩ − γk⟨Bkgk, gk⟩

+
Lγ 2

k

2
∥Gk∥

2

≤ −γk⟨Bkgk, δk⟩ − γkϵ∥gk∥2 +
Lγ 2

k

2
∥Gk∥

2.

We have
∥Gk∥

2
= ⟨gk + δk, gk + δk⟩ = ∥gk∥2 + ∥δk∥2 + 2⟨gk, δk⟩. Thus,

f (xk+1)− f (xk) ≤ −γk⟨Bkgk, δk⟩ −
(
γkϵ −

Lγ 2
k

2

)
∥gk∥2

+
Lγ 2

k

2
∥δk∥

2
+ Lγ 2

k ⟨gk, δk⟩.

Note that Bk is bounded, E[δk] = 0, E[ζ T
i ζj] = 0 ∀i ̸= j, and xk

is a function of the history of ζ[k−1]. Thus E[⟨gk, δk⟩|ζ[k−1]] = 0,
and E[⟨Bkgk, δk⟩|ζ[k−1]] = 0. Taking the conditional expectation
on both sides, we obtain

E[f (xk+1)− f (xk)] ≤ −
(
γkϵ −

Lγ 2
k

2

)
E
[
∥gk∥2

]
+

Lγ 2
k

2
∥δk∥

2

or(
γkϵ −

Lγ 2
k)

E
[
∥gk∥2

]
≤ E[f (xk)− f (xk+1)] +

Lγ 2
k
∥δk∥

2.

2 2

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

S
m∑

T

k

w

S

U

3

x

w
d

o

s

E

T
d
i

f
Z

F
E
g
c

umming this inequality for k = 0, . . . , K while cancelling com-
on terms, we obtain

K

k=0

(
γkϵ −

Lγ 2
k

2

)
E
[
∥gk∥2

]
≤ E[f (x0)− f (xK+1)]

+
Lδ2

2

K∑
k=0

γ 2
k ≤ E[f (x0)− f (x∗)] +

Lδ2

2

K∑
k=0

γ 2
k .

he last inequality is based on f (x∗) ≤ f (xK+1). Note that

min
=0,...,K

E
[
∥gk∥2

] K∑
k=0

(
γkϵ −

Lγ 2
k

2

)
≤

K∑
k=0

(
γkϵ −

Lγ 2
k

2

)
E
[
∥gk∥2

]
.

Since γk = min{ ϵL ,
C

δ
√
K+1
} and

∑K
k=0(γkϵ −

Lγ 2
k
2) > 0, it follows

that

min
k=0,...,K

E
[
∥gk∥2

]
≤

Df + (L/2)δ2
∑K

k=0 γ 2
k∑K

k=0

(
γkϵ −

Lγ 2
k
2

) , (14)

here Df ≜ E[f (x0)− f (x∗)]. Note that γ0 = γk,∀k. Therefore,

Df + (L/2)δ2
∑K

k=0 γ 2
k∑t

k=0

(
γkϵ −

Lγ 2
k
2

) =
Df + (L/2)δ2(K + 1)γ 2

0

(K + 1)γ0(ϵ −
Lγ0
2)

≤
Df + (L/2)δ2γ 2

0 (K + 1)
γ0ϵ(K + 1)

=
Df

γ0ϵ(K + 1)
+

(L/2)δ2γ0

ϵ
.

ince γ0 = min{ ϵL ,
C

δ
√
K+1
}, then 1

γ0
= max

{ L
ϵ
, δ
√
K+1
C

}
. Thus,

Df

γ0ϵ(K + 1)
+

(L/2)δ2γ0

ϵ
=

Df

ϵ(K + 1)
max

{ L
ϵ
,
δ
√
K + 1
C

}
+

(L/2)δ2

ϵ
min

{ϵ

L
,

C
δ
√
K + 1

}
.

sing the above inequalities and (14) lead to (13). □

.2.2. Non-smooth and strongly convex functions

k+1 = ΠX (xk − γkχk ⊙ Gk), (15)

here χk is defined in (3), ΠX denotes the projection on a convex
omain X , which is assumed to be a subset of some Hilbert space.
The following results show that MADAGRAD can be used to

ptimize any non-smooth strongly convex cost function over X
given access to unbiased estimates of its subgradients.

Theorem 4. Assume that f (x) is a non-smooth µ-strongly convex
function, E[∥Gk∥

2
] ≤ G2

∀k, and f (x) attains a minimum at some
x∗ ∈ X . By setting γk =

1
µk and x0 = 0, then for any T > 1, the

equence {xk} generated by the algorithm described by (15), satisfies

[f (xT)− f (x∗)] ≤
17G2(1+ log(T))

µT
. (16)

Theorem 4 provides a bound on E[f (xT)− f (x∗)] for a bounded
. One limitation of Theorem 4 is the boundedness of the subgra-
ient. The latter is used to facilitate the convergence bound proof
n (16).

