
Vol.:(0123456789)

Machine Learning (2022) 111:3245–3277
https://doi.org/10.1007/s10994-022-06215-7

1 3

An adaptive polyak heavy‑ball method

Samer Saab Jr.1 · Shashi Phoha1 · Minghui Zhu1 · Asok Ray1

Received: 18 October 2021 / Revised: 9 May 2022 / Accepted: 12 June 2022 /
Published online: 18 July 2022
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
The heavy-ball (HB) method has become a well-known practice for large-scale machine
learning problems, and it can achieve the fastest local convergence rate when objective
functions are smooth and strongly convex using Polyak’s optimal hyper-parameters. How-
ever, such convergence rates are based on specific uncertain and time-invariant hyper-
parameters that limit its potential. In this paper, we propose an adaptive HB that estimates
the Polyak’s optimal hyper-parameters at each iteration. Our adaptive approach employs
the absolute differences of current and previous model parameters and their gradients.
Such representation allows for a computationally efficient optimizer. We show that our
method guarantees a global linear convergence rate for smooth and strongly convex objec-
tive functions. Whereas in the stochastic setting, we show that proposed stochastic algo-
rithm converges almost surely for non-convex smooth functions with bounded gradient. We
validate the effectiveness of our method on image classification datasets with no empirical
tuning, and its superiority on quadratic and non-convex functions while comparing its per-
formance to the state-of-the-art optimizers.

Keywords Polyak heavy-ball · Gradient descent · Global convergence

Editor: Lam M. Nguyen

 * Samer Saab Jr.
 sys5880@psu.edu

 Shashi Phoha
 sxp26@psu.edu

 Minghui Zhu
 muz16@psu.edu

 Asok Ray
 axr2@psu.edu

1 The Pennsylvania State University, State College, PA, USA

http://orcid.org/0000-0002-7634-274X
http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-022-06215-7&domain=pdf

3246 Machine Learning (2022) 111:3245–3277

1 3

1 Introduction

First-order stochastic gradient descent (SGD) methods have gained wide popularity in
machine learning, as they are well-suited for large-scale problems due to their cheap
computational costs while achieving high performance.

Despite many application-specific successes, SGD methods suffer from two limita-
tions. The first limitation, and the most challenging aspect in practical applications of
first-order SGD optimizers, is tuning their hyper-parameters, which need to be opti-
mized for maximal performance (Probst et al., 2019). The most common hyper-param-
eter to tune across all methods is the step-size or the learning rate. Many studies have
been implemented on how to select the step-size, which under appropriate constraints
can lead to specific convergence properties. For example, constant step-sizes lead to
convergence to neighborhoods of local optimum, whereas decreasing step-sizes lead to
convergence to the global optimum for convex functions (Ghadimi & Lan, 2013; Gower
et al., 2019). However, the tuning of the step-sizes remains to be a tedious task, since
their selection ultimately dictates whether the training process will converge or not,
and how well the network will eventually perform. Furthermore, the tuning process can
be very expensive for very large-scale problems. For example, the GPT-3 network is
composed of 175 billion parameters, and was reported to cost an estimated $12 million
to train (Floridi & Chiriatti, 2020). The second limitation of SGD methods concerns
the rather restrictive conditions to guarantee convergence, and the rates at which they
converge. As a result, many first-order SGD methods have been promoted by providing
accelerated methods which converge depending on various conditions and assumptions,
such as convexity or bounded gradients.

A surge in the developments of optimal convergence rates came about in the past dec-
ades to solve large-scale problems (Polyak, 1964; Nesterov, 1983; Lin et al., 2015). Among
the most popular methods is the Polyak heavy-ball (HB) method (Polyak, 1964), which
can achieve the fastest local convergence rate when objective functions are �-strongly
convex and twice continuously differentiable and their gradients are Lipschitz continuous
with constant L (Lessard et al., 2016). Polyak showed this through the use of local analysis
based on the bounds of the norm of the Hessian of the cost function, which holds glob-
ally if the Hessian is constant (Ghadimi, 2015). For a non-convex objective function, it is
shown in Zavriev and Kostyuk (1993) that the HB method converges to some stationary
point.

The HB method extends the standard GD by adding a momentum term, which incor-
porates the difference between the current and past parameter iterates, to steer the next
parameter iterate towards the solution, as such:

where f(x) is the objective function, ∇ is the gradient operator, �k is the step-size, �k is the
momentum hyper-parameter, and k denotes the iteration number. A local accelerated linear
convergence rate of

√
L−

√
�√

L+
√
�
 is guaranteed with the optimal choice of the hyper-parameters;

specifically, �∗
k
=

4

(
√
L+

√
�)2

 and �∗
k
=
�√

L−
√
�√

L+
√
�

�2

 (Polyak, 1987), which we refer to as Pol-

yak’s optimal hyper-parameters throughout this paper. These optimal hyper-parameters
require the knowledge of the Lipschitz constant, L, and � , which are generally inaccessible.
Thus, HB would require tuning of its momentum hyper-parameter as well as its step size,
which makes it even more burdensome.

(1)xk+1 = xk − �k∇f (xk) + �k(xk − xk−1)

3247Machine Learning (2022) 111:3245–3277

1 3

Accordingly, adaptive methods (Duchi et al., 2011; Hinton et al., 2012; Kingma and
Ba, 2014; Dauphin et al., 2015; Ward et al., 2019) are particularly helpful when training
deep neural networks, and are becoming the state-of-the-art (Li and Orabona, 2019). The
first popular adaptive method, AdaGrad (Duchi et al., 2011), significantly outperforms the
vanilla SGD. From there various extensions have been proposed, such Adam (Kingma and
Ba, 2014), which further improved the optimization of deep neural networks (Reddi et al.,
2019; Dozat, 2016). The work in Dauphin et al. (2015) shows that adaptive methods can
be used to design preconditioners, which help in escaping saddle points. However, several
conditions must be met in order to guarantee convergence, such as for RMSProp (Hinton
et al., 2012) and Adam, which can be non-convergent even in convex settings (Zou et al.,
2019). Furthermore, the variance of such adaptive step-sizes tends to be too large in the
early stages of training. Thus, they would require some sort of warmup heuristic, which
does not guarantee consistent improvements for various machine learning settings (Liu
et al., 2019).

Inspired by the success stories of adaptive methods and the potential of accelerated
convergence rate of HB using Polyak optimal hyper-parameters, we propose a novel adap-
tive HB method1. Our proposed method estimates the Polyak’s optimal hyper-parameters
at each iteration. This task does not require any significant increase in computational
complexity.

1.1 Related work

There has been a lot of attention towards accelerated (Beck, 2017; Ghadimi & Lan, 2016)
and adaptive optimization techniques (Hu et al., 2009; Huang et al., 2020), which were
shown to yield great performance results for large-scale systems, such as deep neural net-
works (Krizhevsky et al., 2012; Huang et al., 2017). Much of the success of momentum-
based optimizers can be attributed to their convergence properties. The convergence anal-
ysis of momentum-based optimization methods has been explored under the context of
convex (Ghadimi et al., 2015; Ochs et al., 2015) and non-convex (Ochs et al., 2014; Gadat
et al., 2018) optimization problems for smooth functions, and non-smooth functions (Mai
and Johansson, 2020). Thus in this section, we briefly go over the convergence analyses of
selected HB results, and their close variants—our literature review is by no means compre-
hensive. We then go on to explore the advantages and convergence properties of adaptive
optimizers.

1.1.1 Convergence analysis of HB for convex objective functions

The local convergence rate of the HB method was originally established for convex func-
tions near a twice-differentiable local minimum with Lipschitz continuous gradients, and
found to have a local accelerated linear rate of convergence when equipped with Polyak
optimal hyper-parameters (Polyak, 1964). A global convergence analysis was then pre-
sented in Ghadimi et al. (2015), where they showed that if the hyper-parameters of the HB
method are chosen within appropriate intervals, and the gradients are Lipschitz continuous,

1 The main results in this paper are presented in the ICML 2021 workshop on “Beyond First Order Meth-
ods in Machine Learning”. However, unlike the work in this paper, the objective function is approximated
by time-varying positive quadratic function where the proofs are developed accordingly.

3248 Machine Learning (2022) 111:3245–3277

1 3

then the Cesáro average of the HB method converges at a rate of O(1∕k) when the objec-
tive function is convex, and the objective function converges linearly when it is strongly
convex. Furthermore, when assuming a strongly convex quadratic objective function, a
proof was derived in Lessard et al. (2016), using Lyapunov-like potential functions called
integral quadratic constraints, that shows iteration-independent linear rate of convergence
when using the Polyak optimal hyper-parameters. More recently, in Scieur and Pedregosa
(2020), the Polyak momentum is shown to be asymptotically optimal under the average
complexity of all possible inputs to the model, given that the objective function is quadratic
with a symmetric positive definite Hessian matrix. This result is shown to be independent
of the probability distribution over the inputs.

1.1.2 Convergence analysis of HB for non‑convex objective functions

When considering a non-convex objective function, while still assuming Lipschitz con-
tinuous gradients, it is shown in Zavriev and Kostyuk (1993) that any trajectory {xk} in
the heavy-ball method converges to some stationary point. Similarly, the authors in Ochs
et al. (2014) use a monotonically decreasing Lyapunov function for the dynamical system
described by the HB method, and show that it is converging.

1.1.3 Convergence analysis of other momentum‑based optimizers

Convergence guarantees have also been recently established for other momentum-based
optimizers (Hu et al., 2009; Huang et al., 2020; Hendrikx et al., 2020; Cutkosky and
Mehta, 2020; Simsekli et al., 2020). For example, the quasi-hyperbolic momentum (QHM)
optimizer in Gitman et al. (2019) is shown to converge almost surely for smooth non-
convex functions as �k → 0 , and ensures local stability near a strict local minimum when
the hyper-parameters of QHM are made stationary. Other optimizers have been found to
achieve even faster global linear convergence to the optimizer, such as triple momentum
(TM) proposed by Van Scoy et al. (2017). However despite the accelerated convergence
rate achieved by TM, it requires the burdensome task of tuning four parameters, three of
which are momentum hyper-parameters. Another example of an optimizer that achieves
faster convergence rate than that of the HB method is the optimizer proposed in Lessard
et al. (2016). In fact, the HB and Nesterov accelerated gradient (NAG) serve as special
cases of this optimizer, yet its limitation lies in the fact that it requires the tuning of three
parameters. However, to the best of the authors’ knowledge, there is no published imple-
mentation of the TM optimizer nor the optimizer proposed by Lessard et. al on neural
networks.

