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Deep Reinforcement Learning Control of a Boiling
Water Reactor

Xiangyi Chen and Asok Ray , Life Fellow, IEEE

Abstract— This article presents (nonlinear) control system
synthesis for a boiling water reactor (BWR) by using artificial
intelligence (AI)-based reinforcement learning (RL), where the
pertinent algorithm is deep deterministic policy gradient (DDPG).
The BWR model, used in this article, exhibits limit cycling
and/or chaotic behavior in different regions of operation. The
performance of the RL control system is compared with that
of a control system synthesized by the standard H∞ theory.
The results of comparison show that the RL control system
outperforms the H∞ control system for disturbance rejection,
stability under perturbation, and set-point tracking in a majority
of the test cases.

Index Terms— Boiling water reactor (BWR) control, deep
deterministic policy gradient (DDPG), reinforcement learning
(RL).

NOMENCLATURE

a Agent action (scalar-valued in this work).
aL B Lower bound of the action space.
aU B Upper bound of the action space.
ai Agent action at step i (e.g., i = t, t + 1).
a� Agent action value generated by a policy depending

on the environment state s�.
ãt Agent action with additive noise at step t .
At Agent action random variable at step t .
A Action space of an MDP.
B Minibatch of interactions experiencing.
c Excess delayed neutron precursor concentration, nor-

malized to steady-state neutron density.
C Neutron precursor concentration.
D Coefficient of the Doppler effect of fuel temperature.
gm Gain factor of CRDS servomotor.
Gt Return of the rest of an episode after step t .
Gm CRDS servomotor transfer function.
Gn NPMS fission chamber transfer function.
k f Position feedback gain of CRDS.
kn Gain factor of NPMS fission chamber.
km Reactivity gain factor of CRDS position.
K Size of a minibatch of interaction experiences.
L Number of tests per policy evaluation.
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M Total number of episodes used in agent training.
n Excess neutron density, normalized to steady-state

neutron density.
N Neutron density.
nref Set point of excess neutron density.
P Environment dynamics of an MDP.
q Value of a state–action pair.
q̂ Approximated value of a state–action pair (s, a).
q̂ � Approximated value of a state–action pair (s�, a�).
qπ Value function of a state–action pair under policy π .
r Reward value generated by an environment.
ri Reward value generated by an environment at step i

(e.g., i = t, t + 1).
R Replay buffer.
Ri Reward random variable at step i (e.g., i = t, t+1).
Ra

t+1 Reward random variable component of minimizing
control rod movement at step t + 1.

Rc
t+1 Reward random variable component of exploration

restriction at step t + 1.
Rd

t+1 Reward random variable component of difference
between the neutron density and set point at step
t + 1.

R Reward space of an MDP.
s 9-D state vector: s1, s2, . . . , s9 and also (scalar)

Laplace transform variable.
si Environment state value at step i .
s� Environment state after one-step state transition.
St Environment state random variable at step t .
St+1 Environment state random variable at step t + 1.
S State space of an MDP.
t Continuous time in (1)–(5) and (8)–(10) when t is a

subscript, it is a discrete-time step.
T Total number of interactions per episode.
Te Excess fuel temperature.
u Control command.
w Parameter set for a value neural network.
w− Parameter set for a target value neural network.
wa Weight of a reward component for minimizing the

control rod movement.
wd Weight of the reward component of a difference

between the neutron density and the set point.
W Constraint penalty.
x Internal state of NPMS fission chamber.
y Readout of NPMS fission chamber.
yi Readout of NPMS fission chamber at step i (e.g.,

i = t, t + 1).
z Control rod position.
żi Control rod speed at step i (e.g., i = t, t + 1).
α1 Learning rate for a value neural network.
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α2 Learning rate for a policy neural network.
β Delayed neutron precursors fraction.
γ Discount rate.
δ Temporal difference error.
θ Set of parameters of a policy neural network.
θ− Parameter set of a target policy neural network.
κi Coefficients in the March-Leuba BWR model (i =

1, 2, 3, 4).
λ Decay constant for delayed neutron precursors.
	 Neutron generation time.
μ Ratio of ξ and ξ0.
ξ Coefficient related to the void reactivity and heat

transfer in March-Leuba BWR model.
ξ0 Critical value of ξ for BWR instability.
π Policy in an agent.
π∗ Set of optimal policies.
ρ Excess overall reactivity.
ρα Excess void reactivity feedback.
ρu Excess reactivity inserted by control rod.
σ Standard deviation of action Gaussian noise.
τ Soft update ratio for target neural networks.
τm Time constant of CRDS.
τn Time constant of NPMS fission chamber.

ACRONYMS

AI Artificial intelligence.
A3C Asynchronous advantage actor critic.
BWR Boiling water reactor.
CRDS Control rod-drive system.
DDPG Deep deterministic policy gradient.
ILC Iterative learning control.
NPP Nuclear power plant.
MDP Markov decision process.
MLP Multilayer perceptron.
MPC Model predictive control.
NPMS Neutron power measurement system.
OC Optimal control.
PID Proportional-integral-derivative.
POMDP Partially observable Markov decision process.
RL Reinforcement learning.
RLC Reinforcement learning control.
RNN Recurrent neural network.
SAC Soft actor critic.
TD Temporal difference.

I. INTRODUCTION

THE BWR nuclear plants are often subjected to large
nonlinearities, especially when the reactor power is high

and the coolant flow rate is low [1]. The plant and its controller
together could behave as a nondissipative system, where large
power oscillations may occur. It is possible to encounter
instability events occurring in BWR power plants [2], which
suggests that the conventional PID controllers are not suitable
for BWR control in highly nonlinear regions. To circumvent
this instability problem, numerous controller design methods
have been investigated; examples are H∞ control [3], fuzzy

logic control [4], and adaptive predictive control [5], to name
a few. All these methods have the potential to be used for
synthesis of reactor control systems to accommodate the
instability challenge.

