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Abstract: Fatigue damage detection and its classification in metallic materials are persistently chal-
lenging the structural health monitoring community. The mechanics of fatigue damage is difficult to
analyze and is further complicated because of the presence of notches of different geometries. These
notches act as possible crack-nucleation sites resulting in failure mechanisms that are drastically
different from one another. Often, sensor-based tools are used to monitor and detect fatigue damage
in critical metallic materials such as aluminum alloys. Through deep neural networks (DNNs), such
a sensor-based approach can be ubiquitously extended for a variety of geometries as appropriate for
different applications. To that end, this paper presents a DNN-based transfer learning framework that
can be used to classify and detect fatigue damage across candidate notch geometries. The DNNs are
built upon ultrasonic time-series data obtained during fatigue testing of Al7075-T6 specimens with
two types of notch geometries, namely, a U-notch and a V-notch. The baseline U-notch DNN is shown
to achieve an accuracy of 96.1% while the baseline V-notch DNN has an accuracy of 95.8%. Both
baseline DNNs are, thereafter, subjected to a transfer learning process by keeping a certain number
of layers frozen and retraining only the remaining layers with a small volume of data obtained
from the other notch geometry. When a layer of the baseline U-notch DNN is retrained with just
10% of the total V-notch data, an accuracy above 90% is observed for fatigue damage detection of
V-notch specimens. Similar results are also obtained when the baseline V-notch DNN is retrained
and interrogated to detect damage for U-notch specimens. These results, in summary, demonstrate
the data-thrifty quality of combining the concepts of transfer learning and DNN for fatigue damage
detection in different geometries of specimens made of high-performance aluminum alloys.

Keywords: fatigue damage detection; aluminum alloys; ultrasonic time-series data; deep neural
network; transfer learning; structural health monitoring

1. Introduction

Ultrasonic sensors are often employed for structural health monitoring (SHM) for
metallic components [1]. Single-transducer ultrasonic sensors emit sound waves at very
high frequencies. The sound waves are reflected back from the boundaries of the objects or
internal flaws. By comparing the original emitted wave with the reflected wave, appropriate
analysis can be performed to understand the flaw characteristics. A dual-configuration
ultrasonic sensor has a transmitter and a receiver. The transmitter emits sound waves
while the receiver captures them. Compared to other non-destructive SHM sensors such
as strain gauges [2], acoustic transducers [3], eddy current [4], etc., ultrasonic sensors [5]
have been observed to detect flaws with greater precision and accuracy. The accuracy and
precision of detection are, however, a strong function of the ultrasonic frequency [1]. A
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higher frequency would improve the detection capability with respect to the flaw size,
however, the span of detection would be compromised.

During fatigue testing, ultrasonic transducers typically provide data in the form a
time-series that possess the information of internal flaws or defects or crack [5]. In order to
calibrate this data, a secondary sensor, e.g., an optical microscope is required. The visual
information obtained from the microscope appropriately segregates the time-series data
into ‘healthy’ and ‘cracked’ regimes. Such a segregated data, thereafter, can be processed
using sophisticated time-series data analysis methods such as finite state automata, neural
networks, etc. to develop damage detection models. Gupta et al. [6] performed fatigue
testing using high-frequency ultrasonics, calibrated the time series data using an optical
microscope, and used probabilistic finite state automata (PFSA) to develop a damage
detection model. Ghalyan et al. [7] used Symbolic Time Series Analysis built upon a property
of measure-preserving transformation sequence to detect fatigue damages in Al7075-T6.
Bhattacharya et al. [8] modified the PFSA method and showed that the modified PFSA was
able to detect the emergence of cracks with 95% accuracy. More recently, Dharmadhikari
et al. [5] used deep neural network (DNN) to process the ultrasonic time-series data and
obtained a damage detection accuracy of 98.94%. However, all these experiments have so far
been conducted on Al7075-T6 specimens with a fixed notch geometry. For a new specimen
geometry, the framework would again require new data as shown in Figure 1a.

Figure 1. Schematic of (a) a conventional machine learning and (b) a transfer learning framework.