1.1.4 Convergence analysis of adaptive gradient methods

The importance of varying the step-size �k dates back several decades (Robbins and Monro,
1951); where it has been shown that under mild assumptions, global convergence can be
achieved when the step-size is square summable, but not summable (Bertsekas, 1997). In
Gaivoronski (1994), this rule has been replaced by �k → 0 . Eventually, adaptive methods
picked up a lot of attention due to their success in various applications, such as machine learn-
ing. Amongst the most popular adaptive optimizers that have seen wide use in everyday
machine learning applications are AdaGrad (Duchi et al., 2011), Adadelta, (Zeiler, 2012),
RMSProp (Hinton et al., 2012), and Adam (Kingma and Ba, 2014). However, there are several

3249Machine Learning (2022) 111:3245–3277

1 3

conditions that one must check to ensure convergence guarantees for adaptive methods, such
as for RMSProp and Adam, where Adam can be non-convergent even in convex settings (Zou
et al., 2019). It was also shown in Wilson et al. (2017) that to achieve desired performances
using adaptive methods, the same amount of hyper-parameter tuning is performed as in non-
adaptive methods; challenging the conventional wisdom that adaptive methods require less
tuning. However, we duly note our method can perform comparably to the methods compared
in Wilson et al. (2017) without hyper-parameter tuning (i.e. � = 1) in image classification
tasks. The work in Khan et al. (2018) proposes a method that introduces perturbations to the
network parameters during gradient evaluations, as well as estimate uncertainty parameters,
which can be implemented in Adam. However, this algorithm adds an additional precision
hyper-parameter that needs to be approximated (e.g. using Bayesian optimization) prior to
using the method, as well as require memory to store the uncertainty estimates used in the
update rule. Thus, it would require a descent amount of tuning for desired performance. The
last-iterate convergence of constrained convex functions for an adaptive heavy-ball method is
studied in Tao et al. (2021), where the step-size of the their adaptive HB is updated using an
exponential moving average. Using �1t =

t

t+2
 and �2t = 1 −

�

t
 , where t is the epoch number,

they could achieve accelarateed convergence. Specifically, their adaptive HB method attains a
convergence rate of O(

1√
t
) as oppose to O(

log t√
t
) of SGD. However it remains that two hyper-

parameters (� and �) need to be properly selected for the best performance. On the other hand,
attempts at devising stochastic Polyak step-sizes (SPS) have been made for an adaptive SGD
optimizer (Loizou & Richtárik, 2020; Berrada et al., 2020; Oberman and Prazeres, 2019;
Rolinek and Martius, 2018). The SPS proposed in Loizou and Richtárik (2020) has the form
�k =

f (xk)−f
∗

c||∇f (xk)||2 , where for machine learning applications they assume f ∗ = 0 . Although, as the
authors point out, this may seem logical for empirical risk minimization problems, it is unrea-
sonable to assume the knowledge of f ∗ for majority of optimization problems. Similarly, the
work established in Oberman and Prazeres (2019) proposed a SPS of the form �k = 2

f (xk)−f
∗

�||∇f (xk)||2 .
This method assumes the knowledge of �||∇f (xk)|| , which is unpractical for finite-sum prob-
lems with large n (Loizou et al., 2020). Another similar SPS is proposed in Berrada et al.
(2020), where �k = min{

f (xk)

||∇f (xk)||2+� , �} , however this approach has rather restrictive assump-
tions on the smoothness of the objective function. The work in Berrada et al. (2020) also pro-
vides an SPS method, however without establishing convergence guarantees.

Our proposed adaptive HB method requires the knowledge of only the gradient of the
objective function to update its hyper-parameters, and guarantees global convergence. It
is also worth mentioning that the work in Ghadimi et al. (2015) tackles the selection of the
HB parameters that can yield global convergence. The study provides a sound framework
that derives an interval of allowable values for the step-size that depend on the choice of the
momentum parameter, while presuming the exact knowledge of L. In addition, for strongly
convex functions and linear convergence rate, the values of both L and � are required. Whereas
our algorithm may require tuning of only one parameter that would simultaneously gener-
ate �k and �k at every iterate interdependently formulated based on the Polyak HB optimal
hyper-parameters.

1.2 Contributions

Although adaptive methods are becoming the state-of-the-art and are particularly help-
ful when training deep neural networks, the restrictive conditions that guarantee conver-
gence of popular adaptive methods, see, e.g., Zou et al. (2019), may limit their application

3250 Machine Learning (2022) 111:3245–3277

1 3

domains and may be difficult to justify in practice. On the other hand, the accelerated con-
vergence of HB using Polyak optimal parameters may result only in local convergence and/
or does not necessarily converge on strongly convex functions (Lessard et al., 2016). It is
thus intriguing to ask whether an adaptive optimizer can capitalize on the advantages of
adaptive methods and the Polyak optimal convergence rate, while overcoming their limita-
tions. The work in this paper aims to address this question. To that end, we make the fol-
lowing contributions:

• We propose a novel adaptive HB that adopts the formulation of Polyak HB optimal
parameters that at worst requires the tuning of a single parameter. To the best of the
authors’ knowledge, no work has been published on adaptively adopting the Polyak HB
optimal hyper-parameters.

• We show that our method guarantees global linear convergence rate for smooth and
strongly convex objective functions.

• In the stochastic setting, we show that the proposed stochastic algorithm converges
almost surely for non-convex smooth functions provided that the gradient is bounded.

• We also provide an example to show that our adaptive HB can outperform the optimal
Polyak HB on a continuously differentiable and strictly convex objective function.

We empirically validate the performance of our method on both convex and non-convex
objective functions, including image classification tasks. We use the function presented by
Lessard et al. (2016), where HB does not necessarily converge on strongly convex, but not
twice differentiable, objective functions when using the Polyak optimal hyper-parameters.
We empirically illustrate how our method linearly converges to its optimal solution at a
rate faster than the time-invariant Polyak optimal convergence rate. In addition, we empiri-
cally illustrate how our method is inherently capable of rejecting gradient noises, leading
to robust solutions. We also show how our method outperforms popular adaptive methods
on quadratic and the non-convex Beale function in terms of convergence rate. Finally, we
demonstrate the competitiveness of our method with popular optimizers on image clas-
sification tasks; namely, MNIST, QMINST, CIFAR-10, and CIFAR-100. We find that our
approach also enjoys the practical advantage of minimal tuning, and in some cases no tun-
ing at all, as with the image classification tasks.

2 Proposed adaptive HB method

In spirit of proposing adaptive hyper-parameters for HB, we would like to highlight the
synergistic coupling bestowed on the adopted Polyak HB optimal hyper-parameters. The
core of our approach’s success can be accredited to this interdependent coupling, as we
propose a method that derives the hyper-parameters simultaneously in an iterative man-
ner according to Polyak HB optimal parameters. First, the quantity L̂k , which emulates the
local Lipschitz constant Lk of f (xk) , is computed using inner products of current and previ-
ous gradients, hk , and model parameters, Δxk , as follows:

(2)L̂k ≜ 𝛾
‖hk‖
‖Δxk‖

3251Machine Learning (2022) 111:3245–3277

1 3

where hk ≜ ∇f (xk) − ∇f (xk−1) , Δxk ≜ xk − xk−1 and � ≥ 1 . Subsequently, under the context
of �-strongly convex functions, the approximation of �k of f̂k(xk) , denoted �̂�k , is computed
as follows:

Both L̂k and �̂�k are then used to approximate the optimal Polyak optimal HB parameters:

If L̂k = L and �̂�k = 𝜇 , then �k and �k become the optimal Polyak HB parameters.
The proposed AHB algorithm is summarized in Algorithm 1.

Our proposed formulation associated with L̂k (2) and �̂�k (3) is inspired by the Power
Iteration Algorithm (PIA) (Mises & Pollaczek-Geiringer, 1929). L and � are considered
as the largest and smallest eigenvalues of the Hessian matrix, ∇2f (x) , where

∇f (x) ≈ ∇2f (x)x + b . Thus, hk ≈ ∇2f (xk)Δxk and hT
k
hk

ΔxT
x
Δxk

≈
ΔxT

x

(
∇2f (xk)

)2

Δxk

ΔxT
x
Δxk

 . The latter can be
thought of as applying two iterations of PIA for each k, which could suffice as a good
approximation in the case where the largest eigenvalue is significantly larger than the rest.
For strongly convex setting where ∇2f (x) is presumed to be a positive-definite matrix, then
by similarly applying PIA to hk − L̂kI , where the eigenvalues of ∇2f (x) − LI become all
negative and the smallest eigenvalue of ∇2f (x) would be the eigenvalue of ∇2f (x) − LI with
the largest magnitude.

(3)�̂�k ≜
‖hk − L̂kΔxk‖

‖Δxk‖ .

(4)𝛼k ≜
4

(

�
L̂k +

√
�̂�k)

2

, 𝛽k ≜

⎛
⎜⎜⎜⎝

�
L̂k −

√
�̂�k�

L̂k +
√
�̂�k

⎞
⎟⎟⎟⎠

2

.

3252 Machine Learning (2022) 111:3245–3277

1 3

Remark 1 Perfect estimation of L and � may not be desired under this context due to the
limitation of Polyak optimal HB in achieving global convergence; e.g., rippling behavior
near the optimum.

3 Global convergence for convex objective functions

In this section we present the convergence analysis of our proposed adaptive HB for
convex objective functions.

We first formally present the definitions that are used for attaining convergence.

Definition 1 Function f(x) is L-smooth if it is continuously differentiable, and its gradient
is Lipschitz continuous with constant L, i.e., for all x, y ∈ ℝ

d:

Definition 2 A continuously differentiable function f(x) is called strongly convex on ℝd , if
there exists a constant 𝜇 > 0 such that for any x, y ∈ ℝ

d we have (Nesterov, 2003)

We first present some useful properties in Proposition 1 that relate � to L̂k , �̂�k , �k and
�k.

Proposition 1 Suppose that f(x) is �-strongly convex and L-smooth. Then, L ≥ � , and the
algorithm (1) with hyper-parameters � , �k and �k in (4), guarantees the following proper-
ties for all k ≥ 0:

(P1) 𝛾𝜇 ≤ L̂k ≤ 𝛾L.

 For all � ≥
L

�
+
√

L2

�2
− 1 , we have

(P2)
√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L ≤ �̂�k ≤ (𝛾 + 1)L.

(P3) �k ∈ (0, 1) , and

(P4) �̂�k is an increasing function of � , and �k is a decreasing function of �.

(P5) lim𝛾→∞ �̂�k = lim𝛾→∞ L̂k = ∞ , and

 lim�→∞ �k = lim�→∞ �k = 0.

||∇f (y) − ∇f (x)|| ≤ L||y − x||.

(5)f (y) − f (x) ≥ ⟨y − x,∇f (x)⟩ + �

2
��y − x��2.

4

(
√
� +

√
� + 1)2L

≤ �k

≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4)2
.

3253Machine Learning (2022) 111:3245–3277

1 3

Theorem 1 Suppose that f(x) is �-strongly convex and L-smooth. Then, there exists a
�0 ≥ max

{
4
(

L

�
+
√

L2

�2
− 1

)
,
4(L+1)

�

}
 such for 𝛾 > 𝛾0 , the sequence {xk} generated by

algorithm (1) with step-size �k and hyper-parameter �k in (4), satisfies

where q ∈ (0, 1) , and x∗ is the unique optimal solution that minimizes f(x).

The proofs of Proposition 1 and Theorem 1 are included in the appendix.
Theorem 1 states that the algorithm globally converges linearly to the unique optimal

point x∗ for strongly-convex functions and for 𝛾 > 𝛾0 . However, in our empirical results,
we use � = 1 in all the image classification datasets under consideration to show that our
proposed method may not require tuning yet leading to competitive performance with the
state-of-art optimizers.

It is shown Ghadimi et al. (2015) if � ∈ [0, 1) and � ∈
(
0,

2(1−�)

L

)
 , then global conver-

gence is attained for convex and smooth functions where the Cesáro average of the iterates
converges to the optimum at a rate of O(1∕k) . Say that L = 5 and � = 1 . Then, Polyak opti-
mal hyper-parameters become 0 < 𝛼∗ = 0.382 < 2∕L and 0 < 𝛽∗ = 0.146 < 1 . However,
𝛼∗ >

2(1−𝛽∗)

L
= 0.34 . Therefore, a global convergence cannot be guaranteed for convex and

smooth whenever optimal Polyak hyperparameters are used. On the other hand, for suffi-
ciently large � , with a lower bound given in Theorem 1, both �k and �k decreases, see, e.g.,
(P5) of Proposition 1. The latter indicates that the conditions of the global convergence
(Ghadimi et al., 2015) can be satisfied for convex and smooth functions.