In recent years, RL and AI have attracted the attention of
both researchers and practitioners for controller design. Inves-
tigations in some engineering applications show that a con-
troller synthesized by RL may often exhibit better performance
than those synthesized by conventional methods. For example,
in smart robotics, RL has shown considerable performance
improvement compared to PID, MPC, and ILC [6].

Research in RL is a vast area in which AI, control theory,
and other disciplines have contributed. In early stages, applica-
tions of RL in AI and OC have been studied separately where,
in the OC area, RL is also commonly called approximate
dynamic programming. From the control-theoretic perspec-
tives, research in RL can be classified as policy iteration, value
iteration, and actor–critic that are usually online and on-policy
methods; the value function not only provides the optimal
policy but also is a Lyapunov function [7] that establishes the
global asymptotic closed-loop stability [8]. While RL using
AI is being developed, more innovative methods have used
deep neural networks as function approximators, and many
algorithms are off-policy methods that use experience replay
for sampling efficiency. The problems solved by AI-based
RL algorithms are usually discount problems that the control
policies are trained to maximize the cumulative discounted
return. The benefit of using discounted return is that the algo-
rithm convergence is guaranteed; however, the value function
is not a Lyapunov function anymore; therefore, the stability
is not guaranteed [9]. For controller design, the closed-loop
stability is the foremost consideration. Thus, the closed-loop
stability is encoded in the reward function as a performance
index, in which the AI-based RL control policy is trained to
maximize. The two branches, AI and OC, of the RL discipline
are also merging, as reported by Bertsekas [10].

In the nuclear engineering community, the theory of RL
has been explored for a few applications; apparently, the first
application is on autonomous control. The algorithms of deep
Q-learning and A3C have been studied to replace the human
operators for the tasks of heating up and power increase
in NPPs [11], [12]; the algorithm of SAC has also been
proposed to manage emergency situations in NPPs [13]. The
abovementioned algorithms (i.e., deep Q-learning, A3C, and
SAC) are based on the AI concepts. The second application
by Zhong et al. [14] is on OC, which uses the RL concept
for controller synthesis, where an iteration-based integral RL
algorithm is proposed for reactor power tracking control.
In this work, the cost function and the control policy are
approximated by high-order polynomials. In another work
reported by Dong et al. [15], a multilayer perception (MLP)-
based RL controller is proposed for optimizing the thermal
power response of the nuclear steam supply system by gener-
ating the optimal set points. In this work, an MLP-based state-
observer is used for system identification and an approximated
OC is obtained by solving the algebraic Riccati equation. Both
RL algorithms in [14] and [15] belong to the class of control-
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theoretic methods. The third application is on an optimization
problem of system design [16], which is not related to plant
control.

Apparently, the application of RL using the state-of-the-
art AI tools has not yet been investigated to synthesize a
controller for direct reactivity control. Possible reasons are that
the analysis and synthesis of such control systems are much
more involved than those of the existing methodologies such as
H∞ control [3]. In addition, there are many hyperparameters
of the AI-based RL, which may need to be tuned, and
a systematic way to determine the hyperparameters is yet
to be developed. Nevertheless, a combination of RL-based
control and the state-of-the-art AI has the potential of yielding
superior dynamic performance, which will be investigated in
this article, as succinctly discussed next.

In this current article, the concept of DDPG [17], [18] is
applied to synthesize a BWR control system for reactivity
control; the DDPG is an online and off-policy method. The
synthesis algorithm is model-free and is capable of accommo-
dating system uncertainties; therefore, the algorithm is suitable
for both linear and nonlinear regions of the reactor system.
This work serves as initial research for AI-based RL control
of process variables.

This current article compares the above RL control system
with an H∞ control system [3]. This comparison is made in
standard ways with respect to various system parameters, e.g.,
by quantifying the performances of: 1) set-point tracking with
a step change in the set point and 2) disturbance rejection
with a step reactivity injection. Beyond that, since the reactor
parameters in real-life plants are not static, the transient
operations (caused by either set-point step change or set-
point ramping) are simulated with system perturbation. These
analyses provide an empirical assessment of robustness of
the controllers under consideration and test their closed-loop
system stability; however, there could be situations, under
which the controller may suffer from loss of performance.
Nevertheless, these initial assessments suggest a positive
potential of RL control using an AI approach, which should
draw the attention of the nuclear engineering community for
further investigation to have a deeper understanding of both
system performance and stability and devise proper methods
to enhance the interpretability and predictability of the control
system using deep neural network.

This article is organized into four sections, including the
present section. Section II presents the BWR model of
March-Leuba [19] and its dynamic characteristics as well as
the neutronic power measurement and CRDSs developed by
Suzuki et al. [3]. Section III focuses on the synthesis of RL
control and also the performance comparison between the
RL control and H∞ control. This article is summarized and
concluded in Section IV along with suggested topics of future
research.

II. NONLINEAR DYNAMICAL SYSTEM OF BWR

This section presents a dynamic model of BWR and a model
of the neutronic power measurement and CRDSs, on which
both RL and H∞ control laws have been synthesized.

A. BWR Nuclear Plant Model

The BWR model, developed by March-Leuba [19], [20],
has been used by many researchers for instability analysis. The
point-kinetics equations, containing the excess neutron density,
n(t), normalized to the steady-state neutron density, and the
one-group excess delayed neutron precursor concentration,
c(t), also normalized to the steady-state neutron density, are

dn(t)

dt
= ρ(t)− β

	
n(t)+ λc(t)+ ρ(t)

	
(1)

dc(t)

dt
= β

	
n(t)− λc(t) (2)

where n(t) and c(t) are defined as: n(t) � (N(t)−N |ss/N |ss )
and c(t) � (C(t) − C|ss/N |ss) respectively, and |ss means at
a steady state.

