
Vol.:(0123456789)

Machine Learning (2022) 111:3245–3277
https://doi.org/10.1007/s10994-022-06215-7

1 3

An adaptive polyak heavy‑ball method

Samer Saab Jr.1  · Shashi Phoha1 · Minghui Zhu1 · Asok Ray1

Received: 18 October 2021 / Revised: 9 May 2022 / Accepted: 12 June 2022 /  
Published online: 18 July 2022 
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2022

Abstract
The heavy-ball (HB) method has become a well-known practice for large-scale machine 
learning problems, and it can achieve the fastest local convergence rate when objective 
functions are smooth and strongly convex using Polyak’s optimal hyper-parameters. How-
ever, such convergence rates are based on specific uncertain and time-invariant hyper-
parameters that limit its potential. In this paper, we propose an adaptive HB that estimates 
the Polyak’s optimal hyper-parameters at each iteration. Our adaptive approach employs 
the absolute differences of current and previous model parameters and their gradients. 
Such representation allows for a computationally efficient optimizer. We show that our 
method guarantees a global linear convergence rate for smooth and strongly convex objec-
tive functions. Whereas in the stochastic setting, we show that proposed stochastic algo-
rithm converges almost surely for non-convex smooth functions with bounded gradient. We 
validate the effectiveness of our method on image classification datasets with no empirical 
tuning, and its superiority on quadratic and non-convex functions while comparing its per-
formance to the state-of-the-art optimizers.
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1 Introduction

First-order stochastic gradient descent (SGD) methods have gained wide popularity in 
machine learning, as they are well-suited for large-scale problems due to their cheap 
computational costs while achieving high performance.

Despite many application-specific successes, SGD methods suffer from two limita-
tions. The first limitation, and the most challenging aspect in practical applications of 
first-order SGD optimizers, is tuning their hyper-parameters, which need to be opti-
mized for maximal performance (Probst et al., 2019). The most common hyper-param-
eter to tune across all methods is the step-size or the learning rate. Many studies have 
been implemented on how to select the step-size, which under appropriate constraints 
can lead to specific convergence properties. For example, constant step-sizes lead to 
convergence to neighborhoods of local optimum, whereas decreasing step-sizes lead to 
convergence to the global optimum for convex functions (Ghadimi & Lan, 2013; Gower 
et al., 2019). However, the tuning of the step-sizes remains to be a tedious task, since 
their selection ultimately dictates whether the training process will converge or not, 
and how well the network will eventually perform. Furthermore, the tuning process can 
be very expensive for very large-scale problems. For example, the GPT-3 network is 
composed of 175 billion parameters, and was reported to cost an estimated $12 million 
to train (Floridi &  Chiriatti, 2020). The second limitation of SGD methods concerns 
the rather restrictive conditions to guarantee convergence, and the rates at which they 
converge. As a result, many first-order SGD methods have been promoted by providing 
accelerated methods which converge depending on various conditions and assumptions, 
such as convexity or bounded gradients.

A surge in the developments of optimal convergence rates came about in the past dec-
ades to solve large-scale problems (Polyak, 1964; Nesterov, 1983; Lin et al., 2015). Among 
the most popular methods is the Polyak heavy-ball (HB) method (Polyak, 1964), which 
can achieve the fastest local convergence rate when objective functions are �-strongly 
convex and twice continuously differentiable and their gradients are Lipschitz continuous 
with constant L (Lessard et al., 2016). Polyak showed this through the use of local analysis 
based on the bounds of the norm of the Hessian of the cost function, which holds glob-
ally if the Hessian is constant (Ghadimi, 2015). For a non-convex objective function, it is 
shown in Zavriev and Kostyuk (1993) that the HB method converges to some stationary 
point.

The HB method extends the standard GD by adding a momentum term, which incor-
porates the difference between the current and past parameter iterates, to steer the next 
parameter iterate towards the solution, as such:

where f(x) is the objective function, ∇ is the gradient operator, �k is the step-size, �k is the 
momentum hyper-parameter, and k denotes the iteration number. A local accelerated linear 
convergence rate of 
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 (Polyak, 1987), which we refer to as Pol-

yak’s optimal hyper-parameters throughout this paper. These optimal hyper-parameters 
require the knowledge of the Lipschitz constant, L, and � , which are generally inaccessible. 
Thus, HB would require tuning of its momentum hyper-parameter as well as its step size, 
which makes it even more burdensome.

(1)xk+1 = xk − �k∇f (xk) + �k(xk − xk−1)
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Accordingly, adaptive methods (Duchi et  al., 2011; Hinton et  al., 2012; Kingma and 
Ba, 2014; Dauphin et al., 2015; Ward et al., 2019) are particularly helpful when training 
deep neural networks, and are becoming the state-of-the-art (Li and Orabona, 2019). The 
first popular adaptive method, AdaGrad (Duchi et al., 2011), significantly outperforms the 
vanilla SGD. From there various extensions have been proposed, such Adam (Kingma and 
Ba, 2014), which further improved the optimization of deep neural networks (Reddi et al., 
2019; Dozat, 2016). The work in Dauphin et al. (2015) shows that adaptive methods can 
be used to design preconditioners, which help in escaping saddle points. However, several 
conditions must be met in order to guarantee convergence, such as for RMSProp (Hinton 
et al., 2012) and Adam, which can be non-convergent even in convex settings (Zou et al., 
2019). Furthermore, the variance of such adaptive step-sizes tends to be too large in the 
early stages of training. Thus, they would require some sort of warmup heuristic, which 
does not guarantee consistent improvements for various machine learning settings (Liu 
et al., 2019).

Inspired by the success stories of adaptive methods and the potential of accelerated 
convergence rate of HB using Polyak optimal hyper-parameters, we propose a novel adap-
tive HB method1. Our proposed method estimates the Polyak’s optimal hyper-parameters 
at each iteration. This task does not require any significant increase in computational 
complexity.

1.1  Related work

There has been a lot of attention towards accelerated (Beck, 2017; Ghadimi & Lan, 2016) 
and adaptive optimization techniques (Hu et  al., 2009; Huang et  al., 2020), which were 
shown to yield great performance results for large-scale systems, such as deep neural net-
works (Krizhevsky et al., 2012; Huang et al., 2017). Much of the success of momentum-
based optimizers can be attributed to their convergence properties. The convergence anal-
ysis of momentum-based optimization methods has been explored under the context of 
convex (Ghadimi et al., 2015; Ochs et al., 2015) and non-convex (Ochs et al., 2014; Gadat 
et al., 2018) optimization problems for smooth functions, and non-smooth functions (Mai 
and Johansson, 2020). Thus in this section, we briefly go over the convergence analyses of 
selected HB results, and their close variants—our literature review is by no means compre-
hensive. We then go on to explore the advantages and convergence properties of adaptive 
optimizers.

1.1.1  Convergence analysis of HB for convex objective functions

The local convergence rate of the HB method was originally established for convex func-
tions near a twice-differentiable local minimum with Lipschitz continuous gradients, and 
found to have a local accelerated linear rate of convergence when equipped with Polyak 
optimal hyper-parameters (Polyak, 1964). A global convergence analysis was then pre-
sented in Ghadimi et al. (2015), where they showed that if the hyper-parameters of the HB 
method are chosen within appropriate intervals, and the gradients are Lipschitz continuous, 

1 The main results in this paper are presented in the ICML 2021 workshop on “Beyond First Order Meth-
ods in Machine Learning”. However, unlike the work in this paper, the objective function is approximated 
by time-varying positive quadratic function where the proofs are developed accordingly.
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then the Cesáro average of the HB method converges at a rate of O(1∕k) when the objec-
tive function is convex, and the objective function converges linearly when it is strongly 
convex. Furthermore, when assuming a strongly convex quadratic objective function, a 
proof was derived in Lessard et al. (2016), using Lyapunov-like potential functions called 
integral quadratic constraints, that shows iteration-independent linear rate of convergence 
when using the Polyak optimal hyper-parameters. More recently, in Scieur and Pedregosa 
(2020), the Polyak momentum is shown to be asymptotically optimal under the average 
complexity of all possible inputs to the model, given that the objective function is quadratic 
with a symmetric positive definite Hessian matrix. This result is shown to be independent 
of the probability distribution over the inputs.