In addition, Ghadimi et al. (2015) provides the following condition for linear global
convergence: for � ∈

(
0,

2

L

)
 , the momentum parameter should satisfy

0 ≤ 𝛽 <
1

2

(
𝜇𝛼

2
+

√
𝜇2𝛼2

4
+ 4(1 −

𝛼L

2

)
 . Our results in Theorem 1 presents similar conver-

gence results for the proposed adaptive HB provided that 𝛾 > 𝛾0 . However, for both settings
of convex and strongly convex functions, the knowledge of L and � is required to find the
bounds provided in Ghadimi et al. (2015), which is not practical. Consequently, in practice,
tuning of � and � would be required whereas our adaptive optimizer would require tuning
of only one parameter, � . Furthermore, the example of a convex smooth function provided
in Section 4.3 shows that our proposed adaptive HB outperforms both the time-invariant
HB and time-varying HB satisfying the conditions presented in Ghadimi et al. (2015).

On another note, in exceptional cases where x is a scalar, then with � = 1 , we will have
�̂�k = 0 and thus �k becomes zero. Consequently, the proposed method would become adap-
tive gradient descent with significantly large 𝛼k =

4

L̂l
 , which may deteriorate the global con-

vergence. Therefore, for scalar x, it is recommended to have 𝛾 > 1.

4 Stochastic adaptive HB

The stochastic optimization problem is of the form

(6)f (xk) − f (x∗) ≤ qk(f (x0) − f (x∗))

(7)min
x∈ℝd

F(x) ≜ 𝔼� [f (x, �)].

3254 Machine Learning (2022) 111:3245–3277

1 3

 We denote by G(xk;�k) a stochastic gradient of F(x) at xk depending on a random vari-
able �k representing data sampled from some unknown probability distribution such that
�[G(xk;�k)] ∈ �F(xk) , where �F(x) denotes the set of gradients of F at the point x.

Our proposed stochastic adaptive heavy-ball (SAHB) method is given by

where �̂�k = min
{
𝛼k,

C

(k+1)𝜈

}
 , 𝛽k = min

{
𝛽k,

1

(k+2)𝜈

}
 , 0.5 < 𝜈 ≤ 1 , C > 0 , and �k and �k are

defined in (4). In addition, we make the following modification:

where ĥk ≜ G(xk;𝜁k) − G(xk−1;𝜁k−1) , Δxk ≜ xk − xk−1 and � ≥ 1 . We compute �̂�k as follows:

Both L̂k and �̂�k are then used to approximate the optimal Polyak optimal HB parameters in
(4).

The following conditions hold for F defined in (7) and the stochastic gradient:

Assumption 1 F is differentiable and ∇F is Lipschitz continuous, i.e., there exists a con-
stant L such that

Assumption 2 F is bounded below and ‖∇F(x)‖ is bounded above; i.e., there exist F∗ and
G such that

Assumption 3 For k = 0, 1, 2, ... , the stochastic gradient gk ≜ G(xk;�k) = ∇F(xk) + �k ,
where the random noise �k satisfies

where a.s. refers to almost surely, �k[.] denotes expectation conditioned on
{x0, g0, ..., xk−1, gk−1, xk} , and D is a constant.

Assumption 4 The stochastic gradient is Lipschitz continuous, i.e., there exists a constant
LG such that

Assumptions 1–3 are the ones used in Gitman et al. (2019). However, we addition-
ally assume that the stochastic gradient is Lipschitz continuous. The following theorem,
Theorem 2, can be considered as a corollary to Theorem 1 in Gitman et al. (2019) with
vk = 1 , which can be applied to non-convex functions.

(8)xk+1 = xk − �̂�kG(xk;𝜁k) + 𝛽k(xk − xk−1)

(9)L̂k ≜ 𝛾
‖ĥk‖
‖Δxk‖

(10)�̂�k ≜
‖ĥk − L̂kΔxk‖

‖Δxk‖ .

‖∇F(x) − ∇F(y)‖ ≤ L‖x − y‖, x, y ∈ ℝ
d.

F(x) ≥ F∗, ‖∇F(x)‖ ≤ G, x ∈ ℝ
d.

�k[�k] = 0,�k[‖�k‖2] ≤ Da.s.

‖ĥk‖ ≤ LG‖x − y‖, x, y ∈ ℝ
d.

3255Machine Learning (2022) 111:3245–3277

1 3

Theorem 2 Under Assumptions 1–4, the sequence {xk} generated by the SAHB algorithm
described by (9)-(10) and (8), satisfies

In addition, we have

The proof of Theorem 2 is included in the appendix.

5 Results and discussion

In this section we aim to validate the proposed adaptive HB against other known optimiz-
ers by studying its convergence rate, overall performance, and robustness. To demonstrate the
reduced tuning efforts that our method offers, we only tune the proposed optimizer where it
is reasonable to do so. To that end, we tune our method on one-dimensional and two-dimen-
sional functions, where tuning is cheap. We also show the effect of tuning our method on an
example including quadratic cost functions. In large-scale systems however, tuning is compu-
tationally expensive, and thus we implement our optimizer on a deep neural network with no
tuning (by setting � = 1 of Eq. (2)) involved.

First, we show the superiority of the convergence rate of our proposed optimizer over the
optimal HB on a positive-definite quadratic function, and the strongly convex function given
in Lessard et al. (2016), which was shown to trap the optimal HB in a limit cycle in Sect. 5.2.
Then we compare our adaptive HB with a time-invariant and time-varying HB on positive
semi-definite quadratic functions We further evaluate the robustness and convergence rate of
our adaptive HB optimizer against other known optimizers on the non-convex Beale function
in Sect. 5.4. Lastly, we evaluate the optimizer’s performance against popular optimizers on
MNIST, QMNIST, CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009) in Sect. 5.5.

It is important to note that in our toy examples (Lessard function, quadratic and Beale func-
tions), we consistently run all optimizers under consideration through all the samples in our
training set to do a single update for the weight, xk , in every iteration, k. On the other hand,
in our image classification examples, we also consistently run all optimizers under considera-
tion while using only one minibatch or one subset of the training set to do the update for the
weight in every iteration. In addition, to be consistent with the other optimizers, we use AHB
throughout all our experiments except for in the case where we compare our AHB and our
Stochastic AHB (SAHB) on Beale function with noisy gradients.

Our codes for all experiments will be made publicly available.

5.1 Positive‑definite quadratic function

Although the fastest local convergence rate is attained when objective functions are continu-
ously differentiable and strictly convex using Polyak’s optimal hyper-parameters, this exam-
ple is designed to show that this fact is constrained to fixed hyper-parameters. In particular,
we demonstrate that our proposed method with adaptive hyper-parameters can outperform

(11)lim inf
k→∞

‖∇F(xk)‖ = 0a.s.

(12)lim sup
k→∞

F(xk) = lim sup
k→∞,‖∇F(xk)‖→0

F(xk)a.s.

3256 Machine Learning (2022) 111:3245–3277

1 3

the optimal Polyak heavy-ball method for a continuously differentiable and strictly convex
function.

We consider the following objective function

where

We use the largest and smallest eigenvalues of A as L and � , respectively, to compute
Polyak HB optimal parameters with corresponding convergence rate of

(13)f (x) =
1

2
xTAx − bTx

A =

[
99 1

1 1

]
, b =

[
1

1

]
, x−1 =

[
0

0

]
, and x0 =

[
1

1

]
.

Fig. 1 Visualization of the
convergence rate of our optimizer
versus optimal HB via the norm
of the error at every iteration, k.
The smoothness of the optimal
HB curve is mostly due to the
fact that the step size and the
momentum parameter are con-
stants unlike our proposed AHB

Fig. 2 Visualization of the
convergence rate of our optimizer
versus optimal HB via the norm
of the gradient and f (xk) − f (x∗)
at every iteration, k. For k ≥ 74 ,
f (xk) − f (x∗) < 10−20 for the
proposed AHB method

3257Machine Learning (2022) 111:3245–3277

1 3

� ≜

√
L−

√
�√

L+
√
�
= 0.818 . For our proposed HB, we use � = 1.8 in (2). Figure 1 shows ‖x∗ − xk‖

for both Optimal HB and the proposed AHB, and also ‖x∗ − x0‖�k . Figure 2 shows ‖∇f (xk)‖
(left) and f (xk) − f (x∗) for both methods. This simple example demonstrates that our adap-
tive optimizer can outperform the optimal Polyak HB for continuously differentiable and
strongly convex function. Of note, the optimal HB requires the exact knowledge of L and � ,
whereas our proposed AHB for this specific scenario requires the tuning of � in order to
outperform the optimal Polyak HB.

5.2 Lessard’s problem

In this section, we tackle the one-dimensional strongly convex function, f(x), presented in
Lessard et al. (2016), which can lead to a non-convergent solution using Polyak optimal
hyper-parameters. The function’s gradient, ∇f (x) , is continuous and monotone but not con-
tinuously differentiable, and is given by the following equation:

It is important to note that the optimal local convergence rate,
√
L−

√
�√

L+
√
�
 , using Polyak optimal

hyper-parameters requires that ∇f (x) is continuously differentiable, which is not the case of
the function in (14).

Although ∇f (x) is not continuously differentiable, one can readily observe that L = 25
and � = 1 . Lessard et. al showed that if the initial conditions are chosen to be within the
interval 3.07 ≤ x0 ≤ 3.46 , then HB with its optimal parameters gets stuck in a limit cycle
with oscillations that never damp out. Figure 3 (upper plot) shows how the error |xk − x∗|
using Polyak optimal HB parameters oscillates when the initial conditions are set to
x0 = 3.3 and x1 = 3.1 , whereas the error corresponding to our adaptive HB continues to

(14)∇f (x) =

⎧⎪⎨⎪⎩

25x if x < 1

x + 24 if 1 ≤ x < 2

25x − 24 if x ≥ 2

Fig. 3 Visualization of the
convergence rate of our optimizer
versus optimal HB via the norm
of the error at every iteration, k.
Except for the first few iterations,
the curve of AHB is smooth due
to the large rate of convergence
at every iteration

3258 Machine Learning (2022) 111:3245–3277

1 3

decrease with no oscillations. We also choose initial conditions that lay outside the afore-
mentioned interval to compare our method with the optimal HB, specifically we set the
initial conditions to x0 = 2 and x1 = 1 . In all cases, our method with its time-varying hyper-
parameters and with � = 2 demonstrates a superior convergence rate, which is evident after
the fifth iteration, even when compared to the optimal (local) convergence rate of

√
L−

√
�√

L+
√
�

achieved by the Polyak optimal time-invariant hyper-parameters.
The optimal convergence rate shown in Fig. 3 is simply the plot of �k||x0 − x∗|| , where

� =
�√

L−
√
�√

L+
√
�

�
=

2

3
 for this problem. When fitting c�k||x0 − x∗|| to the error plots achieved

by our method, we find � = 0.19 . This result restates that our method can achieve a faster
convergence rate (e.g.,this problem) than the Polyak optimal HB. It is important to note
that optimality of Polyak HB requires the gradient to be continuously differentiable, which
does not apply to (14).