The excess fuel temperature, defined as Te(t) � Te(t)−Te|ss ,
is calculated as

dTe(t)

dt
= κ1n(t)− κ2Te(t). (3)

The excess void reactivity feedback, defined as ρα(t) �
ρα(t)− ρα|ss , is modeled as

d2ρα(t)

dt2
+ κ3

dρα(t)

dt
+ κ4ρα(t) = ξ Te(t). (4)

The excess overall reactivity feedback is the sum of the
feedback of excess void reactivity and fuel temperature

ρ(t) = ρα(t)+ DTe(t) (5)

where the parameter D represents the Doppler effect of fuel
temperature. The pertinent BWR model parameters are listed
in Table I, which have been evaluated by functionally fitting
the transfer function of the stability test 7N of Vermont Yankee
reactor [19].

It is seen from (1) that the nonlinearity is introduced
through the term ρ(t)n(t), where the reactivity ρ(t) depends
on n(t). The parameter ξ , which is related to the void reactivity
and heat transfer coefficients, determines the reactor stability.
At different values of ξ , compared to its critical value ξ0 =
−3.7× 10−3, the system evolves from a stable fixed point to
stable limit cycles and then to chaos [19]. To see the transitions
to various dynamical behaviors, the bifurcation diagram [21],
[22] of extrema of n(t) at various values of the parameter
μ � ξ/ξ0 is plotted in Fig. 1. The bifurcation diagram is
plotted with 1400 different values of μ, uniformly distributed
from 0.9 to 2.3. The asymptotic behavior of the extrema is
simulated for 1000 s with a step size of 0.001 s for each
μ by using the fourth-order Runge–Kutta integration method.
During the simulation, the initial value of n is set to 0.1, while
other state variables are set to 0. The second half (i.e., 500–
1000 s) of the trajectory for each μ value is retained, which
reflects the asymptotic behavior of the dynamical system; the
first half (i.e., 0–500 s) of the trajectory for each μ value
is discarded because the transients generated during this time
interval are due to the (spurious) initial conditions. The points
in the trajectory that are greater or smaller than both its last
and next time step neighboring points are recorded as extrema.
It is seen from Fig. 1 that the system attains a stable fixed
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TABLE I

BWR MODEL PARAMETERS [19]

Fig. 1. Bifurcation diagram of extrema of n(t).

point if μ ≤ 1. When 1 < μ � 1.65, limit cycles are formed
through pitchfork bifurcations. When μ � 1.65, (possible)
chaotic behavior is observed.

B. Neutronic Power Measurement and CRDSs

As an extension of the BWR model presented in
Section II-A, models of the neutronic power measurement
system (NPMS) and the CRDS developed by Suzuki et al. [3]
are used for feedback control. The servomotor of the CRDS
is modeled as an integral element

Gm(s) = gm

s
(6)

where the constant gm is assumed to be 0.4.
The first-order lag model is used to represent the dynamics

of the fission chamber and instrumentation electronic circuit

Gn(s) = kn

τns + 1
(7)

where the gain kn is assumed to be 1.0 and the time constant
τn is assumed to be 0.1 s.

The above models of NPMS and CRDS are represented in
the state-space setting, where all state variables are scalars, as

dx(t)

dt
= n(t)− x(t)

τn
, y(t) = kn x(t) (8)

dz(t)

dt
= u(t)− z(t)

τm
, ρu(t) = kmz(t) (9)

where x(t) represents the internal signal of the fission chamber
and instrumentation electronic circuit; y(t) is the readout value
of the fission chamber and instrumentation electronic circuit
such that y(t) represents the measured excess neutron density,
which is derived from the measured neutron flux and its
reference steady-state value; z(t) is the control rod position;

u(t) is the control command (i.e., the desired position); and
ρu(t) is the reactivity inserted by the control rod, which is
proportional to the control rod position.

It is assumed that the position feedback gain, k f , of the
CRDS is 2.5, and then, the parameters km = (1/k f ) = 0.4 and
τm = (1/gmk f ) = 1. A more detailed description of NPMS
and CRDS is given by Suzuki et al. [3].

With the control rod reactivity compensation, the total
reactivity in (5) becomes

ρ(t) = ρα(t)+ DTe(t)+ ρu(t). (10)

III. CONTROL SYSTEM SYNTHESIS

This section discusses certain aspects of BWR control
system synthesis based on an AI-based RL algorithm, called
DDPG [17] as well as the performance comparison between
the RL and H∞ control systems.

A. RL and Optimal Control

This section presents the basic concepts of the RL and these
concepts are used in the construction of the DDPG algorithm;
a comprehensive introduction to the RL can be found in [23].
In general, the RL scheme is used to select optimal or
suboptimal actions (e.g., control commands) via interactions
between the agent (i.e., controller) and the environment (i.e.,
plant) to circumvent the additional task of system identification
implicitly, and RL control has the system uncertainty account-
able. The framework of the interaction between the agent and
the environment is modeled as an MDP [24] as defined next.

Definition 1 (MDP): An MDP is a quadruple (S,A,R,P),
where the following hold.

1) S is a set of states called the state space.
2) A is a set of actions called the action space.
3) R is a set of rewards called reward space.
4) P : S×R×S×A→ [0, 1] for discrete S,A,R, or →
[0,+∞) for continuous S,A,R; and P(s�, r |s, a) is
called the environment dynamics, which defines the con-
ditional probability, P(St+1 = s�, Rt+1 = r |St = s, At =
a), of state and reward values given the immediately
preceding state and action.