The proof of Theorem 4 is included in the Appendix since it
ollows similar steps as the proof of Theorem 1 in Shamir and
hang (2013) for SGD.
504
4. Results and discussion

In this section we evaluate the performance of our proposed
optimizer (2) with γk = 1 for all experiments. First, we show
the superiority of the convergence rate of our proposed opti-
mizer when compared to the optimal HB method, along with
several other optimizers, on the strongly convex function given
in Lessard, Recht, and Packard (2016) in Section 4.2. We fur-
ther evaluate the convergence rate of our optimizer by com-
paring it with first-order optimizers on the (non-convex and
non-quadratic) Beale function in Section 4.3. For the two afore-
mentioned experiments, the lower bound ϵ of (3) is dismissed,
meaning no tuning whatsoever is implemented on our method.
Finally, we evaluate the optimizer’s performance against popular
optimizers on MNIST, QMNIST, CIFAR-10, and CIFAR-100, where
we fix ϵ = 0.05 of (3) as default value for image classification. It
is important to note that in our toy examples (Lessard function,
quadratic and Beale functions), we consistently run all optimizers
under consideration through all the samples in our training set
to do a single update for the weight, xk, in every iteration, k.
On the other hand, in our image classification examples, we also
consistently run all optimizers under consideration while using
only one minibatch or one subset of the training set to do the
update for the weight in every iteration.

Our codes for all experiments will be made publicly available.

4.1. Convex smooth quadratic function

We use a positive-definite quadratic function to illustrate the
linear convergence rate as reflected in Theorem 1. We consider
the following cost function

f (x) =
1
2
xTAx− bT x (17)

where

A =
[
100 1
1 1

]
, b =

[
1
1

]
, x−1 =

[
0
0

]
, and x0 =

[
2
2

]
.

Instead of (2), we use xk+1 = xk − φk ⊙ ∇f (xk), where φk ≜⏐⏐⏐ (xk−xk−1)i
∇f (xk)−∇f (xk−1)i

⏐⏐⏐. The performance of our optimizer is illustrated in
ig. 1. Examining the left plot, it can be concluded that based on
q. (6) in Theorem 1, q < 0.1. In addition, we consider the conver-
ence rate of the optimal Polyak Heavy Ball, with corresponding
onvergence rate of θ∗HB ≜

√
L−
√

µ
√
L+
√

µ
, which provides the fastest

local convergence rate among all the first-order methods. The
latter assumes that the hyper parameters are constants — unlike
adaptive methods such as MADAGRAD. For this example, L = 100,
µ = 0.99, and the corresponding θ∗HB = 0.819. The right plot of
Fig. 1 shows that θMADAGRAD < 0.3, which is significantly smaller
than θ∗HB. Of note, the optimal Polyak Heavy Ball requires the
exact knowledge of L and µ, whereas MADAGRAD is adaptive and
basically requires no tuning. It is also worthwhile mentioning that
similar results are obtained when we use xk+1 = xk−χk⊙∇f (xk),
where χk is defined in (2) with ϵ = 0.

4.2. Convex not continuously differentiable Lessard’s function

In this section, we tackle the strongly convex function, f (x),
presented in Lessard et al. (2016), given by

∇f (xk) =

⎧⎨⎩
25x if x < 1
x+ 24 if 1 ≤ x < 2
25x− 24 if x ≥ 2.

(18)

The Polyak HB method is not guaranteed to converge on
this function. The function’s gradient, ∇f (x), is continuous and

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

-

0
1
t
w

W
f
[

T
o
i

o

I
m

Fig. 1. Visualization of the convergence rate of MADAGRAD for a positive-
definite quadratic cost function.

monotone but not continuously differentiable. We compare MADA
GRAD with diffGrad (Dubey et al., 2019), SGD, SGD with Momen-
tum (SGDm) (Qian, 1999), Nesterov’s accelerated gradient (NAG)
method (Nesterov, 1983), AdaGrad (Duchi et al., 2011), Adadelta
(Zeiler, 2012), and Adam (Kingma & Ba, 2014). The learning rates
for all optimizers, excluding our proposed method, are chosen by
conducting a random search over the values {0.5, 0.1, 0.05, 0.01,
.005, 0.001, 0.0005, 0.0001}, where we ran each optimizer over
000 random initializations of the model parameters. The op-
imizer parameters that returned the fastest convergence rates
ere chosen.
If the initial conditions are chosen within 3.07 ≤ x0 ≤ 3.46,

then the optimal HB gets stuck in a limit cycle. We test our
optimizer with initial conditions sampled from x0 < 1, and
x0 ≥ 1 while ensuring some samples are drawn from the interval
3.07 ≤ x0 ≤ 3.46. Our optimizer converges in one iteration
for all x0 < 1. This is expected as the gradient for x < 1 is
∇f (x) = 25x, and the solution x∗ = 0. Similarly to the steps
taken in the discussion section when assuming a quadratic with
positive diagonal quadratic matrix, we have x1−x0 = −

(
(x0)+ b

A

)
,

where b = 0 and A = 25. Therefore x1 = 0 which is the solution.
However b is non-zero whenever x ≥ 1, and thus x1 = − b

A ̸= 0.
e run the optimizers over 1000 seeds using 50 iterations each

or initial conditions sampled from uniform distributions between
−5, 1) and [1, 5]. The convergence threshold is |xk−x∗| < 10−10.
he results are summarized in Table 1. A win is recorded for the
ptimizers that converge to a solution first within the first 50
terations.