Additionally, we test our method and the optimal HB method on the Lessard problem
with noisy gradients. The objective of this experiment is to demonstrate how our method
is inherently capable of rejecting measurement noise, leading to robust performance. We
add zero-mean white noise, �k , to the gradient sampled from a normal distribution with
a standard deviation of 0.1. The initial conditions are set to x0 = 2 and x1 = 1 , and we set
� of Eq. (2) to 1.3. It is clear from Fig. 4 that our proposed adaptive HB outperforms the
optimal HB, as the error continues to decrease within the first 31 iterations to reach an
error of about 1 × 10−4 . The norm of the error produced by the optimal HB get stuck fluc-
tuating between 10−1 and 10−3 from the 25th iteration onward. This suggests the the optimal
HB was incapable in further rejecting or suppressing the measurement noise, whereas the
continuously deceasing error generated using our adaptive HB suggests that it is capable
of partially suppressing the measurement noise. After a finite number of iterations, �k and
xk − xk−1 converge to a steady-state solution.

The way in which the noise gets suppressed is explained in the following reasoning. The

additional noise drives L̂k = 𝛾

√
Δgk

TΔgk

ΔxT
k
Δxk

 , where gk = ∇f (xk) + �k , to larger values, which

causes �k to decrease towards zero—a needed trend when dealing with noise.

Fig. 4 The norm of the error pro-
duced by the proposed adaptive
HB versus the optimal HB in the
presence of noisy gradients

3259Machine Learning (2022) 111:3245–3277

1 3

5.3 Positive semi‑definite quadratic functions

This example illustrates the performance of our proposed HB against a time-invariant
and time-varying HB satisfying the conditions of the work in Ghadimi et al. (2015). We
consider a quadratic objective function with positive semi-definite quadratic matrix,
A ∈ ℝ

d×d . We generate random matrices for d = 2, 4,… , 98, 100 with rank equals to d
2
 as

follows: A =
∑ d

2

j=1
�j�

T
j

 , where each element of �j ∈ ℝ
d is sampled from a uniform distri-

bution over the interval [0, 1]. Similarly, each element of the initial guess x0 ∈ ℝ
d is

sampled from a normal distribution, N(0, 1) . For each d we run 20d iterations.
As reflected in the example given in Ghadimi et al. (2015), for the time-invariant HB,

we choose � =
1

L
 and � = 0.5 and for time-varying HB, we choose �k =

1

L(k+1)
 and

�k =
k

k+2
 . However, it is important to note that the selected step-size requires the knowl-

edge of the largest eigenvalue of A, L, for each dimension d. On the other hand, for the

Fig. 5 Comparison of the
progress of the objective values
with A ∈ ℝ

50×50 evaluated
at the Cesáro average of the
iterates of the three heavy-ball
methods under study, namely:
the proposed adaptive heavy-ball
with � = 1.2 , the heavy-ball with
time-varying hyper-parameters
�k =

1

L(k+1)
 and �k =

k

k+2
 , and the

one HB with � =
1

L
 and � = 0.5

Fig. 6 Comparison of
the objective values with
A ∈ ℝ

d×d , 2 ≤ d ≤ 100, evalu-
ated at the Cesáro average at
the iterate k = 20d of the three
heavy-ball methods under study

3260 Machine Learning (2022) 111:3245–3277

1 3

proposed method, we assume no knowledge about A or L, and fix � = 1.2 for all dimen-
sions of A.

Figure 5 illustrates the progress of the objective values evaluated at the Cesáro aver-
age of the iterates of the three heavy-ball methods under consideration for d = 50 , that
is, A ∈ ℝ

50×50 . As a reference, we also include O(1∕k) upper-bound. Whereas in Fig. 6,
we show the values of f (x̄T) − f (x∗) at the very last iteration, k = 20d , for the three meth-
ods, where x̄T =

1

T+1

∑T

k=0
xk is the Cesáro average of the iterates. Figure 7 shows that our

method converges for � ≥ �0 and for this example �0 = 1 . It presents the objective values
for different values of � for d = 50 , that is, A ∈ ℝ

50×50 , at the very last iteration, k = 1, 000.
By examining Figs. 5 and 6, the proposed adaptive HB with a fixed � = 1.2 for all

dimensions outperforms the other two methods that assume the knowledge of L associated
with each dimension, d. Also, by examining Fig. 7, we find that even when increasing the
value of � , the superiority of the proposed adaptive HB is preserved.

We emphasize that selection of the hyper-parameters for the HB method without the
knowledge of the largest eigenvalue, L, can be indeed tricky. For the quadratic functions
generated in this example, the largest L is about 1.3 × 103 at d = 100 , and the smallest
L is about 3.2 × 10−1 at d = 3 with a standard deviation of about 380. If L is under esti-
mated, then the step-size becomes too large and that can lead to divergence. Whereas if
L is over estimated, then this would lead to smaller values of the step size yielding slower
convergence. Consequently, unlike our method, tuning of a non-adaptive HB can become
burdensome.

5.4 Non‑convex beale function

In this section we aim to compare the convergence and convergence rate of our opti-
mizer when compared to other popular optimizers when solving the non-convex Beale
function, which is listed as one of the 175 benchmark test functions for optimization
algorithms (Jamil & Yang, 2013). The Beale function is a 2-dimensional non-convex

Fig. 7 Comparison of the objec-
tive values with A ∈ ℝ

50×50
evaluated at the Cesáro average
at the iterate k = 1000 of the
proposed adaptive heavy-ball
method for different values of �

3261Machine Learning (2022) 111:3245–3277

1 3

function with one global minimum f (x∗) = 0 at x∗ = (3, 0.5) . The function is given by:
f (x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2.

We conduct 1,000 independent runs where we randomly sample each element of the
initial value, x0 , from a uniform distribution over the interval [0, 4). The convergence rate
is evaluated by recording the number of steps, k, for any optimizer it took to reach the solu-
tion within a difference in error of f (xk) − f (x∗) ≤ 10−5 . A win is awarded to an optimizer
if it converges to a solution first within the first 1, 000 iterations, if no optimizer converges
then none of the optimizers are rewarded.

We compare the proposed adaptive HB with stochastic gradient descent (SGD), SGD
with momentum (SGDm) (Qian, 1999), Nesterov’s accelerated gradient (NAG) method
(Nesterov, 1983), RMSProp (Hinton et al., 2012), AdaGrad (Duchi et al., 2011), Adam
(Kingma and Ba, 2014) and AdamW (Loshchilov and Hutter, 2017).

We provide a brief description of the adaptive methods under consideration. Adaptive
gradient algorithm (AdaGrad) is a modified stochastic gradient descent algorithm with per-
parameter learning rate. That is, the learning rate is a diagonal matrix with elements equal
to �√

Gi,i

 , where G =
∑k

j=1
gjg

T
j
 , gj is the gradient at iteration k, and � is a step size. The idea

is based on increasing the learning rate for sparser parameters and decreasing the learning
rate for ones that are less sparse. Root Mean Square Propagation (RMSProp) divides the
learning rate by a running average of the magnitudes of recent gradients. Adaptive Moment
Estimation (Adam), which is considered as an update to RMSProp, uses running averages
of both the gradients and the second moments of the gradients. Adam with decoupled
weight decay (AdamW) is basically a modification of Adam where the weight decay is
decoupled from the optimization steps taken with respect to the loss function.

The learning rates of all these optimizers were chosen after sweeping over the values
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} . The learning rates that are selected for SGD,

SGDm, NAG, RMSProp, Adagrad, and Adam are 0.01, 0.01, 0.001, 0.01, 0.5, and 0.5,
respectively. The momentum factor used for SGDm is the standard value of 0.9, and the
standard values of �1 = 0.9 and �2 = 0.99 are used for Adam. As for our adaptive HB, we
only conducted a hyper-parameter search for � of Eq. 2, where we sweep over the val-
ues: {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2} . The value taken for all hyper-parameter
searches was the one that returned the largest number of times each optimizer converged.
The value for � of Eq. 2 for our adaptive HB was chosen to be 1.2.

Clearly, from Table 1, the proposed adaptive HB outperforms the rest by converging to
the global minimum the largest number of times, specifically the adaptive HB converges
801 times with the fastest rate averaging at 175.52 iterations to converge. Not to mention,

Table 1 Convergence
characteristics of the proposed
optimizer in comparison to
known optimizers when tested on
the Beale function

Bold reflect the best performing metric values

Optimizer Wins Times converged Average steps

AHB 801 915 175.52
SGD 0 27 992.94
SGDm 34 319 719.11
NAG 12 569 575.23
RMSProp 3 86 933.54
Adagrad 9 346 772.11
Adam 69 535 586.37

3262 Machine Learning (2022) 111:3245–3277

1 3

our adaptive HB converges 91.5% of all random runs, which is indicative of the method’s
robustness.

Remark 2 Although we mostly study the performance of popular adaptive optimizers, it is
important to note it is still possible to obtain monotonic decreasing function values that in
the non-convex setting, even with a fixed hyper-parameter. This can be accomplished by
following the negative curvature direction (see, e.g., Carmon et al., 2017; Yu et al., 2018).

5.4.1 AHB versus SAHB in presence of noisy gradient

In this experiment we add zero-mean white Gaussian noise, N(0, �2) , to the gradi-
ent of the Beale function and we run 103 independent runs using different values of
� ∈ {0, 10−2, 10−1, 1} . We use � = 1.2 , x−1 = [0 0]T , and x0 = [1 1]T.

We consider min0≤k≤1000 ‖∇f (xk)‖2 and compute its average over the 103 independent
runs. For AHB, we use �k and �k as defined in (4) where as for SAHB, we use
�̂�k = min

{
𝛼k,

C

(k+1)𝜇

}
 , 𝛽k = min

{
𝛽k,

1

(k+2)𝜇

}
 , as defined in (8) with C = 1 and � = 0.5001.

Examining Table 2, we conclude without the addition of noise, AHB outperforms
SAHB, otherwise SAHB outperforms AHB.

Remark 3 if �k =
C

(k+1)�
 and �k =

1

(k+2)�
 , then an HB using such hyper-parameters would

require small values of C to converge; e,g, C ≤ 0.1 and for such setting, this algorithm con-
verges much slower than SAHB or AHB.

5.5 Image classification

We train several existing networks with random initializations on the MNIST, QMNIST,
CIFAR-10, and CIFAR-100 image classification datasets. We use these image classifica-
tion tasks to demonstrate that our optimizer is well-suited for deep neural networks when
compared with other popular optimizers. For these tasks, essentially no tuning was per-
formed on our method (i.e. � = 1 of Eq. 2). To avoid any divisions by zero, we add a fixed �
to the denominator of equations (2) and (3) in all of our image classification tasks to avoid
singularities. It is important to note that excessive tuning was conducted on the other three
optimizers under consideration. We point out that we compute the gradient at every batch
(which is equivalent to an optimization step), rather than a full gradient descent over the
entire dataset. Thus, every epoch takes the average accuracy or loss over the total number
of batches within each epoch, as commonly done with the other optimizers that we com-
pared against. In addition, we used a common batch sample used by the optimizers under
consideration, although recent studies have pointed out that the performance of DNNs is
heavily dependent on how well the mini-batch samples are selected (Song et al., 2020;
Bakirov & Gabrys, 2021).