In Definition 1 as well as in the following contexts, the
subscript, t , is time step index instead of time in seconds.
Based on Definition 1, the state-transition probability, the
reward generating probability conditioned on a state–action
pair, and the expected reward for a state–action pair can be
derived. In the following, these functions are defined for the
case of discrete random variables, which can be modified to
the case of continuous random variables. The state-transition
probability is defined as

p(s�|s, a) := P(St+1 = s�|St = s, At = a)

=
∑
r∈R

P(s�, r |s, a). (11)

The reward generating probability, given the previous state
and action, is defined as

p(r |s, a) := P(Rt+1 = r |St = s, At = a)

= ∑
s �∈S P(s�, r |s, a). (12)
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The expected reward for a state–action pair is defined as

r(s, a) := E[Rt+1|St = s, At = a]
=

∑
r∈R

r p(r |s, a). (13)

The state-transition probability, under the state St = s and
an action At = a, determines what is the probability to reach
the next state St+1 = s�. The expected reward for state–action
pair is a function mapping the current state St = s and the
chosen action At = a to the expectation value of the reward to
be obtained. Note that the reward is obtained simultaneously
as the next state has been generated.

The agent uses the state, St , from the environment to deter-
mine its action, At , via a function called policy. The policy
maps the state to a deterministic action or a stochastic action
drawn from a probability distribution of actions. Once the
action, At , is applied to the environment, the state, St , of the
environment transits to a new state St+1, and simultaneously,
a reward, Rt+1, is generated.

The environment dynamics, P , is the rule to generate the
new state according to (11) and the reward according to (12).
The cumulative reward obtained, starting from current step t
through an episode of the agent and environment interactions,
is called return, Gt , defined as

Gt := Rt+1 + Rt+2 + · · · + RT (14)

where T is the total number of interactions per episode that
starts at t = 0. For AI-based RL algorithms, an augmented
return is more commonly used instead of (14) for both
continuing (infinite horizon) tasks and episodic (finite time
horizon per episode) tasks

Gt = Rt+1 + γ Rt+2 + · · · + γ T−t−1 RT =
T∑

k=t+1

γ k−t−1 Rk

(15)

where T is allowed to be a positive integer or ∞; when
T is a positive integer, γ ∈ [0, 1], and when T is ∞,
γ ∈ [0, 1). Equation (15) is called discounted return, and γ
is calleddiscount rate. For continuing tasks, the reward space
needs to be bounded for guaranteed boundness of the return.

An optimal policy rules the actions that maximize the
expected return in each step. The value function maps the
state–action pair to the expectation value of the return, Gt ,
averaged over all possible future transitions for the given
current state and action. The value function of a state–action
pair under a policy, π , is defined as

qπ (s, a) := Eπ [Gt |St = s, At = a]. (16)

The set of optimal policies in a policy space is expressed as

π∗ = {π |qπ(s, a) ≥ qπ �(s, a) for all π � and s ∈ S, a ∈ A}.
(17)

The task of an RL algorithm is to find one of the optimal (or
suboptimal) policies. In Section III-B, the DDPG algorithm is
presented, which is used to search for the (sub)optimal policy
in this article.

B. DDPG Algorithm

This section presents the principles of the DDPG algo-
rithm [17], [18], and the associated pseudocode is given in
Section III-E.

The DDPG algorithm, used in this article, deals with
continuous-action and continuous-space control problems. It is
an actor–critic method of RL, which consists of a policy
function parameterized by a neural network (actor) and a value
function parameterized by another neural network (critic).
The actor observes the system state and sends the action
to the system as a command signal. The critic receives the
action generated by the actor and the system state to evaluate
the action so as to guide the actor to generate a (possibly)
better action with the given state. The actor is denoted by
a = π(s; θ), where a is the output action, s is the observed
state, and θ is the set of parameters of the neural network.
The critic, q(s, a;w), with the set of parameters w, takes a
and s as inputs and predicts the goodness of the action based
on the observed state. The goodness is the value defined in
(16), the higher the better. The actor and critic are improved
(via updating the parameters θ and w) simultaneously during
the interactions with the environment. In general, the actor can
generate better actions, and the critic can give more precise
evaluation of the actions.

A single interaction with the environment in the MDP setup
is a quadruple (st , at , rt+1, st+1), where st and at are the
observed state and action made at time step t , respectively;
rt+1 and st+1 are the reward and the observed state at the time
step t + 1 after the internal state transition in the environment
is completed. After each interaction, two important operations
are conducted by the agent as presented in the following two
paragraphs.

The first operation is to push the newly generated quadruple
to a database called replay buffer. When pushing a quadruple
into the replay buffer, the time step index t is disregarded;
thus, the instant of a quadruple is denoted as (s, a, r, s�).

The second operation is to pull an arbitrarily selected
minibatch B of quadruples, {(s, a, r, s�) j }Kj=1, from the replay
buffer to train the actor and critic. For each pulled quadruple
(s, a, r, s�), the critic predicts the value for (s, a): q̂ =
q(s, a;w), while the actor generates the action for s�: a� =
π(s�; θ), and then, the critic makes value prediction for (s�, a�):
q̂ � = q(s�, a�;w). With the results of the above calculations,
a TD error δ = q̂ − (r + γ q̂ �) is obtained, which quantifies
the prediction accuracy of the critic. In the TD error, the TD
target (r + γ q̂ �) is a guess of the true value for (s, a) that is
assumed to be more accurate than q̂ because it is one step
closer to the true value by involving the ground truth of r .
Thus, the critic is encouraged to make predictions closer to
the TD target to reduce the TD error. This update is achieved
by a one-step gradient descent (or any other optimizer) with
respect to the mean square TD error as

w← w − α1∇w

1

|B|
∑

(s,a,r,s �)∈B

δ2(s, a, r, s�; θ,w) (18)

where α1 is the respective learning rate. The actor should also
be updated during training to generate better actions. Since
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the objective of the agent is to maximize the expected return,
which is estimated by the critic, the actor should be updated
to generate the actions evaluated by the critic with higher
values. Conducting this update means that the actor exploits
the evaluation of the critic no matter whether the critic is
correct or not. This update is achieved by a one-step gradient
ascent (or any other optimizer)

θ ← θ + α2∇θ

1

|B|
∑
s∈B

q(s, π(s; θ);w) (19)

where α2 is the respective learning rate.
It is assumed that the value function can converge during

iterations and the converged value function has bounded global
maximum; otherwise, the problem cannot be solved by RL.
The above training process can be summarized as follows.