1.1.2  Convergence analysis of HB for non‑convex objective functions

When considering a non-convex objective function, while still assuming Lipschitz con-
tinuous gradients, it is shown in Zavriev and  Kostyuk (1993) that any trajectory {xk} in 
the heavy-ball method converges to some stationary point. Similarly, the authors in Ochs 
et al. (2014) use a monotonically decreasing Lyapunov function for the dynamical system 
described by the HB method, and show that it is converging.

1.1.3  Convergence analysis of other momentum‑based optimizers

Convergence guarantees have also been recently established for other momentum-based 
optimizers (Hu et  al., 2009; Huang et  al., 2020; Hendrikx et  al., 2020; Cutkosky and 
Mehta, 2020; Simsekli et al., 2020). For example, the quasi-hyperbolic momentum (QHM) 
optimizer in Gitman et  al. (2019) is shown to converge almost surely for smooth non-
convex functions as �k → 0 , and ensures local stability near a strict local minimum when 
the hyper-parameters of QHM are made stationary. Other optimizers have been found to 
achieve even faster global linear convergence to the optimizer, such as triple momentum 
(TM) proposed by Van Scoy et al. (2017). However despite the accelerated convergence 
rate achieved by TM, it requires the burdensome task of tuning four parameters, three of 
which are momentum hyper-parameters. Another example of an optimizer that achieves 
faster convergence rate than that of the HB method is the optimizer proposed in Lessard 
et  al. (2016). In fact, the HB and Nesterov accelerated gradient (NAG) serve as special 
cases of this optimizer, yet its limitation lies in the fact that it requires the tuning of three 
parameters. However, to the best of the authors’ knowledge, there is no published imple-
mentation of the TM optimizer nor the optimizer proposed by Lessard et. al on neural 
networks.

1.1.4  Convergence analysis of adaptive gradient methods

The importance of varying the step-size �k dates back several decades (Robbins and Monro, 
1951); where it has been shown that under mild assumptions, global convergence can be 
achieved when the step-size is square summable, but not summable (Bertsekas, 1997). In 
Gaivoronski (1994), this rule has been replaced by �k → 0 . Eventually, adaptive methods 
picked up a lot of attention due to their success in various applications, such as machine learn-
ing. Amongst the most popular adaptive optimizers that have seen wide use in everyday 
machine learning applications are AdaGrad (Duchi et  al., 2011), Adadelta, (Zeiler, 2012), 
RMSProp (Hinton et al., 2012), and Adam (Kingma and Ba, 2014). However, there are several 
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conditions that one must check to ensure convergence guarantees for adaptive methods, such 
as for RMSProp and Adam, where Adam can be non-convergent even in convex settings (Zou 
et al., 2019). It was also shown in Wilson et al. (2017) that to achieve desired performances 
using adaptive methods, the same amount of hyper-parameter tuning is performed as in non-
adaptive methods; challenging the conventional wisdom that adaptive methods require less 
tuning. However, we duly note our method can perform comparably to the methods compared 
in Wilson et  al. (2017) without hyper-parameter tuning (i.e. � = 1 ) in image classification 
tasks. The work in Khan et al. (2018) proposes a method that introduces perturbations to the 
network parameters during gradient evaluations, as well as estimate uncertainty parameters, 
which can be implemented in Adam. However, this algorithm adds an additional precision 
hyper-parameter that needs to be approximated (e.g. using Bayesian optimization) prior to 
using the method, as well as require memory to store the uncertainty estimates used in the 
update rule. Thus, it would require a descent amount of tuning for desired performance. The 
last-iterate convergence of constrained convex functions for an adaptive heavy-ball method is 
studied in Tao et al. (2021), where the step-size of the their adaptive HB is updated using an 
exponential moving average. Using �1t =

t

t+2
 and �2t = 1 −

�

t
 , where t is the epoch number, 

they could achieve accelarateed convergence. Specifically, their adaptive HB method attains a 
convergence rate of O(

1√
t
) as oppose to O(

log t√
t
) of SGD. However it remains that two hyper-

parameters ( � and � ) need to be properly selected for the best performance. On the other hand, 
attempts at devising stochastic Polyak step-sizes (SPS) have been made for an adaptive SGD 
optimizer (Loizou &  Richtárik, 2020; Berrada et  al., 2020; Oberman and Prazeres, 2019; 
Rolinek and Martius, 2018). The SPS proposed in Loizou and Richtárik (2020) has the form 
�k =

f (xk)−f
∗

c||∇f (xk)||2 , where for machine learning applications they assume f ∗ = 0 . Although, as the 
authors point out, this may seem logical for empirical risk minimization problems, it is unrea-
sonable to assume the knowledge of f ∗ for majority of optimization problems. Similarly, the 
work established in Oberman and Prazeres (2019) proposed a SPS of the form �k = 2

f (xk)−f
∗

�||∇f (xk)||2 . 
This method assumes the knowledge of �||∇f (xk)|| , which is unpractical for finite-sum prob-
lems with large n (Loizou et  al., 2020). Another similar SPS is proposed in Berrada et  al. 
(2020), where �k = min{

f (xk)

||∇f (xk)||2+� , �} , however this approach has rather restrictive assump-
tions on the smoothness of the objective function. The work in Berrada et al. (2020) also pro-
vides an SPS method, however without establishing convergence guarantees.

Our proposed adaptive HB method requires the knowledge of only the gradient of the 
objective function to update its hyper-parameters, and guarantees global convergence. It 
is also worth mentioning that the work in Ghadimi et al. (2015) tackles the selection of the 
HB parameters that can yield global convergence. The study provides a sound framework 
that derives an interval of allowable values for the step-size that depend on the choice of the 
momentum parameter, while presuming the exact knowledge of L. In addition, for strongly 
convex functions and linear convergence rate, the values of both L and � are required. Whereas 
our algorithm may require tuning of only one parameter that would simultaneously gener-
ate �k and �k at every iterate interdependently formulated based on the Polyak HB optimal 
hyper-parameters.

1.2  Contributions

Although adaptive methods are becoming the state-of-the-art and are particularly help-
ful when training deep neural networks, the restrictive conditions that guarantee conver-
gence of popular adaptive methods, see, e.g., Zou et al. (2019), may limit their application 
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domains and may be difficult to justify in practice. On the other hand, the accelerated con-
vergence of HB using Polyak optimal parameters may result only in local convergence and/
or does not necessarily converge on strongly convex functions (Lessard et al., 2016). It is 
thus intriguing to ask whether an adaptive optimizer can capitalize on the advantages of 
adaptive methods and the Polyak optimal convergence rate, while overcoming their limita-
tions. The work in this paper aims to address this question. To that end, we make the fol-
lowing contributions:

• We propose a novel adaptive HB that adopts the formulation of Polyak HB optimal 
parameters that at worst requires the tuning of a single parameter. To the best of the 
authors’ knowledge, no work has been published on adaptively adopting the Polyak HB 
optimal hyper-parameters.

• We show that our method guarantees global linear convergence rate for smooth and 
strongly convex objective functions.

• In the stochastic setting, we show that the proposed stochastic algorithm converges 
almost surely for non-convex smooth functions provided that the gradient is bounded.

• We also provide an example to show that our adaptive HB can outperform the optimal 
Polyak HB on a continuously differentiable and strictly convex objective function.