Table 2 Average of
min

0≤k≤1000 ‖∇f (xk)‖2 over 103
independent runs when tested
on the Beale function with noisy
gradient

Bold reflect the best performing metric values

Method � = 0 � = 10−2 � = 10−1 � = 1

AHB �.� × ��
−�� 1.1 × 10−4 9.0 × 10−3 0.26

SAHB 1.2 × 10−14 �.� × ��
−�

�.� × ��
−� �.��

3263Machine Learning (2022) 111:3245–3277

1 3

5.5.1 MNIST/QMNIST

The MNIST dataset is a 10-class image classification dataset composed of 60, 000 and 10, 000
training and testing grey-scale images of hand-written digits, respectively. The QMNIST dataset
extends the MNIST testing set, resulting in 60, 000 testing images. We compare our proposed
optimizer with SGDm, NAG, Adam, and AdamW. The neural network chosen for this problem
is the conventional convolutional neural network (CNN) as designed in Koehler (2020), which
includes two convolutional layers with kernel size 5, one fully-connected hidden layer, and a
proceeding fully-connected layer of 50 neurons connecting to the output. The activation func-
tion chosen is the ReLU function. We run our networks for 200 epochs over 5 random (seeds)
initializations of the network parameters, and use a batch size of 64.

The learning rates for the optimizers are chosen by conducting a random search over the
values {1, 0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005} for all optimizers, and choose
the value that returns the highest validation accuracy. For SGDm, we choose a learning rate
value of 0.01, with the standard momentum factor of 0.9. For NAG we choose a learning
rate of 0.01 and � = 0.9 . For Adam, we choose a learning rate of 0.0005 with the standard
values of �1 = 0.9 and �2 = 0.99 . Lastly, for AdamW, we choose a learning rate of 0.0005
with the standard values of �1 = 0.9 and �2 = 0.99 , and a weight decay value of 1. Our
method does not require the selection of a learning rate, as it automatically updates its
hyper-parameters at every iteration.

Our results are summarized in Table 3, which includes the average test accuracies for all
optimizers over the last 10 epochs. The best results are highlighted in bold. Our method’s
performance is comparable to the other optimizers in these image classification tasks. We
emphasize the fact that no tuning was performed on our method, and one would expect
potentially outperforming the other optimizers if the hyper-parameter � of Eq. (2) were tuned.

5.5.2 CIFAR‑10/100

The CIFAR-10 and CIFAR-100 datasets are composed of 50, 000 and 10, 000 natural
training and testing images, all with dimensions of 32 × 32 , each with 10 and 100 classes,
respectively.

We use the tuning hyper-parameters set in Zhang et al. (2019) for SGDm and AdamW,
and run the proposed CIFAR experiments using a Resnet-18 (He et al., 2016) for 200
epochs over three different seeds using a batch size of 128. We also compare against Adam,
which is tuned in-house, for further comparison. The learning rate for Adam is chosen by
conducting a random search over {1, 0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005} and
choose the value that returns the highest validation accuracy. We tune all optimizers on
CIFAR-10, then use the same hyper-parameters on CIFAR-100.

Table 3 The average MNIST
(top) and QMNIST (bottom)
test accuracy results obtained
over the last 10 epoch for all
optimizers

Bold reflect the best performing metric values

AHB SGDm NAG Adam AdamW

98.79% 99.03% 99.13% 99.17% 97.77%

±0.03% ±0.02% ±0.01% ± 0.02% ±0.03%

98.71% 98.81% 98.95% 98.93% 97.61%

±0.02% ±0.02% ± 0.01% ±0.01% ±0.04%

3264 Machine Learning (2022) 111:3245–3277

1 3

We run SGD with a momentum factor of 0.9, learning rate of 0.05, and weight decay
0.001. AdamW is run with a learning rate of 3 × 10−4 and weight decay value of 1. For
NAG, we use a learning rate of 0.05 and � = 0.9 . Whereas for Adam, we choose a learn-
ing rate value of 0.005, with no weight decay and the standard values of �1 = 0.9 and

Fig. 8 The training loss at every
epoch for all optimizers on both
CIFAR-10 (top) and CIFAR-100
(bottom). The plots reflect the
mean training loss over the 3
random runs

Fig. 9 The test set accuracy at
every epoch for all optimizers
on both CIFAR-10 (top) and
CIFAR-100 (bottom). The solid
lines reflect the mean accuracy
over the 3 random runs, whereas
the shaded regions reflect the
corresponding added standard
deviations

Table 4 Average test accuracy
for CIFAR-10 (top) and CIFAR-
100 (bottom) over last 10 epochs

Bold reflect the best performing metric values

AHB SGDm NAG Adam AdamW

92.35% 84.16% 93.03% 92.38% 87.64%
±0.25% ±1.44% ± 0.17% ±0.24% ±1.28%

69.04% 59.58% 71.83% 64.79% 63.95%
±0.37% ±1.16% ± 0.24% ±0.35% ±0.78%

3265Machine Learning (2022) 111:3245–3277

1 3

�2 = 0.99 . Again, our method does not require the selection of a learning rate, as it auto-
matically updates its hyper-parameters at every iteration.

Figures 8 and 9 show the mean training loss and the mean test set accuracy at every
epoch over the three random runs for both datasets, respectively. The mean test accuracies
over the last 10 epochs shown in Table 4. In CIFAR-10, our proposed optimizer achieves
comparable test accuracy to the other optimizers, resulting in an average 92.35% mean
accuracy over the last 10 epochs. Whereas for CIFAR-100, our proposed optimizer outper-
forms all the other optimizers, except NAG, by achieving a mean test accuracy of 69.04%
over the last 10 epochs, where Adam achieves a mean test accuracy of 64.79% over the last
10 epochs. The best performing optimizer however for these tasks is the NAG optimizer.
We point out however that with the use of learning-rate scheduling, where the learning-rate
is decayed by some factor when the error stagnates, better performances can be achieved,
such as 95% test accuracy on CIFAR-10 using SGDm (Lang et al., 2019). We reiterate
that our main objective is tuning reduction, and not necessarily outperforming the other
optimizers. Thus, for fair comparison, we compare our method with other optimizers while
only tuning their hyper-parameters, and not with learning-rate scheduling implemented,
which can be considered extensive. We set � = 1 (no tuning) in all the image classification
datasets yielding competitive convergence rates in regard to the popular first-order methods
that require excessive tuning of more than one hyper-parameter.

6 Conclusion

In this paper, we have developed an adaptive HB method designed to tackle large-scale
systems, which requires the tuning of only a single hyper-parameter, and in some cases
requires no tuning at all. Our method approximates the optimal parameters set forth by Pol-
yak (1987) in an iterative manner. We showed that a linear convergence rate can be attained
for strongly convex objective functions. Our method’s potential was demonstrated against
several optimizers on a number of tasks, such as positive semi-definite quadratic functions,
the strongly convex function introduced by Lessard et al. (2016) (with and without noise),
the non-convex Beale function, and image classification tasks using deep neural networks.
We find that our optimizer displays superior performance on many of these tasks, including
the inherent capability to suppress gradient noise, and performs comparably well to popu-
lar optimizers on image classification tasks with no tuning performed whatsoever.

There are many possible interesting extensions of our work, such as developing a gain
scheduling technique tailored to the design of our proposed optimizer. Such a schedul-
ing scheme can be formulated in such a way that the parameter � of Eq. (2) is gradually
increased once the loss begins to saturate.

Appendix

This section is organized as follows. “Appendix A” provides useful preliminaries. We pre-
sent a lemma, Lemma 1, in “Appendix B” where the proofs of Proposition 1 and Lemma
1 are included in “Appendix B”. At the end of “Appendix B”, we provide an illustrative
example. We also present an additional lemma, Lemma 2, in “Appendix C” where the
proofs of Theorem 1 and Lemma 2 are also included in “Appendix C”.

3266 Machine Learning (2022) 111:3245–3277

1 3

Appendix A: Preliminaries

We first introduce some properties that hold for L-smooth functions, as defined in Defini-
tion 1, for all x, y ∈ ℝ

d from Nesterov (2003):

and:

If f(x) is a convex continuously differentiable function, then, we have

In addition, if f(x) is strongly convex, then from Theorem 2.1.10 (Nesterov, 2003) we have
for all x, y ∈ ℝ

d

and

Appendix B: Proof of Proposition 1

Before we prove Proposition 1, we present a lemma, Lemma 1, and then simultaneously
prove all items in Proposition 1 and Lemma 1.

Proposition 1 Suppose that f(x) is strongly convex and L-smooth. Then, L ≥ � , and the
algorithm (1) with hyper-parameters � , �k and �k in (4), guarantees the following proper-
ties for all k ≥ 0:

(P1) 𝛾𝜇 ≤ L̂k ≤ 𝛾L.

For all � ≥
L

�
+
√

L2

�2
− 1 , we have

(P2)
√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L ≤ �̂�k ≤ (𝛾 + 1)L.

(P3) �k ∈ (0, 1) , and

(15)f (y) − f (x) − ⟨∇f (x), y − x⟩ ≤ L

2
��x − y��2

(16)
1

L
��∇f (x)��2 ≤ ⟨x − x∗,∇f (x)⟩

(17)f (x) − f (x∗) +
1

2L
��∇f (x)��2 ≤ ⟨x − x∗,∇f (x)⟩

(18)f (y) − f (x) ≥ ⟨y − x,∇f (x)⟩.

(19)
1

2�
��∇f (y) − ∇f (x)��2 ≥ f (y) − f (x) − ⟨∇f (x), y − x⟩

(20)⟨∇f (y) − ∇f (x), y − x⟩ ≥ �

2
��y − x��2

3267Machine Learning (2022) 111:3245–3277

1 3

(P4) �̂�k is an increasing function of � , and �k is a decreasing function of �.

(P5) lim𝛾→∞ �̂�k = lim𝛾→∞ L̂k = ∞ , and

lim�→∞ �k = lim�→∞ �k = 0.

Lemma 1 Given any 𝜖1 > 0 , then for all k ≥ 0 there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1 such that

for all � ≥ �1 ,
�2
k

�k
≤ �1.

Proof of Proposition 1 and Lemma 1. From (2), we can write L̂k = 𝛾
√
Pk , where

We first show (P1); that is, 𝛾𝜇 ≤ L̂k ≤ 𝛾L for all k. Since f(x) is
L-smooth, then ||∇f (xk) − ∇f (xk−1)|| ≤ L||xk − xk−1|| . Consequently,
hT
k
hk = ||∇f (xk) − ∇f (xk−1)||2 ≤ L2||Δxk||2 , where hk = ∇f (xk) − ∇f (xk−1) and

Δxk = xk − xk−1 . Thus, Pk ≤ L2 and for � ≥ 1, L̂k ≤ 𝛾L .
Using (19), we have

From (5), we have

or

Inserting the last inequality into (21), we obtain

Therefore, hT
k
hk ≥ �2||Δxk||2.

Thus, ||∇f (xk) − ∇f (xk−1)|| ≥ �||xk − xk−1|| and we have
||∇f (xk) − ∇f (xk−1)|| ≤ L||xk − xk−1|| ; hence, L ≥ � . Pk ≥ �2 , and L̂k ≥ 𝛾𝜇 . Since 𝜇 > 0 ,
then for sufficiently large � , L̂k can be made arbitrarily large.

Next, we show (P2)-(P4). We already showed that 𝛾𝜇 ≤ L̂k ≤ 𝛾L . From (3), we define
pk such that �̂�k =

√
pk , where

4

(
√
� +

√
� + 1)2L

≤ �k

≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4)2
.

Pk ≜
hT
k
hk

ΔxT
k
Δxk

.

(21)
1

2�
hT
k
hk ≥ f (xk−1) − f (xk) + ⟨∇f (xk),Δxk⟩.

f (xk−1) − f (xk) ≥ −⟨Δxk,∇f (xk)⟩ + �

2
��Δxk��2

⟨Δxk,∇f (xk)⟩ ≥ �

2
��Δxk��2 − f (xk−1) + f (xk).