Given the current actor, the critic is updated to
predict more accurate values through learning from
TD errors, while the actor is updated so that the
current critic can provide a higher evaluation of the
actor. The update of the actor may alter the TD error
because a� is updated along with the actor update
even though s could be the same; in this case, the
critic needs to learn the new accurate prediction. The
driving force behind the above iterations to train an
optimal policy is the ground truth r , distributed in
the state–action space.

One assumption made above in the TD error is that the TD
target (r + γ q̂ �) is a better estimate than q̂. This manner of
learning a guess from a guess is called bootstrapping [23],
which may suffer from bias and instability. The problem can
be partially resolved by using a different neural network to
evaluate q � so that the target values are constrained to change
slowly during iteration [17]. These neural networks are called
target actor and target critic because they are designed to
generate the TD target (r + γ q̂ �) by evaluating q �. The target
actor and target critic, denoted by π(s; θ−) and q(s, a;w−),
have the same structure as the actor and critic but have
different values of the parameters. In each training step, the
parameters of the target actor and target critic are soft-copied
from the actor and critic as

w− ← τw + (1− τ )w− (20)

θ− ← τθ + (1− τ )θ− (21)

where τ ∈ (0, 1] is a weight that is assigned with a small value
to have the target values change slowly during iterations.

It is seen that the target actor and target critic depend on the
actor and critic. Therefore, this method cannot resolve the bias
problem completely. In practice, the target neural networks
are widely used and show good improvement for the training
process. With the target neural networks, the following TD
error is used:

δ = q(s, a;w)− (r + γ q(s�, π(s�; θ−);w−)). (22)

C. Exploration and Exploitation

To train the neural networks with better generalization,
the state–action space needs to be explored. In other words,

the replay buffer should contain a variety of experiences
evenly distributed in the state–action space so that a (possible)
overfitting can be avoided. However, exploitation can make
the learning process faster, where the rich experience around
(sub)optimal trajectories often helps the agent to produce
better actions when it is on the correct track. To this end,
during training, Gaussian noise is added to the actions, while
the agent interacts with the environment for a tradeoff between
exploration and exploitation

ãt = π(st)+ noise (23)

where noise ∼ N (0, σ 2). Since the actuator has operation
limitation, the actual action should be limited. Thus, the action
is clipped by its higher and lower values as

ãt = clip(π(st )+ noise, aL B, aU B) (24)

where aL B and aU B are the lower bound and upper bound of
the action space, respectively; the function, clip, clips π(st)+
noise according to the lower bound and upper bound.

D. Closed-Loop Stability of RL-Controlled BWR Systems

Global stability of nonlinear uncertain dynamical systems,
such as the BWR, is critical for ensuring plant safety and
reliable performance. Analytical tools such as Lyapunov sec-
ond method (e.g., see [7], [15]) provide a sufficient (and
hence possibly conservative) condition for stability. In other
words, ensuring Lyapunov-based global stability of the BWR
system may compromise its dynamic performance. Such a
globally stable system, of which the strongest case is globally
exponential stability, may fail to yield superior performance
of the RLC-based closed-loop systems in comparison to the
existing BWR controllers that are designed by other estab-
lished control synthesis techniques such as H∞. A popular and
feasible option is testing of local stability at several operating
points of interest, which does not examine the stability at other
(potentially unstable) points of operation; nevertheless, like
simulation, this approach may be capable of only identifying
some of the potential sources of instability.

The above discussion evinces the fact that stability analysis
of RLC-based BWR systems is indeed a very challeng-
ing task that needs a thorough analytical and experimental
investigation. This issue of stability analysis of RLC-based
BWR systems is suggested as a topic of future research in
Section IV.

E. Pseudocode of DDPG

Based on the principles of DDPG discussed in Sec-
tions III-B and III-C, the DDPG algorithm is summarized
as pseudocode presented in Algorithm 1. It is noted that
the Adam optimizer [25], instead of the gradient descent
and gradient ascent, is used in this article; however, in the
pseudocode, the optimizer gradient descent and gradient ascent
are mentioned for the purpose of illustration only. The policy
evaluation is made according to Algorithm 2, which is used
only for convergence monitoring in the training process, and
it is not involved in the policy iteration process.
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In the pseudocodes, at time step t , when at is sent to
the environment, the environment returns (st+1, rt+1) after
an internal state transition. The agent action (i.e., control
command), at , is the desired position of the control rod
[i.e., u in (9)]. The environment internal state transition
is conducted via Runge–Kutta integration of the reactor
model depicted by (1)–(4) and (8)–(10). The step size of
the Runge–Kutta integration is 0.001 s and 10 the steps
of integration are conducted per state transition. Thus, the
interval of a state transition is 0.01 s. After the integration
is complete, the updated and observable states are calculated
and are returned as (st+1, rt+1). The synthesis procedure of
the observable states and the return function is presented in
Sections III-F and III-G.