We empirically validate the performance of our method on both convex and non-convex 
objective functions, including image classification tasks. We use the function presented by 
Lessard et al. (2016), where HB does not necessarily converge on strongly convex, but not 
twice differentiable, objective functions when using the Polyak optimal hyper-parameters. 
We empirically illustrate how our method linearly converges to its optimal solution at a 
rate faster than the time-invariant Polyak optimal convergence rate. In addition, we empiri-
cally illustrate how our method is inherently capable of rejecting gradient noises, leading 
to robust solutions. We also show how our method outperforms popular adaptive methods 
on quadratic and the non-convex Beale function in terms of convergence rate. Finally, we 
demonstrate the competitiveness of our method with popular optimizers on image clas-
sification tasks; namely, MNIST, QMINST, CIFAR-10, and CIFAR-100. We find that our 
approach also enjoys the practical advantage of minimal tuning, and in some cases no tun-
ing at all, as with the image classification tasks.

2  Proposed adaptive HB method

In spirit of proposing adaptive hyper-parameters for HB, we would like to highlight the 
synergistic coupling bestowed on the adopted Polyak HB optimal hyper-parameters. The 
core of our approach’s success can be accredited to this interdependent coupling, as we 
propose a method that derives the hyper-parameters simultaneously in an iterative man-
ner according to Polyak HB optimal parameters. First, the quantity L̂k , which emulates the 
local Lipschitz constant Lk of f (xk) , is computed using inner products of current and previ-
ous gradients, hk , and model parameters, Δxk , as follows:

(2)L̂k ≜ 𝛾
‖hk‖
‖Δxk‖
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where hk ≜ ∇f (xk) − ∇f (xk−1) , Δxk ≜ xk − xk−1 and � ≥ 1 . Subsequently, under the context 
of �-strongly convex functions, the approximation of �k of f̂k(xk) , denoted �̂�k , is computed 
as follows:

Both L̂k and �̂�k are then used to approximate the optimal Polyak optimal HB parameters:

If L̂k = L and �̂�k = 𝜇 , then �k and �k become the optimal Polyak HB parameters.
The proposed AHB algorithm is summarized in Algorithm 1.

Our proposed formulation associated with L̂k (2) and �̂�k (3) is inspired by the Power 
Iteration Algorithm (PIA) (Mises &  Pollaczek-Geiringer, 1929). L and � are considered  
as the largest and smallest eigenvalues of the Hessian matrix, ∇2f (x) , where 

∇f (x) ≈ ∇2f (x)x + b . Thus, hk ≈ ∇2f (xk)Δxk and hT
k
hk

ΔxT
x
Δxk

≈
ΔxT

x

(
∇2f (xk)

)2

Δxk

ΔxT
x
Δxk

 . The latter can be 
thought of as applying two iterations of PIA for each k, which could suffice as a good 
approximation in the case where the largest eigenvalue is significantly larger than the rest. 
For strongly convex setting where ∇2f (x) is presumed to be a positive-definite matrix, then 
by similarly applying PIA to hk − L̂kI , where the eigenvalues of ∇2f (x) − LI become all 
negative and the smallest eigenvalue of ∇2f (x) would be the eigenvalue of ∇2f (x) − LI with 
the largest magnitude.

(3)�̂�k ≜
‖hk − L̂kΔxk‖

‖Δxk‖ .

(4)𝛼k ≜
4

(

�
L̂k +

√
�̂�k)

2

, 𝛽k ≜

⎛
⎜⎜⎜⎝

�
L̂k −

√
�̂�k�

L̂k +
√
�̂�k

⎞
⎟⎟⎟⎠

2

.
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Remark 1 Perfect estimation of L and � may not be desired under this context due to the 
limitation of Polyak optimal HB in achieving global convergence; e.g., rippling behavior 
near the optimum.

3  Global convergence for convex objective functions

In this section we present the convergence analysis of our proposed adaptive HB for 
convex objective functions.

We first formally present the definitions that are used for attaining convergence.

Definition 1 Function f(x) is L-smooth if it is continuously differentiable, and its gradient 
is Lipschitz continuous with constant L, i.e., for all x, y ∈ ℝ

d:

Definition 2 A continuously differentiable function f(x) is called strongly convex on ℝd , if 
there exists a constant 𝜇 > 0 such that for any x, y ∈ ℝ

d we have (Nesterov, 2003)

We first present some useful properties in Proposition 1 that relate � to L̂k , �̂�k , �k and 
�k.

Proposition 1 Suppose that f(x) is �-strongly convex and L-smooth. Then, L ≥ � , and the 
algorithm (1) with hyper-parameters � , �k and �k in (4), guarantees the following proper-
ties for all k ≥ 0:

(P1) 𝛾𝜇 ≤ L̂k ≤ 𝛾L.

   For all � ≥
L

�
+
√

L2

�2
− 1 , we have

(P2) 
√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L ≤ �̂�k ≤ (𝛾 + 1)L.

(P3) �k ∈ (0, 1) , and

(P4) �̂�k is an increasing function of � , and �k is a decreasing function of �.

(P5) lim𝛾→∞ �̂�k = lim𝛾→∞ L̂k = ∞ , and

   lim�→∞ �k = lim�→∞ �k = 0.

||∇f (y) − ∇f (x)|| ≤ L||y − x||.

(5)f (y) − f (x) ≥ ⟨y − x,∇f (x)⟩ + �

2
��y − x��2.

4

(
√
� +

√
� + 1)2L

≤ �k

≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4 )2
.



3253Machine Learning (2022) 111:3245–3277 

1 3

Theorem  1 Suppose that f(x) is �-strongly convex and L-smooth. Then, there exists a 
�0 ≥ max

{
4
(

L

�
+
√

L2

�2
− 1

)
,
4(L+1)

�

}
 such for 𝛾 > 𝛾0 , the sequence {xk} generated by 

algorithm (1) with step-size �k and hyper-parameter �k in (4), satisfies

where q ∈ (0, 1) , and x∗ is the unique optimal solution that minimizes f(x).

The proofs of Proposition 1 and Theorem 1 are included in the appendix.
Theorem 1 states that the algorithm globally converges linearly to the unique optimal 

point x∗ for strongly-convex functions and for 𝛾 > 𝛾0 . However, in our empirical results, 
we use � = 1 in all the image classification datasets under consideration to show that our 
proposed method may not require tuning yet leading to competitive performance with the 
state-of-art optimizers.

It is shown Ghadimi et al. (2015) if � ∈ [0, 1) and � ∈
(
0,

2(1−�)

L

)
 , then global conver-

gence is attained for convex and smooth functions where the Cesáro average of the iterates 
converges to the optimum at a rate of O(1∕k) . Say that L = 5 and � = 1 . Then, Polyak opti-
mal hyper-parameters become 0 < 𝛼∗ = 0.382 < 2∕L and 0 < 𝛽∗ = 0.146 < 1 . However, 
𝛼∗ >

2(1−𝛽∗)

L
= 0.34 . Therefore, a global convergence cannot be guaranteed for convex and 

smooth whenever optimal Polyak hyperparameters are used. On the other hand, for suffi-
ciently large � , with a lower bound given in Theorem 1, both �k and �k decreases, see, e.g., 
(P5) of Proposition 1. The latter indicates that the conditions of the global convergence 
(Ghadimi et al., 2015) can be satisfied for convex and smooth functions.

In addition, Ghadimi et  al. (2015) provides the following condition for linear global 
convergence: for � ∈

(
0,

2

L

)
 , the momentum parameter should satisfy 

0 ≤ 𝛽 <
1

2

(
𝜇𝛼

2
+

√
𝜇2𝛼2

4
+ 4(1 −

𝛼L

2

)
 . Our results in Theorem  1 presents similar conver-

gence results for the proposed adaptive HB provided that 𝛾 > 𝛾0 . However, for both settings 
of convex and strongly convex functions, the knowledge of L and � is required to find the 
bounds provided in Ghadimi et al. (2015), which is not practical. Consequently, in practice, 
tuning of � and � would be required whereas our adaptive optimizer would require tuning 
of only one parameter, � . Furthermore, the example of a convex smooth function provided 
in Section 4.3 shows that our proposed adaptive HB outperforms both the time-invariant 
HB and time-varying HB satisfying the conditions presented in Ghadimi et al. (2015).