1

2�
hT
k
hk ≥

�

2
||Δxk||2.

3268 Machine Learning (2022) 111:3245–3277

1 3

By expanding the quadratic expression of pk , we get

We have already shown that �2 ≤
‖hk‖2
‖Δxk‖2 ≤ L2 , and from Cauchy-Schwarz inequality, we

have −hT
k
Δxk ≤ ‖hk‖‖Δxk‖ and −hT

k
Δxk ≥ −‖hk‖‖Δxk‖ . Therefore,

Consequently,

The lower bound of �̂�k requires that L̂2
k
+ 𝜇2 − 2LL̂k ≥ 0 . This inequality holds whenever

L̂k ≥ L +
√
L2 − 𝜇2 . Since L̂k ≥ 𝛾𝜇 , then for � ≥

L

�
+
√

L2

�2
− 1 , we have

L̂2
k
+ 𝜇2 − 2LL̂k ≥ 0 , for all k.
From its definition, it is clear that 0 < 𝛽k < 1 . To find the lower bound of �k , we use

the upper bounds of both L̂k and �̂�k . Since 𝛾𝜇 ≤ L̂k ≤ 𝛾L , then using (23), we obtain
�̂�k ≤ (𝛾 + 1)L , and

Next, we show that �̂�k is an increasing function of � for 𝛾 >
L

𝜇
 . We consider the partial

derivative of pk with respect to L̂k , that is,

We use (15) twice, one time with y ≡ xk and x ≡ xk−1 and another time with x ≡ xk and
y ≡ xk−1 , we obtain

We sum the above inequalities, multiply by 2 and divide by ΔxT
k
Δxk , we get

(22)pk ≜
(hk − L̂kΔxk)

T (hk − L̂kΔxk)

ΔxT
k
Δxk

.

pk = L̂2
k
+

‖hk‖2
‖Δxk‖2

− 2L̂k
hT
k
Δxk

‖Δxk‖2
.

pk ≤ L̂2
k
+ L2 + 2L̂kL = (L̂k + L)2, and

pk ≥ L̂2
k
+ 𝜇2 − 2LL̂k.

(23)
√

L̂2
k
+ 𝜇2 − 2LL̂k ≤ �̂�k ≤ L̂k + L.

(24)�k ≥
4

(
√
� +

√
� + 1)2L

.

𝜕pk

𝜕L̂k

= 2L̂k − 2
⟨∇f (xk) − ∇f (xk−1), xk − xk−1⟩

ΔxT
k
Δxk

.

⟨∇f (xk−1), xk − xk−1⟩ ≥ f (xk) − f (xk−1)

−
L

2
��xk − xk−1��2

−⟨∇f (xk), xk − xk−1⟩ ≥ f (xk−1) − f (xk)

−
L

2
��xk − xk−1��2.

−2
⟨∇f (xk) − ∇f (xk−1), xk − xk−1⟩

ΔxT
k
Δxk

≥ −2L.

3269Machine Learning (2022) 111:3245–3277

1 3

Consequently,

Recall that L̂k ≥ 𝛾𝜇 . Thus, for 𝛾 >
L

𝜇
 , we can make L̂k > L , hence 𝜕pk

𝜕L̂k
> 0 . Thus, since

�̂�k =
√
pk , then �̂�k becomes an increasing function of �.

Next, we find the upper bound of �k where we use the lower bounds of both L̂k and
�̂�k . The lower bound of �̂�k holds whenever � ≥

L

�
+
√

L2

�2
− 1 ≥

L

�
 , where �̂�k is an increas-

ing function of � and note that from (23), we find that the lower bound is an increasing
function of L̂k for 𝛾 >

L

𝜇
 . Since L̂k ≥ 𝛾𝜇 , then �̂�k ≥

√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L . Thus, for

� ≥
L

�
+
√

L2

�2
− 1 , we obtain

Next, we show that for 𝛾 >
L

𝜇
 , �k is a decreasing function of � . From the definition of �k , it

is readily clear that as � increases, both L̂k and �̂�k increase, and �k decreases.
Next, we prove Lemma 1. From definitions of �k and �k , we have

The inequality in (23) implies that

and we know that 𝜇𝛾 ≤ L̂k ≤ L𝛾 . Thus, as � → ∞ , L̂k → ∞ . Notice that

and

Since 0 < 𝜇𝛾 ≤ L̂k ≤ L𝛾 for all k, we have
L

𝜇𝛾
≥

L

L̂k
 or 1 −

√
1 +

L

𝜇𝛾
≤ 1 −

√
1 +

L

L̂k
.

In addition, 𝜇
2

L̂2
k

≥
𝜇2

L2𝛾2
 and − 2L

L̂k
≥ −

2L

𝜇𝛾
 . Then, 1 + 𝜇2

L̂2
k

−
2L

L̂k
≥ 1 +

𝜇2

L2𝛾2
−

2L

L̂k
≥ 1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾
 .

Thus, 1 −
(
1 +

𝜇2

L̂2
k

−
2L

L̂k

) 1

4

≤ 1 −
(
1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾

) 1

4.

𝜕pk

𝜕L̂k

≥ 2(L̂k − L).

(25)�k ≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4)2
.

(26)
𝛽2
k

𝛼k
=

��
L̂k −

√
�̂�k

�4

4
��

L̂k +
√
�̂�k

�2
.

L̂k

√
1 +

𝜇2

L̂2
k

−
2L

L̂k

≤ �̂�k ≤ L̂k

(
1 +

L

L̂k

)
,

�
L̂k

�
1 −

�
1 +

L

L̂k

�
≤

�
L̂k −

√
�̂�k

≤

�
L̂k

�
1 −

�
1 +

𝜇2

L̂2
k

−
2L

L̂k

� 1

4
�
,

1 −

√
1 +

L

L̂k

≤ 1 −

√
�̂�k

L̂k

≤ 1 −
(
1 +

𝜇2

L̂2
k

−
2L

L̂k

) 1

4

.

3270 Machine Learning (2022) 111:3245–3277

1 3

Consequently,

Therefore, as � → ∞ , both upper and lower bounds of 1 −
√

�̂�k

L̂k
 approach zero; hence

lim𝛾→∞
�̂�k

L̂k
= 1 for all k ≥ 0 since the bounds are independent of k.

Consequently, as � → ∞ , the numerator in (26) remains bounded, whereas the
denominator would tend to infinity. Since 𝛼k > 0,∀ k , then as � → ∞ , �

2
k

�k
→ 0 for all

k ≥ 0 . Therefore, given any 𝜖1 > 0 , then for all k ≥ 0 there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1

such that for all � ≥ �1 ,
�2
k

�k
≤ �1.

Finally, we show (P5). We showed that as � → ∞ , L̂k → ∞ , and lim𝛾→∞ �̂�k = ∞ . It is
readily clear that as � → ∞ , �k → 0 for all k ≥ 0 . Using the same argument of the proof of
Lemma 1 whereas � → ∞ , the numerator of �k remains bounded and its denominator goes
to infinity. Thus, as � → ∞ , �k → 0.

Example This example is intended just to show that (2) and (3) can immediately esti-
mate the largest eigenvalue and the smallest non-zero eigenvalue of A.

We consider the following matrix

with eigenvalues {100.02, 40.98} . We use Δx = [1 1]T . We adopt a tuned � = 1.3 to obtain
L̂0 = 100.5 and �̂�0 = 41.4 . However, with � = 2 , we obtain L̂0 = 154.7 and �̂�0 = 88.3 . As
expected for larger values of � , we obtain larger values of L̂ , which can exceed the maxi-
mum eigenvalue of A. ◻

Appendix C: Proof of Theorem 1

In what follows we modify Lemma 1 and Theorem 4 in Ghadimi et al. (2015), where the
HB hyper- parameters are assumed constant, to our time-varying case (1).

Lemma 2 Let {Uk}k≥0 and {Vk}k≥0 be non-negative sequences of real scalars satisfying

where {v1,k}k≥0 , {u1,k}k≥0 and {v2,k}k≥0 are positive sequences of real scalars, and
{u2,k}k≥0 is a sequence of non-negative scalars. If qu1,k + u2,k ≤ q2 and 0 ≤

v2,k

v1,k
≤ q , for

q ∈ (0, 1) and for all k ≥ 0 , then the sequence {Uk}k≥0 generated by (27) satisfies

Proof of Lemma 2 It is readily clear that (28) holds for k = 0 . We add zUk , with z ≥ 0 to
both sides of (27)

1 −

√
1 +

L

𝜇𝛾
≤ 1 −

√
�̂�k

L̂k

≤ 1 −
(
1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾

) 1

4

.

A =

[
41 1

1 100

]

(27)Uk+1 + v1,k+1Vk+1 ≤ u1,kUk + u2,kUk−1 + v2,kVk

(28)Uk ≤ qk((q + 1 − u1,0)U0 + v1,0V0).

3271Machine Learning (2022) 111:3245–3277

1 3

if U0 = U−1 and the following two inequalities hold

then Sk+1 ≤ (z + u1,k)Sk , where Sk ≜ Uk + zUk−1 + v1,kVk . For (31) to hold, we need

z2 + u1,kz − u2,k ≥ 0,∀ k or z ≥
−u1,k+

√
u2
1,k
+4u2,k

2
,∀ k . In addition, for (32) to hold, we need

z ≥
v2,k

v1,k
− u1,k,∀ k . Therefore, for both (31) and (32) to hold, we need

In order to have Sk converges to zero at a linear rate, it is sufficient to have
0 ≤ z + u1,k ≤ q < 1,∀ k , or

Note that since u1,k ≥ 0 and u2,k ≥ 0 , then the first element of max{., .} is non-negative. In

addition, for
u1,k+

√
u2
1,k
+4u2,k

2
≤ q , then we need u2

1,k
+ 4u2,k ≤ (2q − u1,k)

2 or qu1,k + u2,k ≤ q2 .
Furthermore, 0 ≤

v2,k

v1,k
≤ q.

Since 0 ≤ z + u1,k ≤ q < 1,∀ k , then

Since Sk = Uk + zUk−1 + v1,kVk is the summation of non-negative scalars, this ends the
proof. ◻

Theorem 1 Suppose that f(x) is strongly convex and L-smooth. Then, there exists a
�0 ≥ max

{
4
(

L

�
+
√

L2

�2
− 1

)
,
4(L+1)

�

}
 such for 𝛾 > 𝛾0 , the sequence {xk} generated by

algorithm (1) with step-size �k and hyper-parameter �k in (4), satisfies

where q ∈ (0, 1) , and x∗ is the unique optimal solution that minimizes f(x).

(29)
Uk+1 + zUk + v1,k+1Vk+1 ≤ (u1,k + z)Uk + u2,kUk−1

+ v2,kVk

(30)= (u1,k + z)
(
Uk +

u2,k

u1,k + z
Uk−1 +

v2,k

u1,k + z
Vk

)

(31)
u2,k

u1,k + z
≤ z

(32)
v2,k

u1,k + z
≤ v1,k,

(33)z ≥ max
{−u1,k +

√
u2
1,k

+ 4u2,k

2
,
v2,k

v1,k
− u1,k

}
,∀ k.

(34)0 ≤ max
{u1,k +

√
u2
1,k

+ 4u2,k

2
,
v2,k

v1,k

}
≤ q < 1,∀ k.