DNNs are usually trained with a large amount of data. A relatively recent technique,
called Transfer Learning, is hypothesized to circumvent this problem of enormous data
requirement. Transfer learning [9] has received significant attention with applications to
fatigue damage and broadly to structural health monitoring. With several pre-trained
networks available in the public domain, these applications have often seen a bias toward
convolutional neural network (CNN)-based architectures. Munawar et al. [10] reviewed
the recent trends in image-based crack detection and commented on the focus of transfer
learning in CNN-based approaches. Through AlexNet, VGGNet13, and ResNet18, Yang
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et al. [11], successfully demonstrated the efficacy of crack detection for different structures.
Similarly, Dung et al. [12] successfully showed the application of VGGNet13 in detecting
cracks on welded joints of steel bridges. Che et al. [13] studied the applications of transfer
learning for different loading conditions to detect damage in roller bearings. Li et al. [14]
applied transfer learning to train models to detect gear pitting for varied working conditions.
A number of transfer learning studies with CNNs, autoencoders, and several other methods
for fault diagnosis have been reported on the bearing dataset from the Case Western Reserve
University [9,14–17].

The goal of this research article is to develop a transfer learning framework to enable
fatigue damage detection of Al7075-T6 specimens having two different notch geometries,
namely, a U-notch and a V-notch (Figure 1b). The central hypothesis is that the ultrasonic
transducers are agnostic to the notch type—as soon as a crack reaches the size of detection,
the ultrasonic signals would show an attenuation behavior. Hence, a damage detection
framework, such as a DNN, developed using Al7075-T6 U-notch data is expected to carry
similar signatures like Al7075-T6 V-notch and vice versa. To test this hypothesis, in this arti-
cle, American Society for Testing and Materials (ASTM) standard Al7075-T6 U- and V-notch
specimens are tested on a custom fatigue testing apparatus. The apparatus is integrated
with a confocal microscope and the specimens are instrumented with a pair of ultrasonic
transducers. The time-series data from the ultrasonic transducers are continuously recorded
during fatigue testing using a data acquisition system. Using the information obtained from
the confocal microscope, the set of time-series data is segmented into ‘healthy’ and ‘cracked’
regimes. Fifteen Al7075 U-notch specimens and fifteen Al7075-T6 V-notch specimens are
tested. On an average, the U-notch specimens exhibit a fatigue life of 41,681 ± 11,737 while
the V-notch specimens show a fatigue life of 56,057 ± 14,822 making them ideal candidates
for a transfer learning study.

Using the Al7075 segmented data, baseline DNNs are trained for each specimen
geometry. Retraining is performed by using a fraction of the data from one geometry to
develop a DNN for the other. To understand the effects of retraining, a parametric analysis
is conducted by varying the percentage of data used for retraining and the number of
retrained layers. The observations from the analysis reveal that the baseline DNNs can
reach accuracies above 95% for both specimen geometries. By increasing the amount of
data, the accuracy in retraining increases gradually, eventually achieving the baseline DNN
performance. By looking at the extreme cases, it is observed that, when DNN layers of the
baseline U-notch DNN is retrained with just 10% of the total V-notch data, an accuracy
above 90% is observed for fatigue damage detection of V-notch specimens. Similar results
are also obtained when the baseline V-notch DNN is retrained and interrogated to make
detection for U-notch specimens.

The paper is organized into five sections including the present one. Section 2 succinctly
describes the test apparatus and the experimental protocol, followed by a comprehensive
description of the data set. Section 3 briefly describes the design of DNNs for this study,
and explains the architecture of the transfer learning framework. Section 4 presents and
discusses the pertinent results. The paper is summarized and concluded in Section 5 along
with recommendations for future research.