On another note, in exceptional cases where x is a scalar, then with � = 1 , we will have 
�̂�k = 0 and thus �k becomes zero. Consequently, the proposed method would become adap-
tive gradient descent with significantly large 𝛼k =

4

L̂l
 , which may deteriorate the global con-

vergence. Therefore, for scalar x, it is recommended to have 𝛾 > 1.

4  Stochastic adaptive HB

The stochastic optimization problem is of the form

(6)f (xk) − f (x∗) ≤ qk(f (x0) − f (x∗))

(7)min
x∈ℝd

F(x) ≜ 𝔼� [f (x, � )].
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 We denote by G(xk;�k) a stochastic gradient of F(x) at xk depending on a random vari-
able �k representing data sampled from some unknown probability distribution such that 
�[G(xk;�k)] ∈ �F(xk) , where �F(x) denotes the set of gradients of F at the point x.

Our proposed stochastic adaptive heavy-ball (SAHB) method is given by

where �̂�k = min
{
𝛼k,

C

(k+1)𝜈

}
 , 𝛽k = min

{
𝛽k,

1

(k+2)𝜈

}
 , 0.5 < 𝜈 ≤ 1 , C > 0 , and �k and �k are 

defined in (4). In addition, we make the following modification:

where ĥk ≜ G(xk;𝜁k) − G(xk−1;𝜁k−1) , Δxk ≜ xk − xk−1 and � ≥ 1 . We compute �̂�k as follows:

Both L̂k and �̂�k are then used to approximate the optimal Polyak optimal HB parameters in 
(4).

The following conditions hold for F defined in (7) and the stochastic gradient:

Assumption 1 F is differentiable and ∇F is Lipschitz continuous, i.e., there exists a con-
stant L such that

Assumption 2 F is bounded below and ‖∇F(x)‖ is bounded above; i.e., there exist F∗ and 
G such that

Assumption 3 For k = 0, 1, 2, ... , the stochastic gradient gk ≜ G(xk;�k) = ∇F(xk) + �k , 
where the random noise �k satisfies

where a.s. refers to almost surely, �k[.] denotes expectation conditioned on 
{x0, g0, ..., xk−1, gk−1, xk} , and D is a constant.

Assumption 4 The stochastic gradient is Lipschitz continuous, i.e., there exists a constant 
LG such that

Assumptions 1–3 are the ones used in Gitman et al. (2019). However, we addition-
ally assume that the stochastic gradient is Lipschitz continuous. The following theorem, 
Theorem 2, can be considered as a corollary to Theorem 1 in Gitman et al. (2019) with 
vk = 1 , which can be applied to non-convex functions.

(8)xk+1 = xk − �̂�kG(xk;𝜁k) + 𝛽k(xk − xk−1)

(9)L̂k ≜ 𝛾
‖ĥk‖
‖Δxk‖

(10)�̂�k ≜
‖ĥk − L̂kΔxk‖

‖Δxk‖ .

‖∇F(x) − ∇F(y)‖ ≤ L‖x − y‖, x, y ∈ ℝ
d.

F(x) ≥ F∗, ‖∇F(x)‖ ≤ G, x ∈ ℝ
d.

�k[�k] = 0,�k[‖�k‖2] ≤ Da.s.

‖ĥk‖ ≤ LG‖x − y‖, x, y ∈ ℝ
d.
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Theorem 2 Under Assumptions 1–4, the sequence {xk} generated by the SAHB algorithm 
described by (9)-(10) and (8), satisfies

In addition, we have

The proof of Theorem 2 is included in the appendix.

5  Results and discussion

In this section we aim to validate the proposed adaptive HB against other known optimiz-
ers by studying its convergence rate, overall performance, and robustness. To demonstrate the 
reduced tuning efforts that our method offers, we only tune the proposed optimizer where it 
is reasonable to do so. To that end, we tune our method on one-dimensional and two-dimen-
sional functions, where tuning is cheap. We also show the effect of tuning our method on an 
example including quadratic cost functions. In large-scale systems however, tuning is compu-
tationally expensive, and thus we implement our optimizer on a deep neural network with no 
tuning (by setting � = 1 of Eq. (2)) involved.

First, we show the superiority of the convergence rate of our proposed optimizer over the 
optimal HB on a positive-definite quadratic function, and the strongly convex function given 
in Lessard et al. (2016), which was shown to trap the optimal HB in a limit cycle in Sect. 5.2. 
Then we compare our adaptive HB with a time-invariant and time-varying HB on positive 
semi-definite quadratic functions We further evaluate the robustness and convergence rate of 
our adaptive HB optimizer against other known optimizers on the non-convex Beale function 
in Sect. 5.4. Lastly, we evaluate the optimizer’s performance against popular optimizers on 
MNIST, QMNIST, CIFAR-10, and CIFAR-100 (Krizhevsky et al., 2009) in Sect. 5.5.

It is important to note that in our toy examples (Lessard function, quadratic and Beale func-
tions), we consistently run all optimizers under consideration through all the samples in our 
training set to do a single update for the weight, xk , in every iteration, k. On the other hand, 
in our image classification examples, we also consistently run all optimizers under considera-
tion while using only one minibatch or one subset of the training set to do the update for the 
weight in every iteration. In addition, to be consistent with the other optimizers, we use AHB 
throughout all our experiments except for in the case where we compare our AHB and our 
Stochastic AHB (SAHB) on Beale function with noisy gradients.

Our codes for all experiments will be made publicly available.

5.1  Positive‑definite quadratic function

Although the fastest local convergence rate is attained when objective functions are continu-
ously differentiable and strictly convex using Polyak’s optimal hyper-parameters, this exam-
ple is designed to show that this fact is constrained to fixed hyper-parameters. In particular, 
we demonstrate that our proposed method with adaptive hyper-parameters can outperform 

(11)lim inf
k→∞

‖∇F(xk)‖ = 0a.s.

(12)lim sup
k→∞

F(xk) = lim sup
k→∞,‖∇F(xk)‖→0

F(xk)a.s.
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the optimal Polyak heavy-ball method for a continuously differentiable and strictly convex 
function.

We consider the following objective function

where

We use the largest and smallest eigenvalues of A as L and � , respectively, to compute 
Polyak HB optimal parameters with corresponding convergence rate of 

(13)f (x) =
1

2
xTAx − bTx

A =

[
99 1

1 1

]
, b =

[
1

1

]
, x−1 =

[
0

0

]
, and x0 =

[
1

1

]
.

Fig. 1  Visualization of the 
convergence rate of our optimizer 
versus optimal HB via the norm 
of the error at every iteration, k. 
The smoothness of the optimal 
HB curve is mostly due to the 
fact that the step size and the 
momentum parameter are con-
stants unlike our proposed AHB

Fig. 2  Visualization of the 
convergence rate of our optimizer 
versus optimal HB via the norm 
of the gradient and f (xk) − f (x∗) 
at every iteration, k. For k ≥ 74 , 
f (xk) − f (x∗) < 10−20 for the 
proposed AHB method
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� ≜

√
L−

√
�√

L+
√
�
= 0.818 . For our proposed HB, we use � = 1.8 in (2). Figure 1 shows ‖x∗ − xk‖ 

for both Optimal HB and the proposed AHB, and also ‖x∗ − x0‖�k . Figure 2 shows ‖∇f (xk)‖ 
(left) and f (xk) − f (x∗) for both methods. This simple example demonstrates that our adap-
tive optimizer can outperform the optimal Polyak HB for continuously differentiable and 
strongly convex function. Of note, the optimal HB requires the exact knowledge of L and � , 
whereas our proposed AHB for this specific scenario requires the tuning of � in order to 
outperform the optimal Polyak HB.

5.2  Lessard’s problem

In this section, we tackle the one-dimensional strongly convex function, f(x), presented in 
Lessard et al. (2016), which can lead to a non-convergent solution using Polyak optimal 
hyper-parameters. The function’s gradient, ∇f (x) , is continuous and monotone but not con-
tinuously differentiable, and is given by the following equation:

It is important to note that the optimal local convergence rate, 
√
L−

√
�√

L+
√
�
 , using Polyak optimal 

hyper-parameters requires that ∇f (x) is continuously differentiable, which is not the case of 
the function in (14).