Uk+1 + zUk + v1,k+1Vk+1 ≤ q(Uk+1 + zUk−1 + v1,kVk)

≤ ⋯ ≤ qk+1((1 + z)U0 + v1,0V0)

≤ qk+1((q + 1 − u1,0)U0 + v1,0V0)

(35)f (xk) − f (x∗) ≤ qk(f (x0) − f (x∗))

3272 Machine Learning (2022) 111:3245–3277

1 3

Proof of Theorem 1 Since f(x) is L-smooth, then

We have from (1),

and

Substituting the above equalities into (36), subtracting f (x∗) from each side and arranging
terms, we obtain

We multiply both sides of (37) by 1−�kL
2�k

 , add the resulting identity to (38), and rearrange
terms yields

Since f(x) is smooth and �-strongly convex, then from Nesterov (2003) or Polyak- Lojasie-
wicz (PL) inequality, we have

Thus, from (39) and the above inequality

We arrange the terms of (40) and put it in the form of (27), we obtain

(36)
f (xk+1) − f (xk) ≤⟨∇f (xk), xk+1 − xk⟩

+
L

2
��xk+1 − xk��2

(37)
��xk+1 − xk��2 =�2

k
��∇f (xk)��2 + �2

k
��xk − xk−1��2

− 2�k�k⟨∇f (xk), xk − xk−1⟩

⟨∇f (xk), xk+1 − xk⟩ = − �k��∇f (xk)��2
+ �k⟨∇f (xk), xk − xk−1⟩

(38)

f (xk+1) − f (x∗) ≤ f (xk) − f (x∗) +
L�2

k

2
��xk − xk−1��2

− �k

�
1 −

�kL

2

�
��∇f (xk)��2

+ �k(1 − L�k)⟨∇f (xk), xk − xk−1⟩

(39)

f (xk+1) − f (x∗) +
1 − �kL

2�k
||xk+1 − xk||2 ≤ f (xk) − f (x∗)

−
�k

2
||∇f (xk)||2 +

�2
k

2�k
||xk − xk−1||2

||∇f (xk)||2 ≥ 2�(f (xk) − f (x∗))

(40)

f (xk+1) − f (x∗) +
1 − �kL

2�k
||xk+1 − xk||2 ≤ f (xk) − f (x∗)

− ��k(f (xk) − f (x∗)) +
�2
k

2�k
||xk − xk−1||2

3273Machine Learning (2022) 111:3245–3277

1 3

This inequality is in the form of (27) (Lemma 2) where we identify f (xk) − f (x∗) with Uk ,
and ||xk − xk−1||2 with Vk , and

In what follows, we show that all conditions of Lemma 2 are satisfied.
From the definition of �k , it is clear that 𝛼k ≤

4

L̂k
 . Since L̂k ≥ 𝜇𝛾 , then �k ≤

4

��
 for all

k ≥ 0 . Thus, for 𝛾 > 4
(

L

𝜇
+
√

L2

𝜇2
− 1

)
≥ 4

L

𝜇
≥ 4 , we have 0 < 𝛼k𝜇 < 1 , and

0 < 1 − 𝛼k𝜇 < 1 . Similarly, �kL ≤
4L

��
 and since 𝛾 > 4

L

𝜇
 , then 0 < 𝛼kL < 1 and 1 − 𝛼kL > 0 .

Thus, for all k ≥ 0 , {v1,k}k≥0 and {u1,k}k≥0 become sequences of positive scalars. It is read-
ily clear that {v2,k}k≥0 is a sequence of positive scalars and {u2,k}k≥0 is a sequence of zero
(or non-negative) scalars.

We are left to show that for some constant q ∈ (0, 1) , we have qu1,k + u2,k ≤ q2 , and
0 ≤

v2,k

v1,k
≤ q . We next consider, qu1,k + u2,k = qu1,k = q(1 − �k�).

Let q =
(�+1)L−�

(�+1)L
 ; hence, q ∈ (0, 1) . From Proposition 1 (P3), we have for all k ≥ 0

Consequently,

Therefore, q(1 − 𝛼k𝜇) < q2.
Next, we show 0 ≤

v2,k

v1,k
≤ q or 0 ≤

�2
k

�k

�k−1

1−�k−1L
≤ q.

We first show that for 𝛾 > 𝛾2 ≜
4(L+1)

𝜇
 , we have 0 <

𝛼k

1−𝛼kL
< 1 for all k. We know 𝛼k > 0

and we already showed that for 𝛾 > 4
L

𝜇
 , then 1 − 𝛼kL > 0 . Next, we consider

It is clear that the upper bound of �k
1−�kL

 is less than one for 𝛾 >
4(L+1)

𝜇
.

Thus, for all k ≥ 0 , �
2
k

�k

�k−1

1−�k−1L
≤

�2
k

�k
 . From Lemma 1 we have for all k ≥ 0 and for any

q > 0 , there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1 ≥

L

𝜇
 such that for all � ≥ �1 ,

�2
k

�k
≤ q or v2,k

v1,k
≤ q < 1.

Therefore, for all for all k ≥ 0 and 𝛾 > 𝛾0 ≜ max
{
𝛾1, 4

(
L

𝜇
+
√

L2

𝜇2
− 1

)
,
4(L+1)

𝜇

}
 , we

have all conditions of Lemma 2 satisfied. Therefore, one can apply Lemma 2 to conclude
the linear convergence in (35). ◻

f (xk+1) − f (x∗) + v1,k+1||xk+1 − xk||2
≤ u1,k(f (xk) − f (x∗)) + u2,k(f (xk−1) − f (x∗))

+ v2,k||xk − xk−1||2

v1,k+1 =
1 − �kL

2�k
, u1,k = 1 − �k�, u2,k = 0, v2,k =

�2
k

2�k
.

𝛼k ≥
4

(
√
𝛾 +

√
𝛾 + 1)2L

>
1

(𝛾 + 1)L
.

1 − 𝛼k𝜇 < 1 −
𝜇

(𝛾 + 1)L
= q.

𝛼k

1 − 𝛼kL
=

4��
L̂k +

√
�̂�k

�2

− 4L

<
4

𝛾𝜇 − 4L
.

3274 Machine Learning (2022) 111:3245–3277

1 3

Appendix D: Proof of Theorem 2

We first state Theorem 1 in Gitman et al. (2019).

Theorem 1 in Gitman et al. (2019). Let F satisfy Assumptions 1–3. Additionally, assume
0 ≤ vk ≤ 1 and the non-negative sequences {�k} and {�k} satisfy the following conditions:

Then the sequence {xk} generated by the QHM algorithm satisfies

Moreover, we have

The QHM algorithm with vk = 1 is the Stochastic Heavy Ball method.

Proof of Theorem 2 The hyper-parameters of our SAHB are given by: �̂�k = min
{
𝛼k,

C

(k+1)𝜈

}
 ,

𝛽k = min
{
𝛽k,

1

(k+2)𝜈

}
 , 0.5 < 𝜈 ≤ 1 , C > 0 , and �k and �k are positive and defined in (4).

Making use of Theorem 1 in Gitman et al. (2019), we only need to show that

Since 𝛽k ≤
1

(k+2)𝜈
 , then supk 𝛽k < 1 and limk→∞ 𝛽k = 0 . In addition, since �̂�k ≤

C

(k+1)𝜈
 and

0.5 < 𝜈 ≤ 1 , then by using the integral test we have
∑∞

k=0
�̂�2
k
< ∞.

Due to Lipschitz continuity of ĥ (Assumption 4), we obtain ‖ĥk‖2 ≤ L2
G
‖Δxk‖2 . There-

fore, Pk =
‖ĥk‖2
‖Δxk‖2 ≤ L2

G
 , which implies that L̂k ≤ 𝛾LG.

On the other hand, �̂�k ≜
‖ĥk−L̂kΔxk‖

‖Δxk‖ ≤
‖ĥk‖
‖Δxk‖ + L̂k , thus, �̂�k ≤ (𝛾 + 1)LG . Since

𝛼k ≜
4

(

√
L̂k+

√
�̂�k)

2

 , we conclude that

Hence, there is a finite K such that �̂�k = C∕(k + 1)𝜈 for all k ≥ K . Since
�̂�k ≥ 0,

∑∞

k=0
�̂�k ≥

∑∞

k=K
�̂�k = ∞.

Since all the sufficient conditions in Gitman et al. (2019) are satisfied, then we deduce
both (11) and (12), and this ends the proof. ◻

Author contributions S. Saab Jr has conceptualized the study including the theoretical work, performed the
experiments, and written the manuscript. S. Phoha and A. Ray have supervised the course of the article, M.
Zhu has contributed to the theoretical work, and supervised and organized the course of the article.

(41)
∞∑
k=0

𝛼k = ∞,

∞∑
k=0

𝛼2
k
< ∞, lim

k→∞
𝛽k = 0, 𝛽 ≜ sup

k

𝛽k < 1.

lim inf
k→∞

‖∇F(xk)‖ = 0 a.s.

lim sup
k→∞

F(xk) = lim sup
k→∞,‖∇F(xk)‖→0

F(xk) a.s.

∞∑
k=0

�̂�k = ∞,

∞∑
k=0

�̂�2
k
< ∞, lim

k→∞
𝛽k = 0, 𝛽 ≜ sup

k

𝛽k < 1.

�k ≥
4

(
√
� +

√
� + 1)2LG

.

3275Machine Learning (2022) 111:3245–3277

1 3

Funding The first author has been supported by the Walker Fellowship from the Applied Research Labo-
ratory at the Pennsylvania State University. The work reported here has been supported in part by NSF
CAREER award ECCS-1846706, and by the U.S. Air Force Office of Scientific Research (AFOSR) under
Grant No. FA9550-15-1-0400 in the area of Dynamic Data-Driven Application Systems (DDDAS). Any
opinions, findings and conclusions or recommendations expressed in this publication are those of the
authors and do not necessarily reflect the views of the sponsoring agencies.

Availability of data and materials The data is based on open-source repository.

Code availability The codes will be made available upon acceptance of the manuscript.

Declarations

 Conflict of interest Not Applicable (no potential conflict of interest is reported by the authors).

Ethics approval Not Applicable (the study does not involve human subjects and/or animals).

Consent to participate All the authors mentioned in the manuscript have agreed for authorship, read and
approved the manuscript, and given consent for submission.

Consent for publication All the authors mentioned in the manuscript have given consent for submission and
subsequent publication of the manuscript. The manuscript will not be submitted elsewhere until the editorial
process is completed.

References

Bakirov, R., Fay, D., & Gabrys, B. (2021). Automated adaptation strategies for stream learning. Machine
Learning, 1–34.

Beck, A. (2017). First-order methods in optimization. SIAM.
Berrada, L., Zisserman, A., & Kumar, M. P. (2020). Training neural networks for and by interpolation. In

International conference on machine learning (pp. 799–809).
Bertsekas, D. P. (1997). A new class of incremental gradient methods for least squares problems. SIAM

Journal on Optimization, 7(4), 913–926.
Carmon, Y., Duchi, J. C., Hinder, O., & Sidford, A. (2017). “convex until proven guilty”: Dimensionfree

acceleration of gradient descent on non-convex functions. In International conference on machine
learning (pp. 654–663).

Cutkosky, A., & Mehta, H. (2020). Momentum improves normalized SGD. In International conference on
machine learning (pp. 2260–2268).

Dauphin, Y. N., De Vries, H., & Bengio, Y. (2015). Equilibrated adaptive learning rates for non-convex opti-
mization. arXiv preprint arXiv: 1502. 04390.