By examining Table 1, we find that our method converges in
ne iteration for all initial conditions sampled from [1, 5], and it

also converges in 3 iterations for all the initial conditions sampled
from [−5,−1]. The second best optimizer, SGD, also converges
100% of the time with average number of iterations about 17. We
observe that all of those methods involving a momentum term
such as Adam, RMSProp, NAG, SGDm and diffGrad fail to converge
under the given convergence threshold and the initial conditions
under consideration.

4.3. Non-convex smooth Beale function

The Beale function is listed as one of 175 benchmark test
functions for optimization algorithms (Jamil & Yang, 2013). It is
505
Table 1
The convergence results of the proposed optimizer in comparison to known
optimizers when tested on Lessard’s function.
Optimizer Wins Times converged Average steps

Ours (1000; 1000) (1000; 1000) (1; 3)
diffGrad (0; 0) (0; 0) (50; 50)
SGD (0; 0) (1000; 1000) (17.285; 16.977)
SGDm (0; 0) (0; 0) (50; 50)
NAG (0; 0) (1; 1) (49.998; 49.993)
RMSProp (0; 0) (0; 0) (50; 50)
Adagrad (0; 0) (505; 448) (35.097; 37.274)
Adam (0; 0) (0; 0) (50; 50)

Table 2
The convergence rate of the proposed optimizer in comparison to known
optimizers when tested on the Beale function.
Optimizer Wins Times converged Average steps

Ours 652 999 160.87
diffGrad 10 539 619.70
SGD 0 27 992.94
SGDm 71 319 719.11
NAG 9 628 602.21
RMSProp 3 86 933.54
Adagrad 17 346 772.11
Adam 233 535 586.37

a 2-dimensional non-convex function with one global minimum
f (x∗) = 0 at x∗ = (3, 0.5). The function is written as follows:

f (x, y) = (1.5− x+ xy)2 + (2.25− x+ xy2)2 + (2.625− x+ xy3)2

We compare MADAGRAD with the same optimizers in the
previous subsection, excluding the optimal HB, using the same
tuning strategy. We run each optimizer over 1000 random ini-
tializations of the model parameters, which are sampled from a
uniform distribution over the interval [0, 4). The convergence rate
is evaluated by recording the number of steps, k, for any optimizer
to achieve a difference in error of |f (x∗)−f (xk)| ≤ 10−5. The value
of xk−1 at the first iteration is initialized to (0, 0). The learning
rates chosen for SGD, Momentum, NAG, Adagrad, and Adam are
chosen using a similar protocol as in the previous subsection and
are found to be 0.01, 0.01, 0.0005, 0.5, and 0.5, respectively. For
Momentum the standard value of β = 0.9 is used, a common
β = k

k+3 for NAG, and the standard β1 = 0.9 and β2 = 0.99 for
Adam.

Clearly, from Table 2, our proposed optimizer outperforms the
rest by converging to the global minimum the largest number of
times and the fastest. The proposed optimizer converges 99.9%
of all runs with average number of iterations ≈161, whereas the
second best performing optimizer converges 62.8% with average
number of iterations ≈620.

In order to justify the results in Theorem 2, we also inject
noise in the non-convex Beale function. We add a uniformly
distributed zero-mean random variable to its gradient with values
∈ 5× 10−3[−1, 1]. We choose ϵ = 10−5 in (2) and

γk =

⎧⎨⎩
1
√
k+1

, if k = mod 100 = 0, set k0 = k
1√
k0+1

, otherwise.
(19)

n Fig. 2, using MADAGRAD, we display the progress of ∥∇f (xk)∥2,
ink=0,...,t ∥∇f (xk)∥2, 1

t+1

∑t
k=0 ∥∇f (xk)∥

2, and also ∥∇f (x0)∥2

/
√
k+ 1 to show how the minimum and the average of ∥∇f (xk)∥2

converges at a rate of O(1/
√
k+ 1) over 10,000 iterations.

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

f
a
a
N
f

t

4

b
S
r
M
t
t
w
w
w
a
A
m
t
a
c
o
t

Fig. 2. Progress of ∥∇f (xk)∥2 for the Beale function using noisy gradients with
x0 = [1 1]T and x−1 = [0 0]T .

4.4. Convex non smooth L1-norm function

We consider the L1-norm as our cost function; that is, f (x) =
∥x∥1 with

∂ f (x) =

{
x
∥x∥1

, for x ̸= 0
{s | ∥s∥1 ≤ 1}, for x = 0

where the minimum is x∗ = 0 and 0 ∈ ∂ f (0). In this example,
we compare the performance of MADAGRAD and SGD since the
upper bounds of E[f (xT) − f (x∗)] in Theorem 4 and Theorem 1
in Shamir and Zhang (2013) corresponding to SGD are the same.
We use x ∈ R3 with γk =

1
k , for both Madagrad and SGD, and

or MADAGRAD, we set ϵ = 0.05, which is the value used in
ll of our image classification examples. At each iteration, we
dd to the gradient a random vector, v ∈ R3, with (v)1≤i≤3 ∈
(0, 10−4). Examining Fig. 3, we note that f (xk)−f (x∗) ≤ (f (x0)−
(x∗)) 1+log10(k)k , which is consistent with the upper bound (16)

of Theorem 4. In addition, the upper envelope of f (xk) − f (x∗)
corresponding to MADAGRAD is about 17 times smaller than the
one for SGD, and mink(f (xk) − f (x∗)) is about 24 times smaller
han the one for SGD.