Although ∇f (x) is not continuously differentiable, one can readily observe that L = 25 
and � = 1 . Lessard et. al showed that if the initial conditions are chosen to be within the 
interval 3.07 ≤ x0 ≤ 3.46 , then HB with its optimal parameters gets stuck in a limit cycle 
with oscillations that never damp out. Figure 3 (upper plot) shows how the error |xk − x∗| 
using Polyak optimal HB parameters oscillates when the initial conditions are set to 
x0 = 3.3 and x1 = 3.1 , whereas the error corresponding to our adaptive HB continues to 

(14)∇f (x) =

⎧⎪⎨⎪⎩

25x if x < 1

x + 24 if 1 ≤ x < 2

25x − 24 if x ≥ 2

Fig. 3  Visualization of the 
convergence rate of our optimizer 
versus optimal HB via the norm 
of the error at every iteration, k. 
Except for the first few iterations, 
the curve of AHB is smooth due 
to the large rate of convergence 
at every iteration
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decrease with no oscillations. We also choose initial conditions that lay outside the afore-
mentioned interval to compare our method with the optimal HB, specifically we set the 
initial conditions to x0 = 2 and x1 = 1 . In all cases, our method with its time-varying hyper-
parameters and with � = 2 demonstrates a superior convergence rate, which is evident after 
the fifth iteration, even when compared to the optimal (local) convergence rate of 

√
L−

√
�√

L+
√
�
 

achieved by the Polyak optimal time-invariant hyper-parameters.
The optimal convergence rate shown in Fig. 3 is simply the plot of �k||x0 − x∗|| , where 

� =
�√

L−
√
�√

L+
√
�

�
=

2

3
 for this problem. When fitting c�k||x0 − x∗|| to the error plots achieved 

by our method, we find � = 0.19 . This result restates that our method can achieve a faster 
convergence rate (e.g.,this problem) than the Polyak optimal HB. It is important to note 
that optimality of Polyak HB requires the gradient to be continuously differentiable, which 
does not apply to (14).

Additionally, we test our method and the optimal HB method on the Lessard problem 
with noisy gradients. The objective of this experiment is to demonstrate how our method 
is inherently capable of rejecting measurement noise, leading to robust performance. We 
add zero-mean white noise, �k , to the gradient sampled from a normal distribution with 
a standard deviation of 0.1. The initial conditions are set to x0 = 2 and x1 = 1 , and we set 
� of Eq. (2) to 1.3. It is clear from Fig. 4 that our proposed adaptive HB outperforms the 
optimal HB, as the error continues to decrease within the first 31 iterations to reach an 
error of about 1 × 10−4 . The norm of the error produced by the optimal HB get stuck fluc-
tuating between 10−1 and 10−3 from the 25th iteration onward. This suggests the the optimal 
HB was incapable in further rejecting or suppressing the measurement noise, whereas the 
continuously deceasing error generated using our adaptive HB suggests that it is capable 
of partially suppressing the measurement noise. After a finite number of iterations, �k and 
xk − xk−1 converge to a steady-state solution.

The way in which the noise gets suppressed is explained in the following reasoning. The 

additional noise drives L̂k = 𝛾

√
Δgk

TΔgk

ΔxT
k
Δxk

 , where gk = ∇f (xk) + �k , to larger values, which 

causes �k to decrease towards zero—a needed trend when dealing with noise.

Fig. 4  The norm of the error pro-
duced by the proposed adaptive 
HB versus the optimal HB in the 
presence of noisy gradients
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5.3  Positive semi‑definite quadratic functions

This example illustrates the performance of our proposed HB against a time-invariant 
and time-varying HB satisfying the conditions of the work in Ghadimi et al. (2015). We 
consider a quadratic objective function with positive semi-definite quadratic matrix, 
A ∈ ℝ

d×d . We generate random matrices for d = 2, 4,… , 98, 100 with rank equals to d
2
 as 

follows: A =
∑ d

2

j=1
�j�

T
j

 , where each element of �j ∈ ℝ
d is sampled from a uniform distri-

bution over the interval [0,  1]. Similarly, each element of the initial guess x0 ∈ ℝ
d is 

sampled from a normal distribution, N(0, 1) . For each d we run 20d iterations.
As reflected in the example given in Ghadimi et al. (2015), for the time-invariant HB, 

we choose � =
1

L
 and � = 0.5 and for time-varying HB, we choose �k =

1

L(k+1)
 and 

�k =
k

k+2
 . However, it is important to note that the selected step-size requires the knowl-

edge of the largest eigenvalue of A, L, for each dimension d. On the other hand, for the 

Fig. 5  Comparison of the 
progress of the objective values 
with A ∈ ℝ

50×50 evaluated 
at the Cesáro average of the 
iterates of the three heavy-ball 
methods under study, namely: 
the proposed adaptive heavy-ball 
with � = 1.2 , the heavy-ball with 
time-varying hyper-parameters 
�k =

1

L(k+1)
 and �k =

k

k+2
 , and the 

one HB with � =
1

L
 and � = 0.5

Fig. 6  Comparison of 
the objective values with 
A ∈ ℝ

d×d , 2 ≤ d ≤ 100, evalu-
ated at the Cesáro average at 
the iterate k = 20d of the three 
heavy-ball methods under study
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proposed method, we assume no knowledge about A or L, and fix � = 1.2 for all dimen-
sions of A.

Figure  5 illustrates the progress of the objective values evaluated at the Cesáro aver-
age of the iterates of the three heavy-ball methods under consideration for d = 50 , that 
is, A ∈ ℝ

50×50 . As a reference, we also include O(1∕k) upper-bound. Whereas in Fig. 6, 
we show the values of f (x̄T ) − f (x∗) at the very last iteration, k = 20d , for the three meth-
ods, where x̄T =

1

T+1

∑T

k=0
xk is the Cesáro average of the iterates. Figure 7 shows that our 

method converges for � ≥ �0 and for this example �0 = 1 . It presents the objective values 
for different values of � for d = 50 , that is, A ∈ ℝ

50×50 , at the very last iteration, k = 1, 000.
By examining Figs.  5 and 6, the proposed adaptive HB with a fixed � = 1.2 for all 

dimensions outperforms the other two methods that assume the knowledge of L associated 
with each dimension, d. Also, by examining Fig. 7, we find that even when increasing the 
value of � , the superiority of the proposed adaptive HB is preserved.

We emphasize that selection of the hyper-parameters for the HB method without the 
knowledge of the largest eigenvalue, L, can be indeed tricky. For the quadratic functions 
generated in this example, the largest L is about 1.3 × 103 at d = 100 , and the smallest 
L is about 3.2 × 10−1 at d = 3 with a standard deviation of about 380. If L is under esti-
mated, then the step-size becomes too large and that can lead to divergence. Whereas if 
L is over estimated, then this would lead to smaller values of the step size yielding slower 
convergence. Consequently, unlike our method, tuning of a non-adaptive HB can become 
burdensome.

5.4  Non‑convex beale function

In this section we aim to compare the convergence and convergence rate of our opti-
mizer when compared to other popular optimizers when solving the non-convex Beale 
function, which is listed as one of the 175 benchmark test functions for optimization 
algorithms (Jamil &  Yang, 2013). The Beale function is a 2-dimensional non-convex 

Fig. 7  Comparison of the objec-
tive values with A ∈ ℝ

50×50 
evaluated at the Cesáro average 
at the iterate k = 1000 of the 
proposed adaptive heavy-ball 
method for different values of �
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function with one global minimum f (x∗) = 0 at x∗ = (3, 0.5) . The function is given by: 
f (x, y) = (1.5 − x + xy)2 + (2.25 − x + xy2)2 + (2.625 − x + xy3)2.