Dozat, T. (2016). Incorporating nesterov momentum into adam. In ICLR Workshop
Duchi, J., Hazan, E., & Singer, Y. (2011). Adaptive subgradient methods for online learning and stochastic

optimization. Journal of Machine Learning Research, 12(7).
Floridi, L., & Chiriatti, M. (2020). Gpt-3: Its nature, scope, limits, and consequences. Minds and Machines,

30(4), 681–694.
Gadat, S., Panloup, F., & Saadane, S. (2018). Stochastic heavy ball. Electronic Journal of Statistics, 12(1),

461–529.
Gaivoronski, A. A. (1994). Convergence properties of backpropagation for neural nets via theory of stochas-

tic gradient methods. Part 1. Optimization Methods and Software, 4(2), 117–134.
Ghadimi, E. (2015). Accelerating convergence of largescale optimization algorithms (Unpublished doctoral

dissertation). KTH Royal Institute of Technology.
Ghadimi, E., Feyzmahdavian, H. R., & Johansson, M. (2015). Global convergence of the heavy-ball method

for convex optimization. In 2015 European control conference (pp. 310–315).
Ghadimi, S., & Lan, G. (2013). Stochastic first-and zeroth-order methods for nonconvex stochastic program-

ming. SIAM Journal on Optimization, 23(4), 2341–2368.

http://arxiv.org/abs/1502.04390

3276 Machine Learning (2022) 111:3245–3277

1 3

Ghadimi, S., & Lan, G. (2016). Accelerated gradient methods for nonconvex nonlinear and stochastic pro-
gramming. Mathematical Programming, 156(1–2), 59–99.

Gitman, I., Lang, H., Zhang, P., & Xiao, L. (2019). Understanding the role of momentum in stochastic gra-
dient methods. Advances in Neural Information Processing Systems, 32.

Gower, R. M., Loizou, N., Qian, X., Sailanbayev, A., Shulgin, E., & Richtárik, P. (2019). SGD: General
analysis and improved rates. In International conference on machine learning (pp. 5200–5209).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the IEEE conference on computer vision and pattern recognition (pp. 770–778).

Hendrikx, H., Xiao, L., Bubeck, S., Bach, F., & Massoulie, L. (2020). Statistically preconditioned acceler-
ated gradient method for distributed optimization. In International conference on machine learning
(pp. 4203–4227).

Hinton, G., Srivastava, N., & Swersky, K. (2012). Lecture 6d-a separate, adaptive learning rate for each con-
nection. Slides of Lecture Neural Networks for Machine Learning, 1, 1–31.

Hu, C., Kwok, J. T.-Y., & Pan, W. (2009). Accelerated gradient methods for stochastic optimization and
online learning. In Proceedings of the 23rd annual conference on neural information processing
systems.

Huang, F., Gao, S., Pei, J., & Huang, H. (2020). Momentum-based policy gradient methods. In Interna-
tional conference on machine learning (pp. 4422–4433).

Huang, G., Liu, Z., Van Der Maaten, L., & Weinberger, K. Q. (2017). Densely connected convolutional
networks. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp.
4700–4708).

Jamil, M., & Yang, X.-S. (2013). A literature survey of benchmark functions for global optimisation prob-
lems. International Journal of Mathematical Modelling and Numerical Optimisation, 4(2), 150–194.

Khan, M., Nielsen, D., Tangkaratt, V., Lin, W., Gal, Y., & Srivastava, A. (2018). Fast and scalable bayesian
deep learning by weight-perturbation in adam. In International conference on machine learning (pp.
2611–2620).

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv: 1412.
6980.

Koehler, G. (2020). MNIST handwritten digit recognition in pytorch. Retrieved from https:// nextj ournal.
com/ gkoeh ler/ pytor ch- mnist

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images. Technical
report, University of Toronto.

Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neu-
ral networks. Advances in Neural Information Processing Systems, 25, 1097–1105.

Lang, H., Zhang, P., & Xiao, L. (2019). Using statistics to automate stochastic optimization. arXiv preprint
arXiv: 1909. 09785.

Lessard, L., Recht, B., & Packard, A. (2016). Analysis and design of optimization algorithms via integral
quadratic constraints. SIAM Journal on Optimization, 26(1), 57–95.

Li, X., & Orabona, F. (2019). On the convergence of stochastic gradient descent with adaptive stepsizes. In
The 22nd international conference on artificial intelligence and statistics (pp. 983–992).

Lin, Q., Lu, Z., & Xiao, L. (2015). An accelerated randomized proximal coordinate gradient method and
its application to regularized empirical risk minimization. SIAM Journal on Optimization, 25(4),
2244–2273.

Liu, L., Jiang, H., He, P., Chen, W., Liu, X., Gao, J., & Han, J. (2019). On the variance of the adaptive learn-
ing rate and beyond. arXiv preprint arXiv: 1908. 03265 .

Loizou, N., & Richtárik, P. (2020). Momentum and stochastic momentum for stochastic gradient, newton,
proximal point and subspace descent methods. Computational Optimization and Applications, 77(3),
653–710.

Loizou, N., Vaswani, S., Laradji, I., & Lacoste-Julien, S. (2020). Stochastic Polyak step-size for SGD: An
adaptive learning rate for fast convergence. arXiv preprint arXiv: 2002. 10542.

Loshchilov, I., & Hutter, F. (2017). Decoupled weight decay regularization. arXiv preprint arXiv: 1711.
05101.

Mai, V., & Johansson, M. (2020). Convergence of a stochastic gradient method with momentum for non-
smooth non-convex optimization. In International conference on machine learning (pp. 6630–6639).

Mises, R., & Pollaczek-Geiringer, H. (1929). Praktische verfahren der gleichungsauflösung. ZAMMJournal
of Applied Mathematics and Mechanics/ Zeitschrift für Angewandte Mathematik und Mechanik, 9(1),
58–77.

Nesterov, Y. (1983). A method of solving a convex programming problem with convergence rate O(1=k2).
In Sov. math. dokl (Vol. 27).

Nesterov, Y. (2003). Introductory lectures on convex optimization: A basic course (Vol. 87). Springer.

http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://nextjournal.com/gkoehler/pytorch-mnist
https://nextjournal.com/gkoehler/pytorch-mnist
http://arxiv.org/abs/1909.09785
http://arxiv.org/abs/1908.03265
http://arxiv.org/abs/2002.10542
http://arxiv.org/abs/1711.05101
http://arxiv.org/abs/1711.05101

3277Machine Learning (2022) 111:3245–3277

1 3

Oberman, A. M., & Prazeres, M. (2019). Stochastic gradient descent with Polyak’s learning rate. arXiv pre-
print arXiv: 1903. 08688.

Ochs, P., Brox, T., & Pock, T. (2015). ipiasco: inertial proximal algorithm for strongly convex optimization.
Journal of Mathematical Imaging and Vision, 53(2), 171–181.

Ochs, P., Chen, Y., Brox, T., & Pock, T. (2014). ipiano: Inertial proximal algorithm for nonconvex optimiza-
tion. SIAM Journal on Imaging Sciences, 7(2), 1388–1419.

Polyak, B. T. (1964). Some methods of speeding up the convergence of iteration methods. Ussr Computa-
tional Mathematics and Mathematical Physics, 4(5), 1–17.

Polyak, B. T. (1987). Introduction to optimization. Translations series in mathematics and engineering.
Optimization Software.

Probst, P., Boulesteix, A.-L., & Bischl, B. (2019). Tunability: Importance of hyperparameters of machine
learning algorithms. Journal of Machine Learning Research, 20(53), 1–32.

Qian, N. (1999). On the momentum term in gradient descent learning algorithms. Neural Networks, 12(1),
145–151.

Reddi, S. J., Kale, S., & Kumar, S. (2019). On the convergence of adam and beyond. arXiv preprint arXiv:
1904. 09237 .

Robbins, H., & Monro, S. (1951). A stochastic approximation method. The Annals of Mathematical Statis-
tics, 400–407.

Rolinek, M., & Martius, G. (2018). L4: Practical lossbased stepsize adaptation for deep learning. arXiv
preprint arXiv: 1802. 05074 .

Scieur, D., & Pedregosa, F. (2020). Universal asymptotic optimality of Polyak momentum. In International
conference on machine learning (pp. 8565–8572).

Simsekli, U., Zhu, L., Teh, Y. W., & Gurbuzbalaban, M. (2020). Fractional underdamped langevin dynam-
ics: Retargeting SGD with momentum under heavy-tailed gradient noise. In International conference
on machine learning (pp. 8970–8980).

Song, H., Kim, S., Kim, M., & Lee, J.-G. (2020). Ada-boundary: accelerating DNN training via adaptive
boundary batch selection. Machine Learning, 109(9), 1837–1853.

Tao, W., Long, S., Wu, G., & Tao, Q. (2021). The role of momentum parameters in the optimal convergence
of adaptive Polyak’s heavy-ball methods. arXiv preprint arXiv: 2102. 07314 .

Van Scoy, B., Freeman, R. A., & Lynch, K. M. (2017). The fastest known globally convergent first-order
method for minimizing strongly convex functions. IEEE Control Systems Letters, 2(1), 49–54.

Ward, R., Wu, X., & Bottou, L. (2019). Adagrad stepsizes: Sharp convergence over nonconvex landscapes.
In International conference on machine learning (pp. 6677–6686).

Wilson, A. C., Roelofs, R., Stern, M., Srebro, N., & Recht, B. (2017). The marginal value of adaptive gradi-
ent methods in machine learning. arXiv preprint arXiv: 1705. 08292 .

Yu, Y., Xu, P., & Gu, Q. (2018). Third-order smoothness helps: Faster stochastic optimization algorithms for
finding local minima. In Advances in neural information processing systems, 31 .

Zavriev, S., & Kostyuk, F. (1993). Heavy-ball method in nonconvex optimization problems. Computational
Mathematics and Modeling, 4(4), 336–341.

Zeiler, M. D. (2012). Adadelta: an adaptive learning rate method. arXiv preprint arXiv: 1212. 5701.
Zhang, M., Lucas, J., Ba, J., & Hinton, G. E. (2019). Lookahead optimizer: k steps forward, 1 step back. In

Advances in neural information processing systems (pp. 9597–9608).
Zou, F., Shen, L., Jie, Z., Zhang, W., & Liu, W. (2019). A sufficient condition for convergences of adam and

rmsprop. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp.
11127–11135).

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

http://arxiv.org/abs/1903.08688
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1904.09237
http://arxiv.org/abs/1802.05074
http://arxiv.org/abs/2102.07314
http://arxiv.org/abs/1705.08292
http://arxiv.org/abs/1212.5701

	An adaptive polyak heavy-ball method
	Abstract
	1 Introduction
	1.1 Related work
	1.1.1 Convergence analysis of HB for convex objective functions
	1.1.2 Convergence analysis of HB for non-convex objective functions
	1.1.3 Convergence analysis of other momentum-based optimizers
	1.1.4 Convergence analysis of adaptive gradient methods

	1.2 Contributions

	2 Proposed adaptive HB method
	3 Global convergence for convex objective functions
	4 Stochastic adaptive HB
	5 Results and discussion
	5.1 Positive-definite quadratic function
	5.2 Lessard’s problem
	5.3 Positive semi-definite quadratic functions
	5.4 Non-convex beale function
	5.4.1 AHB versus SAHB in presence of noisy gradient

	5.5 Image classification
	5.5.1 MNISTQMNIST
	5.5.2 CIFAR-10100

	6 Conclusion
	References