2. Experimental Method
2.1. Fatigue Testing

Figure 2a,b depicts the design of the two sets of (ASTM Standard E466) test specimens
that are used in this study. These two types of specimens have different notch geometries,
namely, a U-notch and a V-notch. All specimens are made of high-strength aluminum
alloy Al7075-T6 acquired from McMaster-Carr. Al7075-T6 has an ultimate tensile strength
of 572 MPa, tensile yield strength of 503 MPa, fatigue strength of 159 MPa, and fracture
toughness of 29 MPa-m1/2. For each type of notch geometry, a total of 15 specimens have
been tested by following an experimental protocol that is very briefly summarized in this
paper for completeness. The details can be found in previous publications by Dharmad-



Metals 2022, 12, 1849 4 of 13

hikari et al. [18,19]. Figure 2c depicts the fatigue testing apparatus. The apparatus is built
upon a computer-controlled and computer-instrumented 25 kN fatigue-testing machine
(Manufacturer: MTS®, Berlin, NJ, USA), which is equipped with ultrasonic sensors (Manu-
facturer: OLYMPUS®, Shinjuku, Tokyo, Japan) for the generation of ultrasonic time-series
data and a confocal microscope (Manufacturer: Alicona Imaging GmbH, Dr.-Auner-Strasse
21a, 8074 Raaba/Graz, Austria) mounted on a moving stage (Manufacturer: Aerodyne
Research, LLC 1725 Lexington Avenue, Deland, FL, USA) for capturing the surface images
of the specimens while being tested.

Figure 2. Schematic of (a) a U-notch and (b) a V-notch specimen. All dimensions are in mm. (c) The
experimental setup for fatigue testing.

The specimens are mounted on the fatigue testing machine using custom grips and
are subjected to a periodic tensile-tensile fatigue loading with a mean load of 3 kN and a
stress ratio (i.e., minimum stress divided by maximum stress) of 0.5 at a frequency of 20 Hz.
The maximum stress (nominal) induced in the specimens is 109.2 MPa. Since the cross
sectional area for all the specimens is the same across the two geometries, the maximum
nominal stress induced is the same. However, due to the stress concentrations, both sets of
specimens show different instances of crack initiation and fatigue lives. On average, the
V-notch specimens, exhibit a longer fatigue life of 56,057 cycles as compared to 41,681 cycles
by the U-notch. The crack detection by the confocal microscope is achieved on an average at
the 25,500th cycle (45% of the fatigue life) for the V-notch, and at 15,500th cycle (37% of the
fatigue life) for the U-notch. Owing to this distribution of the fatigue life, the experiments
can be termed as operating in the medium to high cycle fatigue domain. Experimental data
are collected during the testing phase from the confocal microscope and ultrasonic sensors.
The tests are conducted through an MTS controller using an automated routine from the
Multi-Purpose TestWare® software suite. The ultrasonic transmitter and receiver have been
placed at fixed locations for all experiments on the specimens. The ultrasonic sensors have
a base frequency of 10 MHz and are sampled at 100 MHz.

2.2. Binary Classification of the Ultrasonic Time-Series Data Using Confocal Microscope

During the experiments, ultrasonic signals are continuously recorded until specimen
failure. For both types of specimen, roughly 30,000 signals are collected per specimen.
When these signals are concatenated together sequentially, a visible attenuation is observed
as shown in Figure 3a,b for both types of specimen. However, the exact instance of crack
appearance cannot be determined solely with the ultrasonic signals. Additional information
is, therefore, needed to corroborate the failure.
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Figure 3. Concatenated signals during the entire duration of fatigue testing for a representative
(a) U-notch specimen and (b) V-notch specimen. Representative initiation of fatigue cracks inside
the notch root for (c) U-notch specimen and (d) V-notch specimen, and (e) an actual image from the
V-notch. The red arrows in (c–e) represents the locations of short cracks. Binary classification into
healthy and cracked labels of the ultrasonic signals for (f) U-notch specimen and (g) V-notch specimen.