We conduct 1,000 independent runs where we randomly sample each element of the 
initial value, x0 , from a uniform distribution over the interval [0, 4). The convergence rate 
is evaluated by recording the number of steps, k, for any optimizer it took to reach the solu-
tion within a difference in error of f (xk) − f (x∗) ≤ 10−5 . A win is awarded to an optimizer 
if it converges to a solution first within the first 1, 000 iterations, if no optimizer converges 
then none of the optimizers are rewarded.

We compare the proposed adaptive HB with stochastic gradient descent (SGD), SGD 
with momentum (SGDm) (Qian, 1999), Nesterov’s accelerated gradient (NAG) method 
(Nesterov, 1983), RMSProp (Hinton et  al., 2012), AdaGrad (Duchi et  al., 2011), Adam 
(Kingma and Ba, 2014) and AdamW (Loshchilov and Hutter, 2017).

We provide a brief description of the adaptive methods under consideration. Adaptive 
gradient algorithm (AdaGrad) is a modified stochastic gradient descent algorithm with per-
parameter learning rate. That is, the learning rate is a diagonal matrix with elements equal 
to �√

Gi,i

 , where G =
∑k

j=1
gjg

T
j
 , gj is the gradient at iteration k, and � is a step size. The idea 

is based on increasing the learning rate for sparser parameters and decreasing the learning 
rate for ones that are less sparse. Root Mean Square Propagation (RMSProp) divides the 
learning rate by a running average of the magnitudes of recent gradients. Adaptive Moment 
Estimation (Adam), which is considered as an update to RMSProp, uses running averages 
of both the gradients and the second moments of the gradients. Adam with decoupled 
weight decay (AdamW) is basically a modification of Adam where the weight decay is 
decoupled from the optimization steps taken with respect to the loss function.

The learning rates of all these optimizers were chosen after sweeping over the values
{1, 0.5, 0.1, 0.05, 0.01, 0.005, 0.001} . The learning rates that are selected for SGD, 

SGDm, NAG, RMSProp, Adagrad, and Adam are 0.01, 0.01, 0.001, 0.01, 0.5, and 0.5, 
respectively. The momentum factor used for SGDm is the standard value of 0.9, and the 
standard values of �1 = 0.9 and �2 = 0.99 are used for Adam. As for our adaptive HB, we 
only conducted a hyper-parameter search for � of Eq.  2, where we sweep over the val-
ues: {1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2} . The value taken for all hyper-parameter 
searches was the one that returned the largest number of times each optimizer converged. 
The value for � of Eq. 2 for our adaptive HB was chosen to be 1.2.

Clearly, from Table 1, the proposed adaptive HB outperforms the rest by converging to 
the global minimum the largest number of times, specifically the adaptive HB converges 
801 times with the fastest rate averaging at 175.52 iterations to converge. Not to mention, 

Table 1  Convergence 
characteristics of the proposed 
optimizer in comparison to 
known optimizers when tested on 
the Beale function

Bold reflect the best performing metric values

Optimizer Wins Times converged Average steps

AHB 801 915 175.52
SGD 0 27 992.94
SGDm 34 319 719.11
NAG 12 569 575.23
RMSProp 3 86 933.54
Adagrad 9 346 772.11
Adam 69 535 586.37
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our adaptive HB converges 91.5% of all random runs, which is indicative of the method’s 
robustness.

Remark 2 Although we mostly study the performance of popular adaptive optimizers, it is 
important to note it is still possible to obtain monotonic decreasing function values that in 
the non-convex setting, even with a fixed hyper-parameter. This can be accomplished by 
following the negative curvature direction (see, e.g., Carmon et al., 2017; Yu et al., 2018).

5.4.1  AHB versus SAHB in presence of noisy gradient

In this experiment we add zero-mean white Gaussian noise, N(0, �2) , to the gradi-
ent of the Beale function and we run 103 independent runs using different values of 
� ∈ {0, 10−2, 10−1, 1} . We use � = 1.2 , x−1 = [0 0]T , and x0 = [1 1]T.

We consider min0≤k≤1000 ‖∇f (xk)‖2 and compute its average over the 103 independent 
runs. For AHB, we use �k and �k as defined in (4) where as for SAHB, we use 
�̂�k = min

{
𝛼k,

C

(k+1)𝜇

}
 , 𝛽k = min

{
𝛽k,

1

(k+2)𝜇

}
 , as defined in (8) with C = 1 and � = 0.5001.

Examining Table  2, we conclude without the addition of noise, AHB outperforms 
SAHB, otherwise SAHB outperforms AHB.

Remark 3 if �k =
C

(k+1)�
 and �k =

1

(k+2)�
 , then an HB using such hyper-parameters would 

require small values of C to converge; e,g, C ≤ 0.1 and for such setting, this algorithm con-
verges much slower than SAHB or AHB.

5.5  Image classification

We train several existing networks with random initializations on the MNIST, QMNIST, 
CIFAR-10, and CIFAR-100 image classification datasets. We use these image classifica-
tion tasks to demonstrate that our optimizer is well-suited for deep neural networks when 
compared with other popular optimizers. For these tasks, essentially no tuning was per-
formed on our method (i.e. � = 1 of Eq. 2). To avoid any divisions by zero, we add a fixed � 
to the denominator of equations (2) and (3) in all of our image classification tasks to avoid 
singularities. It is important to note that excessive tuning was conducted on the other three 
optimizers under consideration. We point out that we compute the gradient at every batch 
(which is equivalent to an optimization step), rather than a full gradient descent over the 
entire dataset. Thus, every epoch takes the average accuracy or loss over the total number 
of batches within each epoch, as commonly done with the other optimizers that we com-
pared against. In addition, we used a common batch sample used by the optimizers under 
consideration, although recent studies have pointed out that the performance of DNNs is 
heavily dependent on how well the mini-batch samples are selected (Song et  al., 2020; 
Bakirov & Gabrys, 2021).

Table 2  Average of 
min

0≤k≤1000 ‖∇f (xk)‖2 over 103 
independent runs when tested 
on the Beale function with noisy 
gradient

Bold reflect the best performing metric values

Method � = 0 � = 10−2 � = 10−1 � = 1

AHB �.� × ��
−�� 1.1 × 10−4 9.0 × 10−3 0.26

SAHB 1.2 × 10−14 �.� × ��
−�

�.� × ��
−� �.��
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5.5.1  MNIST/QMNIST

The MNIST dataset is a 10-class image classification dataset composed of 60, 000 and 10, 000 
training and testing grey-scale images of hand-written digits, respectively. The QMNIST dataset 
extends the MNIST testing set, resulting in 60, 000 testing images. We compare our proposed 
optimizer with SGDm, NAG, Adam, and AdamW. The neural network chosen for this problem 
is the conventional convolutional neural network (CNN) as designed in Koehler (2020), which 
includes two convolutional layers with kernel size 5, one fully-connected hidden layer, and a 
proceeding fully-connected layer of 50 neurons connecting to the output. The activation func-
tion chosen is the ReLU function. We run our networks for 200 epochs over 5 random (seeds) 
initializations of the network parameters, and use a batch size of 64.

The learning rates for the optimizers are chosen by conducting a random search over the 
values {1, 0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005} for all optimizers, and choose 
the value that returns the highest validation accuracy. For SGDm, we choose a learning rate 
value of 0.01, with the standard momentum factor of 0.9. For NAG we choose a learning 
rate of 0.01 and � = 0.9 . For Adam, we choose a learning rate of 0.0005 with the standard 
values of �1 = 0.9 and �2 = 0.99 . Lastly, for AdamW, we choose a learning rate of 0.0005 
with the standard values of �1 = 0.9 and �2 = 0.99 , and a weight decay value of 1. Our 
method does not require the selection of a learning rate, as it automatically updates its 
hyper-parameters at every iteration.

Our results are summarized in Table 3, which includes the average test accuracies for all 
optimizers over the last 10 epochs. The best results are highlighted in bold. Our method’s 
performance is comparable to the other optimizers in these image classification tasks. We 
emphasize the fact that no tuning was performed on our method, and one would expect 
potentially outperforming the other optimizers if the hyper-parameter � of Eq. (2) were tuned.