.5. Image classification

Before presenting the results and discussion, we provide a
rief description of the popular adaptive methods. Root Mean
quare Propagation (RMSProp) divides the learning rate by a
unning average of the magnitudes of recent gradients. Adaptive
oment Estimation (Adam), which is considered as an update

o RMSProp, uses running averages of both the gradients and
he second moments of the gradients. Adam with decoupled
eight decay (AdamW) is a modification of Adam where the
eight decay is decoupled from the optimization steps taken
ith respect to the loss function. Difference between the present
nd the immediate past gradient (diffGrad) builds on the proven
dam optimizer by developing an adaptive ‘friction clamp’ and
onitoring the local change in gradients — not just by using

he exponential moving average. The latter modification is aimed
t automatically locking in optimal parameter values that Adam
an skip over. All of these methods rely on the square roots
f exponential moving averages of squared past gradients. On
he other hand, by examining Algorithm 1, it can be readily
506
Fig. 3. Progress of f (xk)− f (x∗) for the L1-norm function using noisy gradients
with x−1 = [2 2 2]T and x0 = [1 1 1]T .

Table 3
Comparison of tuning efforts required for our approach versus popular first-order
adaptive and non-adaptive optimizers via number of tuning hyper-parameters.
Optimizer Number of tuning hyper-parameters

Ours 2: γ , ϵ (γ ≡ 1, ϵ ≡ 0.05)
SGDm 2: γ , β

NAG 2: γ , β

RMSProp 2: γ , β

Adam 3: γ , β1, β2
diffGrad 3: γ , β1, β2

concluded that MADAGRAD does not require more computational
cost per iteration or more memory requirement than all the
aforementioned popular adaptive methods.

We also reflect on the amount of tuning efforts in Table 3
by comparing the number of hyper-parameters that need to be
tuned for each method For example, even though the number of
hyper-parameters to tune for our method is 2, we use γ ≡ 1, ϵ ≡
0.05 for all datasets. This ϵ = 0.05 is holistically selected so that
the performance of any dataset is not substantially compromised.
Of note, choosing a different value of ϵ for each dataset would
lead to better performance. We empirically show that with these
fixed default values, our method achieves comparable, if not
superior, performance with respect to the remaining optimizers.
Also, the adaptive version of the NAG method requires the tuning
of only the learning rate γ , which we use in Sections 4.2 and
4.3, where the momentum term is automatically updated as a
function of the iteration number.

We run four image classification tasks; namely, MNIST, QM-
NIST, CIFAR-10, and CIFAR-100. The MNIST dataset is a 10-class
image classification dataset composed of 60,000 and 10,000 train-
ing and testing gray-scale images of hand-written digits,
respectively. QMNIST extends MNIST’s testing set to 60,000 test-
ing images. The CIFAR-10 and CIFAR-100 datasets consist of
50,000 training images and 10,000 testing images with dimen-
sions 32× 32 with 10 and 100 classes, respectively. In these tasks,
we show that the proposed optimizer is very well-suited for deep
neural networks. We compare our proposed optimizer with diff-
Grad, SGDm, NAG, Adam, and AdamW. The hyper-parameters for
the optimizers tuned in-house are chosen by conducting a search
over the values {1, 0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001,
0.0005}, and choosing the value that returns the highest valida-
tion accuracy. We run all networks for 200 epochs.

MNIST and QMNIST: The neural network used is the con-
ventional convolutional neural network (CNN) as designed in

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

a
Q

K
k
f
f
r
a
w
w
w
F
A

a
b

Table 4
Average test accuracy for MNIST, QMNIST, CIFAR-10, and CIFAR-100 over last 10
epochs.
Optimizer MNIST QMNIST CIFAR-10 CIFAR-100

Ours 98.94% 98.72% 92.97% 73.19%
±0.04% ±0.02% ±0.08% ±0.14%

diffGrad 99.17% 98.98% 92.88% 70.69%
±0.02% ±0.01% ±0.17% ±0.43%

SGDm 99.03% 98.81% 84.16% 59.58%
±0.02% ±0.02% ±1.44% ±1.16%

NAG 99.13% 98.95% 93.03% 71.83%
±0.01% ±0.01% ±0.17% ±0.24%

Adam 99.17% 98.93% 92.38% 64.79%
±0.02% ±0.01% ±0.24% ±0.35%

AdamW 97.77% 97.61% 87.64% 63.95%
±0.03% ±0.04% ±1.28% ±0.78%

Fig. 4. Average test set accuracy over five independent runs of MADAGRAD
nd other popular first-order gradient descent optimizers on MNIST (top) and
MNIST (bottom).

oehler (2020), which includes two convolutional layers with
ernel size 5, one fully-connected hidden layer, and a proceeding
ully-connected classification layer of 50 neurons. The activation
unction chosen is the ReLU function. We run our networks over 5
andom (seeds) initializations of the network parameters, and use
batch size of 64. The learning rate chosen for diffGrad is 0.001
ith the standard values of β1 = 0.9 and β2 = 0.99. For SGDm,
e choose a learning rate value of 0.01, with β = 0.9. For Adam,
e choose a learning rate of 0.0005 with β1 = 0.9 and β2 = 0.99.
or NAG, we use a learning rate of 0.01 and β = 0.9. Lastly, for
damW, we choose a learning rate of 0.0005 with β1 = 0.9 and