Algorithm 1: DDPG
Randomly initialize policy and value neural networks
parameters, θ ,w;

Create target policy and target value neural networks and
conduct the parameters hard copy: θ− ← θ; w−← w;

Create empty replay buffer R;
for episode← 1 to M do

Initialize environment with random set-point nre f &
system parameter μ and observe initial state of the
environment, s1;

for t ← 1 to T do
Select action:
at = cli p(π(st |θ)+ noise, aL B, aU B);

Send at to environment, and receive (st+1, rt+1);
Store the quad (st , at , rt+1, st+1) in R;
Randomly sample a minibatch of K quads in R:
B = {(s, a, r, s�) j }Kj=1;

Calculate TD error for each selected quad:
δ = q(s, a;w)− (r + γ q(s�, π(s�; θ−);w−));

Update w by minimizing the TD errors (e.g., using
one-step gradient descent):
w← w − α1∇w

1
|B|

∑
(s,a,r,s �)∈B δ2;

Update θ by maximizing the value network output
(e.g., using one-step gradient ascent):
θ ← θ + α2∇θ

1
|B|

∑
s∈B q(s, π(s; θ);w);

Update w− and θ−: w− ← τw + (1− τ )w−,
θ− ← τθ + (1− τ )θ−

end
Conduct policy (θ ) evaluation according to
Algorithm 2 for training convergence monitoring

end

F. Identification of Observable States

An environment needs to be created for the agent to interact
with. To this end, three basic components in the environment
need to be identified: 1) the environment dynamics; 2) the
observable states; and 3) the reward function. The identifica-
tion of the environment dynamics is straightforward in this
article, which is created by combining the dynamical systems
of the BWR, NPMS, and CRDS presented in Section II. The
remaining tasks are to identify the observable states and to

Algorithm 2: Policy Evaluation

Create empty list Rts for recording returns;
for test← 1 to L do

Initialize the return Rt ← 0;
Initialize environment with random set-point nre f &
system parameter μ and observe initial state of the
environment, s1;

for t ← 1 to T do
Select action: at = cli p(π(st |θ), aL B , aU B);
Send at to environment, and receive (st+1, rt+1);
Rt ← Rt + rt+1

end
Store Rt in Rts;

end
Calculate average return: Rtave ← sum(Rts)

L

construct the reward function so that the agent can receive the
state and the reward during interactions with the environment.
In this section, the observable states are identified, while the
reward function is constructed in Section III-G.

In the setting of BWR control, if only the measured excess
neutron density, y, from neutronic power measurement system
is used as an observed state for the RL agent, then the current
operational condition of the reactor may not be adequately
represented. For example, two different transition scenarios
could have the same yt value at time step t , and therefore, the
same action could be taken at time step t ; however, at time step
t+1, the next state, st+1, and the next reward, rt+1, in those two
scenarios could be totally different. This is due to the fact that
the internal states of the environment for these two scenarios
are not necessarily the same, even though the observed states
are the same (e.g., Tes are different but ys are the same).
This kind of MDP problems is called POMDP. To resolve the
inherent difficulties of state representation in POMDP, various
methods have been devised. Examples are: 1) usage of the
RNN [26] or 2) simply having a vector of consecutive time
steps of observed states (e.g., (yt , yt−1, . . . , yt−k+1), where k is
the length of the vector) to enhance the information provided
to the agent to make decisions [27]. The first example needs
longer time to train the recurrent layers; the hyperparameters
of the RNN need to be tuned carefully, and this is computa-
tionally expensive. For the second example, a large number
of consecutive observed states are required to circumvent the
problem of under-representation of the environment’s internal
states, which not only increases the number of parameters
in the neural network but also requires careful tuning of the
length of the vector of the consecutive observed states. In this
article, the observable states at time step t are selected to be a
nine-element vector s that does not involve recurrent layers
and use only short-length consecutive observed states. The
vector s = [s1, s2, s3, s4, s5, s6, s7, s8, s9] consists of the
following.

1) s1 = nref, reference value (set point).
2) s2 = yt , measured value at time step t .
3) s3 = at−1, action at time step t − 1.
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4) s4 = nref − yt , difference between the reference value
and the measured value at time step t .

5) s5 =∑t
i=0(n

ref− yt), accumulated error from beginning
to time step t , which is analogous to the integral.

6) s6 = yt− yt−1, first-order difference, which is analogous
to the derivative.

7) s7 = yt − 2yt−1 + yt−2, second-order difference, which
is analogous to the second derivative.

8) s8 = yt − yt−2, difference between measured value at
time step t and measured value at time step t − 2.

9) s9 = yt − yt−3, difference between measured value at
time step t and measured value at time step t − 3.

The selection of this nine-element vector is intuitive and
the rationale is explained as follows. The component s1 is
a specification of the target, where the system should be
stabilized. The component s2 is the measured value from
the neutronic power measurement system. Thus, via s1 and
s2, the agent is informed of the reactor power target and
the current measured power that carry the key information
for controlling the reactor. The component s3 is the control
command sent by the agent at the last time step, which can
help the agent to generalize good actions on the cause-and-
effect basis. The components s4, s5, and s6 correspond to the
elements of proportional, integral, and derivative terms in a
PID controller; even if the policy is fitted into a static linear
model of s4, s5, ands6, the RL controller should be tuned
as a (sub)optimal PID controller. The component s7 provides
augmented information on the trend of the change of the
measurement. The components s8 and s9 (along with s4)
inform the agent of the recent three steps of the trajectory in
the form of relative values. These relative values are widely
used in deep learning that can make the data stationary,
which reduces the burden of generalization. The number of
steps is chosen as three by trial-and-error through checking
the convergence of the training. Compared to the training
of recurrent layers for generalizing the observed states, the
nine-element vector can be obtained directly without training.
In contrast to only using a long vector of the measured values,
the PID elements used for observation of states provide a more
concise summary of the entire trajectory, and the second-order
derivative provides additional information on the instantaneous
rate of the measurement change.

G. Identification of the Reward Function

The reward function in the environment signifies what are
the favored transitions. The reward can be designed by: 1)
returning a positive value if the action and state are favored
and the larger the more favored; 2) the reward can be a
negative value to penalize the not favored actions and states;
in this case, when the absolute value of the reward is larger,
it means that it is less favored; or 3) the reward can be both
positive or negative. Whether the action and state are favored
or not may depend on the control purpose. For example, if the
control purpose is to drive a plant to reach a new operation
state, the reward function could be the sum of: 1) negative
of the distance between the current state and th desired state
(−|target state−current state|) and 2) negative of the absolute

action (−|action|) because less actuation could be favored in
the sense of saving energy or alleviate the burden on the
actuator.