The confocal microscope is focused on the notch root [18]. The microscope can reliably
detect a crack that has a resolution of 3 µm in the form of a crack opening displacement.
During the experiment, through continuous monitoring, the microscope can identify the
exact instance of emergence of a short crack in the fatigue damage process as shown in
Figure 3c–e. By mapping this information of crack emergence to the ultrasonic signals, a
clear bifurcation between a ‘healthy’ and ‘cracked’ state can be established. Accordingly,
the two representative ultrasonic signals from Figure 3a,b are now shown with ‘healthy’
and ‘cracked’ labels in Figure 3f,g. In Figure 3g, the sudden drop (or break) in the signal
at the point of bifurcation is a random occurrence. Similar breaks are also seen before
the bifurcation and cannot be correlated to the occurrence of the crack (or the detection
therein). A total of 458,655 signals are accrued through the testing of 15 U-notch specimens.
For labeled data, the distribution of the signals between the two classes is well balanced,
with 45% healthy and 55% cracked signals. Similarly, a total of 448,939 signals are accrued
through the testing of 15 V-notch specimens. For labeled data, the distribution of the signals
between the two classes is well balanced, with 45% healthy and 55% cracked signals.
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3. Design of Deep Neural Networks (DNNs) and Transfer Learning Methodology

To begin with, a training and testing split of 80–20% of the available data from both
types of specimen is created as shown in Step 1 of Figure 4. Following this step, a baseline
DNN is trained for each type of specimen as shown in Step 2 of Figure 4. After training these
baseline DNNs for individual specimen geometries, the next step is to study whether they
can be retrained for other specimen geometry. In general, the retraining can be performed
with a combination of some new retraining data and some layers of the existing baseline
DNN. Since no prior understanding this retraining procedure is available in literature for
such problems, a parametric formulation is setup by varying the amount of data needed
for retraining and the number of retrained layers of the baseline DNN. A schematic of this
parametric procedure is shown in Figure 5 for retraining the baseline U-notch DNN with
V-notch data. The percentage of training data is varied from 10% to 80% of all data, and the
testing data is conversely varied from 90% to 20%. The number of retrained layers is varied
from 1 to 7 (all layers). Similar retraining analysis is also performed for baseline V-notch
DNN with U-notch data. Therefore, the study sets up 56 cases for each specimen leading to
128 different DNNs across both specimen geometries.

Since the goal of all classifiers discussed in this paper is binary classification, their
performance is best represented using a confusion matrix that focuses on three metrics:
accuracy, sensitivity (true positive rate), and specificity (true negative rate). The accuracy,
as reported in this article, is an average of the sensitivity and specificity. In contrast to
the typical positive-negative terminology used in machine learning literature, a positive
occurrence in this situation is equivalent to the cracked state, and vice versa. As a result,
sensitivity is the ratio of correctly diagnosing genuinely ‘cracked’ data, whereas specificity
is the percentage of correctly recognizing the ‘healthy’ data.

Figure 4. Overview of the data analysis methodology split into two steps: (i) Step 1: dataset bifurcation
and (ii) Step 2: design and development of baseline DNNs.
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Figure 5. Overview of the parametric retraining to enable transfer learning. These DNNs have the
original baseline U-notch DNN as the starting structure. Then, a fraction of the V-notch data is used
to selectively train a pre-determined number of layers. Finally, the DNNs are tested on V-notch
testing data to investigate the efficacy of transfer learning to enable fatigue damage detection of
V-notch specimens.

4. Results and Discussion

All analyses are performed in TensorFlow using Python. The computations are con-
ducted on an Intelr Xeonr Gold 5217 CPU @ 3.00 GHz with a NVIDIA Quadro RTX
6000 GPU.

4.1. Performance of the Baseline DNNs

The fully connected DNN network (Step 2 in Figure 4) which consists of seven dense
hidden layers and one dense output layer with a single neuron, receives raw, unprocessed
signal data as input. The hidden layers use the Rectified Linear Unit (ReLU) activation
function, while the output layer uses a sigmoid activation function. The model is inspired
by the encoder-decoder architecture [20] where inputs are compressed to a 2-D latent space,
and then expanded again to reconstruct the original input. Logistic regression is carried
out on the reconstructed output. Since the task is a mutually-exclusive binary classification
problem, binary cross entropy is used as the loss functions. A single sigmoid neuron in
the output layer is used because it additionally evaluates the probability of the output
being 1 (‘cracked’). While training the DNN architecture for each specimen geometries, the
corresponding data is used. The hyperparameters for the model, i.e., the number of neurons
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for each hidden layer, and the learning rate are selected through a grid-search algorithm
using KerasTuner [21] to ensure optimality in terms of accuracy and speed of convergence.