β2 = 0.99, and a weight decay value of 1.
CIFAR-10 and CIFAR-100: We adopt the tuning parameters

set forth by Zhang, Lucas, Ba, and Hinton (2019) for SGDm and
AdamW, and similarly run the proposed CIFAR experiments using
a Resnet-18 (He, Zhang, Ren, & Sun, 2016) for three different
seeds using a batch size of 128. Additionally, diffGrad and Adam
are tuned in-house. We tune all optimizers on CIFAR-10, then
use the same parameters on CIFAR-100. We use the same hyper-
parameters for diffGrad from the MNIST experiments. We run
SGDm with β = 0.9, learning rate of 0.05, and weight decay value
of 0.001. AdamW has a learning rate of 0.0003 and weight decay
value of 1. For NAG, we use a learning rate of 0.05 and β = 0.9.
For Adam, we choose a learning rate value of 0.005.

The results are reported in Table 4 and illustrated in Fig. 4
and Fig. 5. Our optimizer achieves comparable results to the
507
Fig. 5. Average test set accuracy over three independent runs of MADAGRAD
and other popular first-order gradient descent optimizers on CIFAR-10 (top) and
CIFAR-100 (bottom).

popular optimizers on MNIST, QMNIST, and CIFAR-10. It achieves
the highest average accuracy of 73.19% over the last 10 epochs for
CIFAR-100 whereas the second best average accuracy is 71.83%. In
addition, whenever we take the average of the test accuracy over
the four datasets for each optimizer, we find that our optimizer
achieves the highest average of 90.995%, the second best is NAG
with an average of 90.735%, the third is diffGrad with an average
of 90.43%, and the rest is below 89%. We reiterate that no tuning
was implemented on the two hyper-parameters of MADAGRAD.
The learning rate γ = 1 and lower bound limiter of (3) ϵ = 0.05
were fixed for all image classification tasks rather than fine tuning
these two hyper-parameters for each dataset.

Remark. We point out that learning-rate scheduling may yield
better performance, such as 95% test accuracy on CIFAR-10 using
SGDm (Lang, Zhang, & Xiao, 2019). We reiterate that our main
objective is significant tuning reduction while achieving compa-
rable performance with the state-of-the-art optimizers. Thus, for
fair comparison, we compare our method with other optimizers
while only tuning their hyper-parameters.

5. Conclusion

This paper has proposed a novel computationally efficient
multivariate adaptive gradient-descent method for large-scale
systems such as deep neural networks. In the deterministic set-
ting, the proposed method ensures global linear convergence to
the solution by assuming a strongly convex cost function that
is continuously differentiable with Lipschitz gradients. Under a
stochastic setting, the proposed method converges in expectation
at the order of O(1/

√
k) for a non-convex cost function with

Lipschitz continuous gradient. It is noted that the gradient is not
ssumed to be bounded under both settings. However, it has
een shown that after T iterates, the cost function of the last

iterate scales as O(log(T)/T) for non-smooth strongly convex cost
functions while assuming bounded subgradients.

The proposed method has been empirically validated on
smooth and strongly convex function, convex with non-twice-
differentiable gradients, a smooth non-convex function, non-
smooth convex function, and four image classification tasks using

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

d
v
t
t
p
a
y
w
s

C

a
a

D

c
t

F

t
v
u
s
t
G
a
s
o
s

E

C

m

D

A

T
f
x
t
s

E

eep neural networks. The optimizer has displayed superior con-
ergence properties on all toy examples. Finally, it is shown that
he algorithm achieves comparable results, without tuning, to
he state-of-the-art on MNIST, QMNIST, and CIFAR-10, and better
erformance on CIFAR-100. In fact, the proposed multivariable
daptive gradient descent method with reduced tuning efforts
ielded the best overall performance results for deep neural net-
orks when comparing it to the state-of-the-art tuned optimizers
uch as NAG, diffGrad, Adam and SGDm.

RediT authorship contribution statement

Samer Saab Jr: Conceptualization of this study, Methodology,
theory, Software, Writing – original draft. Khaled Saab: Concep-
tualization of this study, Methodology, Data curation, Software,
Theory. Shashi Phoha: Coordinator. Minghui Zhu: Supervised
nd organized the course of the article. Asok Ray: Supervision
nd organization the course of the article.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared
o influence the work reported in this paper.

unding

The work has been supported by the Walker Fellowship from
he Applied Research Laboratory at the Pennsylvania State Uni-
ersity andWu Tsai Neuroscience Stanford Interdisciplinary Grad-
ate Fellowship (SIGF). The work reported here has been
upported in part by NSF CAREER award ECCS-1846706, and by
he U.S. Air Force Office of Scientific Research (AFOSR) under
rant No. FA9550-15-1-040 in the area of dynamic data-driven
pplication systems (DDDAS). Any opinions, findings and conclu-
ions or recommendations expressed in this publication are those
f the authors and do not necessarily reflect the views of the
ponsoring agencies.

thics approval

The study does not involve human subjects and/or animals.

ode availability

The codes will be made available upon acceptance of the
anuscript.

ata availability

The data is based on open-source repository.

ppendix

heorem 4. Assume that f (x) is a non-smooth µ-strongly convex
unction, E[∥Gk∥

2
] ≤ G2

∀k, and f (x) attains a minimum at some
∗
∈ X . By setting γk =

1
µk and x0 = 0, then for any T > 1,

he sequence {xk} generated by the algorithm described by (15),
atisfies

[f (xT)− f (x∗)] ≤
17G2(1+ log(T))

.