5.5.2  CIFAR‑10/100

The CIFAR-10 and CIFAR-100 datasets are composed of 50,  000 and 10,  000 natural 
training and testing images, all with dimensions of 32 × 32 , each with 10 and 100 classes, 
respectively.

We use the tuning hyper-parameters set in Zhang et al. (2019) for SGDm and AdamW, 
and run the proposed CIFAR experiments using a Resnet-18 (He et  al., 2016) for 200 
epochs over three different seeds using a batch size of 128. We also compare against Adam, 
which is tuned in-house, for further comparison. The learning rate for Adam is chosen by 
conducting a random search over {1, 0.1, 0.5, 0.01, 0.05, 0.001, 0.005, 0.0001, 0.0005} and 
choose the value that returns the highest validation accuracy. We tune all optimizers on 
CIFAR-10, then use the same hyper-parameters on CIFAR-100.

Table 3  The average MNIST 
(top) and QMNIST (bottom) 
test accuracy results obtained 
over the last 10 epoch for all 
optimizers

Bold reflect the best performing metric values

AHB SGDm NAG Adam AdamW

98.79% 99.03% 99.13% 99.17% 97.77%

±0.03% ±0.02% ±0.01% ± 0.02% ±0.03%

98.71% 98.81% 98.95% 98.93% 97.61%

±0.02% ±0.02% ± 0.01% ±0.01% ±0.04%
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We run SGD with a momentum factor of 0.9, learning rate of 0.05, and weight decay 
0.001. AdamW is run with a learning rate of 3 × 10−4 and weight decay value of 1. For 
NAG, we use a learning rate of 0.05 and � = 0.9 . Whereas for Adam, we choose a learn-
ing rate value of 0.005, with no weight decay and the standard values of �1 = 0.9 and 

Fig. 8  The training loss at every 
epoch for all optimizers on both 
CIFAR-10 (top) and CIFAR-100 
(bottom). The plots reflect the 
mean training loss over the 3 
random runs

Fig. 9  The test set accuracy at 
every epoch for all optimizers 
on both CIFAR-10 (top) and 
CIFAR-100 (bottom). The solid 
lines reflect the mean accuracy 
over the 3 random runs, whereas 
the shaded regions reflect the 
corresponding added standard 
deviations

Table 4  Average test accuracy 
for CIFAR-10 (top) and CIFAR-
100 (bottom) over last 10 epochs

Bold reflect the best performing metric values

AHB SGDm NAG Adam AdamW

92.35% 84.16% 93.03% 92.38% 87.64%
±0.25% ±1.44% ± 0.17% ±0.24% ±1.28%

69.04% 59.58% 71.83% 64.79% 63.95%
±0.37% ±1.16% ± 0.24% ±0.35% ±0.78%
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�2 = 0.99 . Again, our method does not require the selection of a learning rate, as it auto-
matically updates its hyper-parameters at every iteration.

Figures 8 and 9 show the mean training loss and the mean test set accuracy at every 
epoch over the three random runs for both datasets, respectively. The mean test accuracies 
over the last 10 epochs shown in Table 4. In CIFAR-10, our proposed optimizer achieves 
comparable test accuracy to the other optimizers, resulting in an average 92.35% mean 
accuracy over the last 10 epochs. Whereas for CIFAR-100, our proposed optimizer outper-
forms all the other optimizers, except NAG, by achieving a mean test accuracy of 69.04% 
over the last 10 epochs, where Adam achieves a mean test accuracy of 64.79% over the last 
10 epochs. The best performing optimizer however for these tasks is the NAG optimizer. 
We point out however that with the use of learning-rate scheduling, where the learning-rate 
is decayed by some factor when the error stagnates, better performances can be achieved, 
such as 95% test accuracy on CIFAR-10 using SGDm (Lang et  al., 2019). We reiterate 
that our main objective is tuning reduction, and not necessarily outperforming the other 
optimizers. Thus, for fair comparison, we compare our method with other optimizers while 
only tuning their hyper-parameters, and not with learning-rate scheduling implemented, 
which can be considered extensive. We set � = 1 (no tuning) in all the image classification 
datasets yielding competitive convergence rates in regard to the popular first-order methods 
that require excessive tuning of more than one hyper-parameter.

6  Conclusion

In this paper, we have developed an adaptive HB method designed to tackle large-scale 
systems, which requires the tuning of only a single hyper-parameter, and in some cases 
requires no tuning at all. Our method approximates the optimal parameters set forth by Pol-
yak (1987) in an iterative manner. We showed that a linear convergence rate can be attained 
for strongly convex objective functions. Our method’s potential was demonstrated against 
several optimizers on a number of tasks, such as positive semi-definite quadratic functions, 
the strongly convex function introduced by Lessard et al. (2016) (with and without noise), 
the non-convex Beale function, and image classification tasks using deep neural networks. 
We find that our optimizer displays superior performance on many of these tasks, including 
the inherent capability to suppress gradient noise, and performs comparably well to popu-
lar optimizers on image classification tasks with no tuning performed whatsoever.

There are many possible interesting extensions of our work, such as developing a gain 
scheduling technique tailored to the design of our proposed optimizer. Such a schedul-
ing scheme can be formulated in such a way that the parameter � of Eq. (2) is gradually 
increased once the loss begins to saturate.

Appendix

This section is organized as follows. “Appendix A” provides useful preliminaries. We pre-
sent a lemma, Lemma 1, in “Appendix B” where the proofs of Proposition 1 and Lemma 
1 are included in “Appendix B”. At the end of “Appendix B”, we provide an illustrative 
example. We also present an additional lemma, Lemma 2, in “Appendix C” where the 
proofs of Theorem 1 and Lemma 2 are also included in “Appendix C”.
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Appendix A: Preliminaries

We first introduce some properties that hold for L-smooth functions, as defined in Defini-
tion 1, for all x, y ∈ ℝ

d from Nesterov (2003):

and:

If f(x) is a convex continuously differentiable function, then, we have

In addition, if f(x) is strongly convex, then from Theorem 2.1.10 (Nesterov, 2003) we have 
for all x, y ∈ ℝ

d

and

Appendix B: Proof of Proposition 1

Before we prove Proposition 1, we present a lemma, Lemma 1, and then simultaneously 
prove all items in Proposition 1 and Lemma 1.

Proposition 1 Suppose that f(x) is strongly convex and L-smooth. Then, L ≥ � , and the 
algorithm (1) with hyper-parameters � , �k and �k in (4), guarantees the following proper-
ties for all k ≥ 0:

(P1) 𝛾𝜇 ≤ L̂k ≤ 𝛾L.

For all � ≥
L

�
+
√

L2

�2
− 1 , we have

(P2) 
√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L ≤ �̂�k ≤ (𝛾 + 1)L.

(P3) �k ∈ (0, 1) , and

(15)f (y) − f (x) − ⟨∇f (x), y − x⟩ ≤ L

2
��x − y��2

(16)
1

L
��∇f (x)��2 ≤ ⟨x − x∗,∇f (x)⟩

(17)f (x) − f (x∗) +
1

2L
��∇f (x)��2 ≤ ⟨x − x∗,∇f (x)⟩

(18)f (y) − f (x) ≥ ⟨y − x,∇f (x)⟩.

(19)
1

2�
��∇f (y) − ∇f (x)��2 ≥ f (y) − f (x) − ⟨∇f (x), y − x⟩

(20)⟨∇f (y) − ∇f (x), y − x⟩ ≥ �

2
��y − x��2
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(P4) �̂�k is an increasing function of � , and �k is a decreasing function of �.

(P5) lim𝛾→∞ �̂�k = lim𝛾→∞ L̂k = ∞ , and

lim�→∞ �k = lim�→∞ �k = 0.

Lemma 1 Given any 𝜖1 > 0 , then for all k ≥ 0 there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1 such that 

for all � ≥ �1 , 
�2
k

�k
≤ �1.