In this article, the control objective is to stabilize the system
to its power set point. The reward used here has negative values
because the objective is to penalize the deviation from the set
point. The reward in each step is set as negative of the �1-norm
of the difference between n and nref

Rd
t+1 = −|nt+1 − nref|. (25)

By maximizing the cumulative reward of Rd , an optimal
policy should be able to stabilize the system at the set point
nref as fast as possible.

To minimize the mechanical wear of the control rod mech-
anism, the fast movement of the control rod is penalized

Ra
t+1 = −|żt | (26)

where ż � (dz/dt) is calculated in (9). It is noted that żt

and ż(t) are different; the former is evaluated at time step t ,
where t means time step, while the latter is evaluated as a
time derivative at the instant t in seconds.

It is also useful to constrain the internal state of the
environment within a reasonable range to avoid unnecessary
exploration by the agent. A constraint penalty is used to limit
n in the range of (−1, 1). According to the definition of n,
when n = −1, the reactor has zero power; and when n = 1,
the power of the reactor is doubled from its reference power
value. The constraint penalty is

Rc
t+1 =

{
0, if nt+1 ∈ (−1, 1)

W, otherwise
(27)

where the value of W is manually tuned based on the conver-
gence of the training. The total reward is a linear combination
of these three rewards

Rt+1 = wd Rd
t+1 +wa Ra

t+1 + Rc
t+1. (28)

The ratio wd/wa can be adjusted. When the ratio is higher, the
control system more rapidly settles down to the set point, and
the movement of the control rod would be aggressive and vice
versa. In this article, the weights are chosen as wd = 10 and
wa = 0.01 by trial-and-error to achieve rapid settling down to
the set point.

H. Actor and Critic Architectures

Fig. 2 shows the neural network architectures of the actor
and the critic, where both of them are built on the concept of
MLP [28], which is one of the most commonly used archi-
tectures for constructing neural networks. The critic neural
network has two branches: one for the action and another for
the observed states, and then, they are concatenated together
at later stages to predict the value defined in (16). The actor
neural network has only one branch for generating the action.
The last activation function before the action is a tanh function
that outputs a value between −1 and 1. In the environment,
it is scaled to −0.02 to 0.02, which makes the control rod
saturation accountable. The selection of the number of neurons
and the number of layers is based on trial-and-error that the
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Fig. 2. Architectures of the actor (i.e., policy neural network) and the critic (i.e., value neural network). (a) Actor architecture. (b) Critic architecture.

selected architecture might not be optimal. To this end, a topic
of future research is suggested in Section IV so that the neural
networks can be further optimized for fast training and better
policy generalization.

I. Results of the Trained Policy

The RL controller is trained by Algorithm 1, and after
training, the parameters of policy network are kept constant
for subsequent applications. The programming language is
python and the neural networks are constructed and their
parameters are updated by using PyTorch package [29] of
python. The training clock time running on a Linux machine
is approximately 45 s per episode on a PC with an Intel
I9-10850 K CPU and a Nvidia-1060-6 Gb GPU.

The hyperparameters of the agent and the environment are
summarized in Table II. Variations of the set point (nref) are
restricted in the range from −5% to 5% around the reference
steady-state value (n|ss = 0). It is noted, however, that this
range can be made wider at the expense of longer training
time. The parameter μ is restricted in the range of [0.5, 2.0],
which consists of operations around fixed points, limit cycles,
and chaotic regions, as described in Section II-A. In each
episode, the set point, nref, and the system parameter, μ, are
randomly assigned within their respective ranges. The upper
bound and lower bound of the action space are determined
by the above ranges of set point nref and parameter μ with
the following reasoning. From (1) to (4) and (8) to (10),
it can be found that, at steady-state equilibrium points, the
control rod position should be −(	nref/km)

(
(κ1 D/	κ2) +

(κ1μξ0/κ2κ4	)
)
, which has the range of [−0.0151, 0.0151].

To provide additional flexibility of action selection, the lower
bound and upper bound of the action space are extended in
the range of [−0.02, 0.02].

TABLE II

HYPERPARAMETERS FOR AGENT AND ENVIRONMENT

To evaluate the convergence during training, the controller
has been tested by 20 randomly generated environments (with
different values of nref and μ) after each episode of training.
The evolution of the training process is shown in Fig. 3, where
the abscissa is the number of episodes and the ordinate is
log(−Return).

During training, after every 100 episodes, an average value
of log(−Return) of the tests is calculated during the imme-
diately preceding 100 episodes, where there are a total of
2000 tests = 100 episodes × 20 tests/episode; and the profile
of the average over 2000 tests is shown in Fig. 4. For first
1000 episodes of the training, no convergence criterion is
applied. After the first 1000 episodes, a convergence criterion
is applied for training termination as follows. When the
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Fig. 3. Return evaluation during training process using 20 tests. The black
line indicates the mean value of the 20 tests, which are bounded in the red
shaded region.

Fig. 4. Convergence inspection using 2000 tests per step.

average of Return of the 2000 tests does not increase (or
equivalently the average of log(−Return) of the 2000 tests
does not decrease), the training is said to have converged.
The training lasts for 2900 episodes until convergence by the
criterion (i.e., the average of log(−Return) at the 30th step is
not less than that of the 29th step, as shown in Fig. 4).

It is noted that the above convergence criterion does not
guarantee an optimal policy; therefore, a suboptimal policy is
obtained with a limited number of episodes. After the training
converges, 1000 more episodes of training are used to confirm
the convergence by manual inspection. The visualization of
this convergence, presented in Fig. 4, assures that a decreasing
trend of the average value of log(−Return) indeed ends after
the 29th step. Increasing the training episodes may lead to
deliver better policies at the expense of increased computation.
After the training, the policy at 2900 episodes is used as the
delivered policy and its performance and stability are tested
via the following simulations, where the performance of the
RL reactivity controller is reported for comparison with that
of an H∞ controller [3].