µT

508
Proof. The proof of Theorem 4 follows similar steps as the proof
of Theorem 1 in Shamir and Zhang (2013) for SGD.

Since the elements of the subgradient are implicitly assumed
to be unbiased (in expectation) and the elements of χk are posi-
tive and bounded by 1, then the elements of χk⊙Gk are unbiased.
In addition, since x0 = 0, hence the elements of xk−xk−1 (15) are
also unbiased. At a later stage of the proof x is substituted with
xk−m. Therefore, we have

E[⟨χk ⊙ Gk, xk − x⟩] = E[⟨Gk, xk − x⟩].

In addition, since γk > 0, then

−2γkE[⟨χk ⊙ Gk, xk − x⟩] = −2γkE[⟨Gk, xk − x⟩].

By convexity of X , we have

E[||xk+1 − x||2] = E[||ΠX (xk − γkχk ⊙ Gk)− x||2]

≤ E[||xk − x||2] − 2γkE[⟨gk, xk − x⟩] + γ 2
k G

2,

where gk ≜ E[Gk] is a subgradient of f at xk. The last term
on the right-hand side of the above equation uses the fact that
|(χk)i| ≤ 1. Consequently,

E[⟨gk, xk − x⟩] ≤
1
2γk

(
E[∥xk − x∥2] − E[∥xk+1 − x∥2]

)
+

γkG2

2
.

Let m be an arbitrary element in {1, . . . , [T/2]}. Summing the
above inequality over all k = T − m, . . . , T , and cancelling
common terms, we obtain

T∑
k=T−m

E[⟨gk, xk − x⟩] ≤
1

2γT−m
E[∥xT−m − x∥2]

+

T∑
k=T−m+1

E[∥xT−m − x∥2]
2

(1
γk
−

1
γk−1

)
+

G2

2

T∑
k=T−m

γk.

(20)

Since f (x) is µ-strongly convex, then from Definition 2, we get

E[f (x)− f (xk)] ≥ E[⟨x− xk, gk⟩] +
µ

2
E[∥x− xk∥2],

or

E[f (xk)− f (x)] ≤ E[⟨xk − x, gk⟩] −
µ

2
E[∥xk − x∥2]. (21)

Plugging the above inequality into (20) while substituting γk =
1
µk , we obtain

T∑
k=T−m

E[f (xk)− f (x)] ≤
µ(T −m)

2
E[∥xT−m − x∥2]

−

T∑
k=T−m+1

E[∥xT−m − x∥2]
2

(1
µ(k− 1)

)
+

G2

2µ

T∑
k=T−m

1
k
+

µ

2

T∑
k=T−m+1

E[∥xk − x∥2].

Since the second term on the right-hand side is negative, then we
drop it and obtain

T∑
k=T−m

E[f (xk)− f (x)] ≤
µ(T −m)

2
E[∥xT−m − x∥2]

+
µ

2

T∑
E[∥xk − x∥2] +

G2

2µ

T∑ 1
k
.

(22)
k=T−m+1 k=T−m

S. Saab Jr, K. Saab, S. Phoha et al. Neural Networks 152 (2022) 499–509

N
U
E

T
w

E

W
i

R

A

B

B

L

L

L

L

N

N

N

N

P

S

S

Z

ote that using (21), we have E[⟨xk − x∗, gk⟩] ≥ µ

2 E[∥xk − x∗∥2].
sing the latter inequality, Lemma 1 in Shamir (2011) shows that
[∥xk − x∗∥2] ≤ 4G2

µ2k
. This implies that for k ≥ T −m,

E[∥xk − xT−m∥2] ≤ 2E[∥xk − x∗∥2 + ∥xT−m − x∗∥2]

≤
8G2

µ2

(1
k
+

1
T −m

)
≤

16G2

µ2(T −m)

≤
32G2

µ2T
.

he last inequality is due to the fact that 1 ≤ m ≤ [T/2]. Next,
e use the above inequality and set x = xT−m in (22) to obtain[T∑
k=T−m

(f (xk)− f (xT−m))
]
≤

µ

2

T∑
k=T−m+1

E[∥xk − xT−m∥2]

+
G2

2µ

T∑
k=T−m

1
k
≤

16G2m
µT

+
G2

2µ

T∑
k=T−m

1
k

=
G2

2µ

(32m
T
+

T∑
k=T−m

1
k

)
.

e omit the rest of the proof since it follows the same steps as
n the proof of Theorem 1 in Shamir and Zhang (2013).

eferences

lecsa, Cristian Daniel, Pinţa, Titus, & Boros, Imre (2020). New optimization
algorithms for neural network training using operator splitting techniques.
Neural Networks, 126, 178–190.

ach, Francis, & Moulines, Eric (2011). Non-asymptotic analysis of stochas-
tic approximation algorithms for machine learning. In Neural information
processing systems (NIPS).

ertsekas, Dimitri P. (1997). A new class of incremental gradient methods for
least squares problems. SIAM Journal on Optimization, 7(4), 913–926.