The proposed DNN architecture consists of seven layers with 428, 132, 96, 2, 96, 132,
and 428 neurons and has a a learning rate of 0.0004 for the Adam optimizer. The vast volume
of data ensures that the computation rarely encounters over-fitting and, hence, techniques
like L2 regularization and dropouts have not been used in the DNNs. The U-notch DNN
exhibits an accuracy of around 96.1%, with a sensitivity of 96.8% and a specificity of 95.6%.
Similarly, the V-notch DNN network achieves an overall accuracy of 95.8%, a sensitivity
of 95.05%, and a specificity of 95.93%. These performances are observed to be consistent
for both specimen geometries. This performance is a significant improvement (∼10%)
as compared to symbolic analysis-based approach on similar data [19]. The confusion
matrices for the baseline DNN networks are shown in Figure 6. These accuracies now serve
as the reference against which the transfer-learnt DNNs are to be evaluated as discussed in
Section 4.3.

Figure 6. Confusion matrix for the baseline (a) U-notch DNN and (b) V-notch DNN.

4.2. Transductive Results

After the baseline DNN results are obtained, a transductive analysis is performed. The
baseline DNN trained with the U-notch training data is tested with the V-notch testing
data without any retraining. Similarly, the baseline DNN trained with the V-notch data
is tested with the U-notch testing data. The transductive DNNs are schematically shown
in Figure 7a,b. The analysis shows a significant loss in performance for both notches.
When the baseline U-notch DNN is tested on the V-notch testing data, the accuracy is
60.9%. Similarly, when the baseline V-notch DNN is tested on the U-notch testing data,
the accuracy is 56.99%. The poor performance in Figure 7c,d is balanced across both notch
geometries with low magnitudes of sensitivity and specificity as well. These results from
the transductive analysis indicate the need to develop better learning methods to enable a
unified damage detection framework that would work across any notch geometries.

4.3. Effect of Transfer Learning
4.3.1. Impact of the Percentage of Training Data

After developing the baseline DNNs, the impact of training data volume on the
performance metrics is investigated. An illustration of the baseline U-notch DNN is shown
in Figure 8a. Figure 8b shows the schematic of a transfer-learnt DNN whose first two layers
are retrained with 30% V-notch training data. Hence, the DNN in Figure 8b is originally
developed for U-notch geometry and is being retrained for the V-notch geometry using a
fraction of the V-notch data.
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Figure 7. Overview of the transductive analysis framework: (a) the baseline U-notch DNN is
tested on the V-notch test data and (b) the baseline V-notch DNN is tested on the U-notch test data.
(c) Confusion matrix for (a). (d) Confusion matrix for (b).

Figure 8. (a) Structure of the baseline U-notch DNN developed using U-notch training data. (b) The
baseline U-notch DNN with the first two layers retrained with 30% of the V-notch training data.

Figure 9 shows the variation observed across both U- and V-notch geometries for
training data ranging from 10% to 80%. It is to be noted that the performance in Figure 9a–c
are for retraining the baseline U-notch DNN with V-notch data to make fatigue damage
detection of the V-notch specimens. Figure 9d–f are for retraining the baseline V-notch
DNN with U-notch data to make fatigue damage detection of the U-notch specimens.
The accuracy plots (Figure 9a,d) demonstrate a gradual increase in performance with an
increase in the percentage of training data. The variance of the distribution also reduces
while moving towards more data. A similar, albeit less prominent improvement with more
variance in performance is observed for sensitivity and specificity. The highest reported
values for accuracy, sensitivity and specificity for V-notch data are 95%, 93.42%, and 95.98%,
respectively. This is quite close to the performance of the baseline DNN for V-notch data.
Interestingly, even with as low as 20% training data, accuracy, sensitivity and specificity
values are found to be above 91%—just about 2% less than the performance metrics of the
baseline DNN.
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Figure 9. Effect of the training data volume when the baseline U-notch DNN is retrained with V-notch
data to enable a prediction for V-notch: (a) accuracy, (b) specificity, and (c) sensitivity. Effect of the
training data volume when the baseline V-notch DNN is retrained with U-notch data to enable a
prediction for U-notch: (d) accuracy, (e) specificity, and (f) sensitivity. All the distributions indicate
the variation for the corresponding training data across different retrained layers. For example: The
box plot for 10% training data in (a) is a distribution of seven different accuracies corresponding to
different number of re-trained layers.