Fig. 5 presents the performance comparison of the RL
and H∞ control systems for 1% step change in the power
set point, where the system parameter is selected at three
different values as μ ∈ {0.8, 1.5, 2.0}. It is shown that the

BWR does not have larger power oscillations for all three
cases when the RL controller is used. In contrast, significant
power oscillations appear for H∞ control at μ ∈ {1.5, 2.0},
as shown in Fig. 5. The step-response characteristics of the
rise time, settling time, settling minimum, settling maximum,
and percentage overshoot are summarized in Table III.
Therefore, the RL controller appears to outperform the H∞
controller in the nonlinear regions where μ = 1.5 and 2.0 in
terms of all the above characteristics. In the linear region
(e.g., μ = 0.8), RL control has shorter rise time and settling
time and smaller overshoot, while the settling minimum of the
H∞ control is slightly larger than that of RL-based control.

Fig. 6 compares the disturbance rejection performance of
the control systems. In this case, a step reactivity disturbance
of five cents is inserted at the beginning of the simulation.
The RL control outperforms the H∞ control in all cases (i.e.,
μ ∈ {0.8, 1.5, 2.0}) and it only takes around 0.16 s for the
RL to settle down, while H∞ needs several seconds for power
settling, as seen in Table IV.

Simulation results in Figs. 5 and 6 show that the RL control
is capable of stabilizing the BWR. These results also show that
RL control is less sensitive to system parameter perturbations
as explained next.

In the simulations of power set-point step change, the
settling time of the BWR using RL control retains around
0.38 s as μ is changed from 0.8 to 2.0; in contrast, the settling
time for H∞ control changes from ∼0.41 s to ∼9.7 s. For
reactivity disturbances, the settling time for RL control does
not have any noticeable changes for various perturbations of
the system parameter μ; in contrast, the settling time for H∞
control would vary between 6.06 and 12.14 s, as shown in
Fig. 6. These comparisons show that RL control is apparently
more robust than H∞ control.

The above simulations are standard ways to assess the
performance of a control system. However, in actual oper-
ation of NPPs, the system parameter μ may not remain
constant; it is also interesting to investigate the response
under transient operations with different system parameter
perturbations. Fig. 7 qualitatively compares the performance
of RL control and H∞ control under perturbations injected in
various ways: step perturbation injections during both power
transient (caused by step power change and power increase
ramping) and constant power operations as well as sinusoidal
perturbation injection at constant power operations. It is seen
that the system using H∞ control has obvious power oscilla-
tions, while the system using RL control does not suffer from
power oscillations. In these simulations, the RL control is seen
to withstand various system perturbations (i.e., high-frequency
perturbations such as step change and low-frequency pertur-
bations such as sinusoidal excitation), while the H∞ control
appears to be more tolerant of low-frequency perturbations
than high-frequency perturbations.

IV. SUMMARY, CONCLUSION, AND FUTURE RESEARCH

This article has synthesized the (nonlinear) reactivity control
system for a BWR plant by making use of an AI-based RL
algorithm, called DDPG. The performance of RL control has
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Fig. 5. Step response of 1% set-point change.

been compared with that of H∞ control in terms of rise
time, settling time, settling minimum, settling maximum, and
percentage overshoot in both nonlinear and linear regions
of operation in the BWR model. Robustness of RL control

Fig. 6. Step response of five-cent reactivity insertion.

is demonstrated (by simulation); the performance of the RL
control system changes significantly less than that of the H∞
control system under parameter perturbations and exogenous
disturbances, and the stability of RL control is seen to be
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TABLE III

CHARACTERISTICS OF STEP RESPONSE OF POWER CHANGE

TABLE IV

ST FOR STEP CHANGE OF REACTIVITY

Fig. 7. Comparison of RL and H∞ control systems for step and ramp power
maneuver with system perturbations.

superior to that of H∞ control in all cases. In general, it is
observed that RL control outperforms H∞ control in most of
the (simulated) test cases.

It is noted that, in this article, the stability of the BWR
system is not established by rigorous mathematics (e.g., Lya-
punov stability conditions). However, the empirical results,
derived from simulation, are encouraging, and these results
should draw attention of the nuclear engineering community to
enhance the technology of reactor control by further research
in AI and RL. While there are many experimental and the-
oretical areas for future research, we suggest the following
topics.

1) Optimal Supervisory Control: An example is to optimize
the plant performance by AI and RL. Another example
is optimal set-point generation for local PID controllers.

2) Tuning and Sensitivity Analysis of Hyperparameters:
The hyperparameters (i.e., those parameters in Table II
and Fig. 2) should be tuned to enhance the training
performance (e.g., speed and stability of the training
convergence) for the individual reactor under control.

3) Stability Analysis of RLC-Based BWR Systems: Tools
such as Lyapunov second method (e.g., see [7], [15])
provide sufficient conditions for stability. While glob-
ally exponential stability of RLC is desirable, such
a control system may often severely compromise the
system performance. A possible choice of analysis could
be bounded-input–bounded output (BIBO) stability [7];
alternatively, a tradeoff analysis between robust stability
and robust performance could be investigated, similar to
what is done in H∞ control.

4) Comparison of Different Integrated AI and RL Concepts
for Control System Synthesis in Nuclear Reactors: Dif-
ferent types of RL algorithms and various AI methods
can be investigated because a specific type of reactor
may need a certain type of AI and RL integration for
its optimal performance.

5) Experimental Validation of Different AI and RL Control
Concepts: A control policy trained by RL in a simula-
tor/model can be applied for its validation on a real-life
reactor. A laboratory-scale nuclear reactor could be an
ideal site for concept validation before its experimental
validation on a commercial-scale NPP. Uncertainties in
such an experimental work could be modeled as a noise
term so that statistical significance could be assigned to
the results for comparison with other controllers.
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