Cohen, Jeremy M., Kaur, Simran, Li, Yuanzhi, Kolter, J. Zico, & Talwalkar, Ameet
(2021). Gradient descent on neural networks typically occurs at the edge of
stability. arXiv preprint arXiv:2103.00065.

Dubey, Shiv Ram, Chakraborty, Soumendu, Roy, Swalpa Kumar, Mukherjee, Sne-
hasis, Singh, Satish Kumar, & Chaudhuri, Bidyut Baran (2019). diffGrad: an
optimization method for convolutional neural networks. IEEE Transactions on
Neural Networks and Learning Systems, 31(11), 4500–4511.

Duchi, John, Hazan, Elad, & Singer, Yoram (2011). Adaptive subgradient methods
for online learning and stochastic optimization. Journal of Machine Learning
Research, 12(7).

Gaivoronski, Alexei A. (1994). Convergence properties of backpropagation for
neural nets via theory of stochastic gradient methods. Part 1. Optimization
Methods & Software, 4(2), 117–134.

Ghadimi, Euhanna, Feyzmahdavian, Hamid Reza, & Johansson, Mikael (2015).
Global convergence of the heavy-ball method for convex optimization. In
2015 European control conference (ECC) (pp. 310–315). IEEE.

Ghadimi, Saeed, & Lan, Guanghui (2013). Stochastic first-and zeroth-order meth-
ods for nonconvex stochastic programming. SIAM Journal on Optimization,
23(4), 2341–2368.

Gower, Robert Mansel, Loizou, Nicolas, Qian, Xun, Sailanbayev, Alibek,
Shulgin, Egor, & Richtárik, Peter (2019). SGD: General analysis and improved
rates. In International conference on machine learning (pp. 5200–5209). PMLR.

He, Kaiming, Zhang, Xiangyu, Ren, Shaoqing, & Sun, Jian (2016). Deep residual
learning for image recognition. In Proceedings of the IEEE conference on
computer vision and pattern recognition (pp. 770–778).

Jamil, Momin, & Yang, Xin-She (2013). A literature survey of benchmark func-
tions for global optimisation problems. International Journal of Mathematical
Modelling and Numerical Optimisation, 4(2), 150–194.

Karimi, Hamed, Nutini, Julie, & Schmidt, Mark (2016). Linear convergence
of gradient and proximal-gradient methods under the polyak-łojasiewicz
condition. In Joint European conference on machine learning and knowledge
discovery in databases (pp. 795–811). Springer.

Khan, Mohammad, Nielsen, Didrik, Tangkaratt, Voot, Lin, Wu, Gal, Yarin, &
Srivastava, Akash (2018). Fast and scalable bayesian deep learning by
weight-perturbation in adam. In International conference on machine learning
(pp. 2611–2620). PMLR.
509
Kingma, Diederik P., & Ba, Jimmy (2014). Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980.

Koehler, Gregor (2020). Mnist handwritten digit recognition in pytorch. URL:
https://nextjournal.com/gkoehler/pytorch-mnist.

Lang, Hunter, Zhang, Pengchuan, & Xiao, Lin (2019). Using statistics to automate
stochastic optimization. arXiv preprint arXiv:1909.09785.

Lei, Yunwen, Hu, Ting, Li, Guiying, & Tang, Ke (2019). Stochastic gradient
descent for nonconvex learning without bounded gradient assumptions. IEEE
Transactions on Neural Networks and Learning Systems, 31(10), 4394–4400.

Lessard, Laurent, Recht, Benjamin, & Packard, Andrew (2016). Analysis and
design of optimization algorithms via integral quadratic constraints. SIAM
Journal on Optimization, 26(1), 57–95.

Li, Wenjing, & Bian, Wei (2021). Smoothing neural network for L0 regularized
optimization problem with general convex constraints. Neural Networks, 143,
678–689.

i, Xiaoyu, & Orabona, Francesco (2019). On the convergence of stochastic
gradient descent with adaptive stepsizes. In The 22nd international conference
on artificial intelligence and statistics (pp. 983–992). PMLR.

in, Junhong, & Zhou, Ding-Xuan (2017). Online learning algorithms can converge
comparably fast as batch learning. IEEE Transactions on Neural Networks and
Learning Systems, 29(6), 2367–2378.

oizou, Nicolas, Vaswani, Sharan, Laradji, Issam, & Lacoste-Julien, Simon (2020).
Stochastic polyak step-size for SGD: An adaptive learning rate for fast
convergence. arXiv preprint arXiv:2002.10542.

uo, Liangchen, Xiong, Yuanhao, Liu, Yan, & Sun, Xu (2019). Adaptive gradient
methods with dynamic bound of learning rate. arXiv preprint arXiv:1902.
09843.