4.3.2. Impact of the Number of Retrained Layers

Figure 10 shows the performance variation observed with an increase in the number
of retrained layers. Incredibly, as opposed to the percentage of training data, increasing
the number of retrained layers does not seem to provide any improvement in perfor-
mance across all the three metrics. However, accuracy seems to have the most consistent
distribution across the number of retrained layers.

By combining the findings from Sections 4.3.1 and 4.3.2, a composite outlook is now
presented to provide better insight into their inter-dependence. Figure 11a–c are obtained
by retraining the baseline U-notch DNN using V-notch data to enable fatigue damage detec-
tion of the V-notch geometries. Figure 11d–f are obtained by retraining the baseline V-notch
DNN using U-notch data to enable fatigue damage detection of the U-notch geometries. As
expected, accuracies are the highest (95% for V-notch and 96% for U-notch) at the bottom
right corner i.e., for 7 retrained layers and 80% training data. While good performances
(>90%) are reported across the board for all three metrics, high-performance combinations
are observed to require a very low number of retrained layers, and a moderate amount of
training data. Retraining less layers drastically reduces the number of trainable parameters
in the deep learning model, thus requiring a lot less computing power and training time.
Moreover, the model’s ability to work efficiently without requiring a lot of data, empha-
sizes its usability in critical cases where it may not be possible to obtain extensive data.
These findings are quite encouraging, showing that the above methodology can be readily
deployed online across the industry, with minimum compromise in performance.
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Figure 10. Effect of the number of retrained layers when the baseline U-notch DNN is re-trained
with V-notch data to enable a prediction for V-notch: (a) accuracy, (b) specificity, and (c) sensitivity.
Effect of the number of the retrained layers when the baseline V-notch DNN is retrained with U-
notch data to enable a prediction for U-notch: (d) accuracy, (e) specificity, and (f) sensitivity. All the
distributions indicate the variation for the corresponding retrained layers across different percentage
of training data. The box plot for 1 retrained layer in (a) is a distribution of eight different accuracies
corresponding to different percentage of training data.

Figure 11. A composite effect of the number of retrained layers and percentage of training data
when the baseline U-notch DNN is re-trained with V-notch data to enable a prediction for V-notch:
(a) accuracy, (b) specificity, and (c) sensitivity. A composite effect of the number of retrained layers
and percentage of training data when the baseline V-notch DNN is retrained with U-notch data to
enable a prediction for U-notch: (d) accuracy, (e) specificity, and (f) sensitivity.



Metals 2022, 12, 1849 12 of 13

5. Conclusions and Future Work

This paper developed a framework to detect fatigue crack initiation in the short
crack regime using DNNs for Al7075-T6 specimens with different notch geometries. An
ensemble of time series sensor data, collected from a computer-instrumented and computer-
controlled fatigue-test apparatus, has been analyzed by using DNNs for a U-notch and a
V-notch. This data-driven method has been further extended by combining the concepts of
transfer learning and DNN for fatigue damage detection which yields an accuracy of 95.06%
and 93.84% for U-notch and V-notch, respectively. The transfer learning methodology is
further probed with a parametric analysis by varying the number of retrained layers and
the amount of training data. Therefore, pending further experimental and theoretical inves-
tigation, this paper suggests the potential data-thrifty quality of combining the concepts
of transfer learning and DNN for fatigue damage detection. While there are many areas
of research to enhance the work reported here, the following topics are suggested to be
conducted in the near future:

1. Verification of the proposed method with additional experimental data, where knowl-
edge of micro-crack emergence is available through different measurement methods.

2. Usefulness of the proposed method in reducing the testing requirement of specimens
made of expensive materials [22] or fabricated through emerging manufacturing
processes [23].

3. Integration of the current framework with physics-informed neural networks to enable
mechanistic interpretation of the fatigue failure.
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