eedell, Deanna, Srebro, Nathan, & Ward, Rachel (2016). Stochastic gradi-
ent descent, weighted sampling, and the randomized kaczmarz algorithm.
Mathematical Programming, 155(1–2), 549–573.

eedell, Deanna, & Ward, Rachel (2016). Batched stochastic gradient descent
with weighted sampling. In International conference approximation theory
(pp. 279–306). Springer.

esterov, Yu (1983). A method of solving a convex programming problem with
convergence rate o (1/kˆ 2) o (1/k2). In Sov. math. dokl., Vol. 27 (p. 2).

esterov, Yurii (2003). Introductory lectures on convex optimization: A basic course,
Vol. 87. Springer Science & Business Media.

robst, Philipp, Boulesteix, Anne-Laure, & Bischl, Bernd (2019). Tunability:
Importance of hyperparameters of machine learning algorithms. Journal of
Machine Learning Research, 20(53), 1–32.

Qian, Ning (1999). On the momentum term in gradient descent learning
algorithms. Neural Networks, 12(1), 145–151.

Robbins, Herbert, & Monro, Sutton (1951). A stochastic approximation method.
The Annals of Mathematical Statistics, 400–407.

Saab, Samer S., & Shen, Dong (2019). Multidimensional gains for stochastic
approximation. IEEE Transactions on Neural Networks and Learning Systems,
31(5), 1602–1615.

hamir, Ohad (2011). Making gradient descent optimal for strongly convex
stochastic optimization. CoRR, abs/1109.5647.

hamir, Ohad, & Zhang, Tong (2013). Stochastic gradient descent for non-
smooth optimization: Convergence results and optimal averaging schemes.
In International conference on machine learning (pp. 71–79). PMLR.

Tao, Wei, Long, Sheng, Wu, Gaowei, & Tao, Qing (2021). The role of momentum
parameters in the optimal convergence of adaptive polyak’s heavy-ball
methods. arXiv preprint arXiv:2102.07314.

Vaswani, Sharan, Mishkin, Aaron, Laradji, Issam, Schmidt, Mark, Gidel, Gauthier,
& Lacoste-Julien, Simon (2019). Painless stochastic gradient: Interpolation,
line-search, and convergence rates. arXiv preprint arXiv:1905.09997.

Wilson, Ashia C., Roelofs, Rebecca, Stern, Mitchell, Srebro, Nathan, & Recht, Ben-
jamin (2017). The marginal value of adaptive gradient methods in machine
learning. arXiv preprint arXiv:1705.08292.

Xu, Dongpo, Zhang, Shengdong, Zhang, Huisheng, & Mandic, Danilo P. (2021).
Convergence of the rmsprop deep learning method with penalty for
nonconvex optimization. Neural Networks, 139, 17–23.

Yang, Tianbao, Lin, Qihang, & Li, Zhe (2016). Unified convergence analysis of
stochastic momentum methods for convex and non-convex optimization.
arXiv preprint arXiv:1604.03257.

Zeiler, Matthew D. (2012). Adadelta: an adaptive learning rate method. arXiv
preprint arXiv:1212.5701.

Zhang, Michael, Lucas, James, Ba, Jimmy, & Hinton, Geoffrey E. (2019). Lookahead
optimizer: k steps forward, 1 step back. In Advances in neural information
processing systems (pp. 9597–9608).

ou, Fangyu, Shen, Li, Jie, Zequn, Zhang, Weizhong, & Liu, Wei (2019). A
sufficient condition for convergences of adam and rmsprop. In Proceed-
ings of the IEEE/CVF conference on computer vision and pattern recognition
(pp. 11127–11135).

http://refhub.elsevier.com/S0893-6080(22)00190-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb1
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb2
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb3
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb3
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb3
http://arxiv.org/abs/2103.00065
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb5
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb6
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb7
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb8
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb9
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb10
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb12
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb13
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb14
http://arxiv.org/abs/1412.6980
https://nextjournal.com/gkoehler/pytorch-mnist
http://arxiv.org/abs/1909.09785
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb18
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb19
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb20
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb21
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb21
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb21
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb21
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb21
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb22
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb22
http://arxiv.org/abs/2002.10542
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://arxiv.org/abs/1902.09843
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb25
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb26
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb27
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb27
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb27
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb28
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb28
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb28
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb29
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb30
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb31
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb32
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb32
http://arXiv:1109.5647
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb34
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb34
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb34
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb34
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb34
http://arxiv.org/abs/2102.07314
http://arxiv.org/abs/1905.09997
http://arxiv.org/abs/1705.08292
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb38
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb38
http://arxiv.org/abs/1604.03257
http://arxiv.org/abs/1212.5701
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb41
http://refhub.elsevier.com/S0893-6080(22)00190-3/sb41

	A multivariate adaptive gradient algorithm with reduced tuning efforts
	Introduction
	Related work
	Contributions

	Proposed adaptive method
	Global convergence
	Deterministic setting
	Stochastic setting
	Smooth and non-convex functions
	Non-smooth and strongly convex functions

	Results and discussion
	Convex smooth quadratic function
	Convex not continuously differentiable Lessard's function
	Non-convex smooth Beale function
	Convex non smooth L1-norm function
	Image classification

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Ethics approval
	Code availability

	Data availability
	Appendix
	References