Proof of Proposition 1 and Lemma 1. From (2), we can write L̂k = 𝛾
√
Pk  , where

We first show (P1); that is, 𝛾𝜇 ≤ L̂k ≤ 𝛾L for all k. Since f(x) is 
L-smooth, then ||∇f (xk) − ∇f (xk−1)|| ≤ L||xk − xk−1|| . Consequently, 
hT
k
hk = ||∇f (xk) − ∇f (xk−1)||2 ≤ L2||Δxk||2 , where hk = ∇f (xk) − ∇f (xk−1) and 

Δxk = xk − xk−1 . Thus, Pk ≤ L2 and for � ≥ 1, L̂k ≤ 𝛾L .
Using (19), we have

From (5), we have

or

Inserting the last inequality into (21), we obtain

Therefore, hT
k
hk ≥ �2||Δxk||2.

Thus, ||∇f (xk) − ∇f (xk−1)|| ≥ �||xk − xk−1|| and we have 
||∇f (xk) − ∇f (xk−1)|| ≤ L||xk − xk−1|| ; hence, L ≥ � . Pk ≥ �2 , and L̂k ≥ 𝛾𝜇 . Since 𝜇 > 0 , 
then for sufficiently large � , L̂k can be made arbitrarily large.

Next, we show (P2)-(P4). We already showed that 𝛾𝜇 ≤ L̂k ≤ 𝛾L . From (3), we define 
pk such that �̂�k =

√
pk  , where

4

(
√
� +

√
� + 1)2L

≤ �k

≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4 )2
.

Pk ≜
hT
k
hk

ΔxT
k
Δxk

.

(21)
1

2�
hT
k
hk ≥ f (xk−1) − f (xk) + ⟨∇f (xk),Δxk⟩.

f (xk−1) − f (xk) ≥ −⟨Δxk,∇f (xk)⟩ + �

2
��Δxk��2

⟨Δxk,∇f (xk)⟩ ≥ �

2
��Δxk��2 − f (xk−1) + f (xk).

1

2�
hT
k
hk ≥

�

2
||Δxk||2.
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By expanding the quadratic expression of pk , we get

We have already shown that �2 ≤
‖hk‖2
‖Δxk‖2 ≤ L2 , and from Cauchy-Schwarz inequality, we 

have −hT
k
Δxk ≤ ‖hk‖‖Δxk‖ and −hT

k
Δxk ≥ −‖hk‖‖Δxk‖ . Therefore,

Consequently,

The lower bound of �̂�k requires that L̂2
k
+ 𝜇2 − 2LL̂k ≥ 0 . This inequality holds whenever 

L̂k ≥ L +
√
L2 − 𝜇2 . Since L̂k ≥ 𝛾𝜇 , then for � ≥

L

�
+
√

L2

�2
− 1 , we have 

L̂2
k
+ 𝜇2 − 2LL̂k ≥ 0 , for all k.
From its definition, it is clear that 0 < 𝛽k < 1 . To find the lower bound of �k , we use 

the upper bounds of both L̂k and �̂�k . Since 𝛾𝜇 ≤ L̂k ≤ 𝛾L , then using (23), we obtain 
�̂�k ≤ (𝛾 + 1)L , and

Next, we show that �̂�k is an increasing function of � for 𝛾 >
L

𝜇
 . We consider the partial 

derivative of pk with respect to L̂k , that is,

We use (15) twice, one time with y ≡ xk and x ≡ xk−1 and another time with x ≡ xk and 
y ≡ xk−1 , we obtain

We sum the above inequalities, multiply by 2 and divide by ΔxT
k
Δxk , we get

(22)pk ≜
(hk − L̂kΔxk)

T (hk − L̂kΔxk)

ΔxT
k
Δxk

.

pk = L̂2
k
+

‖hk‖2
‖Δxk‖2

− 2L̂k
hT
k
Δxk

‖Δxk‖2
.

pk ≤ L̂2
k
+ L2 + 2L̂kL = (L̂k + L)2, and

pk ≥ L̂2
k
+ 𝜇2 − 2LL̂k.

(23)
√

L̂2
k
+ 𝜇2 − 2LL̂k ≤ �̂�k ≤ L̂k + L.

(24)�k ≥
4

(
√
� +

√
� + 1)2L

.

𝜕pk

𝜕L̂k

= 2L̂k − 2
⟨∇f (xk) − ∇f (xk−1), xk − xk−1⟩

ΔxT
k
Δxk

.

⟨∇f (xk−1), xk − xk−1⟩ ≥ f (xk) − f (xk−1)

−
L

2
��xk − xk−1��2

−⟨∇f (xk), xk − xk−1⟩ ≥ f (xk−1) − f (xk)

−
L

2
��xk − xk−1��2.

−2
⟨∇f (xk) − ∇f (xk−1), xk − xk−1⟩

ΔxT
k
Δxk

≥ −2L.
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Consequently,

Recall that L̂k ≥ 𝛾𝜇 . Thus, for 𝛾 >
L

𝜇
 , we can make L̂k > L , hence 𝜕pk

𝜕L̂k
> 0 . Thus, since 

�̂�k =
√
pk , then �̂�k becomes an increasing function of �.

Next, we find the upper bound of �k where we use the lower bounds of both L̂k and 
�̂�k . The lower bound of �̂�k holds whenever � ≥

L

�
+
√

L2

�2
− 1 ≥

L

�
 , where �̂�k is an increas-

ing function of � and note that from (23), we find that the lower bound is an increasing 
function of L̂k for 𝛾 >

L

𝜇
 . Since L̂k ≥ 𝛾𝜇 , then �̂�k ≥

√
𝛾2𝜇2 + 𝜇2 − 2𝛾𝜇L . Thus, for 

� ≥
L

�
+
√

L2

�2
− 1 , we obtain

Next, we show that for 𝛾 >
L

𝜇
 , �k is a decreasing function of � . From the definition of �k , it 

is readily clear that as � increases, both L̂k and �̂�k increase, and �k decreases.
Next, we prove Lemma 1. From definitions of �k and �k , we have

The inequality in (23) implies that

and we know that 𝜇𝛾 ≤ L̂k ≤ L𝛾 . Thus, as � → ∞ , L̂k → ∞ . Notice that

and

Since 0 < 𝜇𝛾 ≤ L̂k ≤ L𝛾 for all k, we have
L

𝜇𝛾
≥

L

L̂k
 or 1 −

√
1 +

L

𝜇𝛾
≤ 1 −

√
1 +

L

L̂k
.

In addition, 𝜇
2

L̂2
k

≥
𝜇2

L2𝛾2
 and − 2L

L̂k
≥ −

2L

𝜇𝛾
 . Then, 1 + 𝜇2

L̂2
k

−
2L

L̂k
≥ 1 +

𝜇2

L2𝛾2
−

2L

L̂k
≥ 1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾
 . 

Thus, 1 −
(
1 +

𝜇2

L̂2
k

−
2L

L̂k

) 1

4

≤ 1 −
(
1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾

) 1

4.

𝜕pk

𝜕L̂k

≥ 2(L̂k − L).

(25)�k ≤
4

(
√
�� + (�2�2 + �2 − 2��L)

1

4 )2
.

(26)
𝛽2
k

𝛼k
=

��
L̂k −

√
�̂�k

�4

4
��

L̂k +
√
�̂�k

�2
.

L̂k

√
1 +

𝜇2

L̂2
k

−
2L

L̂k

≤ �̂�k ≤ L̂k

(
1 +

L

L̂k

)
,

�
L̂k

�
1 −

�
1 +

L

L̂k

�
≤

�
L̂k −

√
�̂�k

≤

�
L̂k

�
1 −

�
1 +

𝜇2

L̂2
k

−
2L

L̂k

� 1

4
�
,

1 −

√
1 +

L

L̂k

≤ 1 −

√
�̂�k

L̂k

≤ 1 −
(
1 +

𝜇2

L̂2
k

−
2L

L̂k

) 1

4

.
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Consequently,

Therefore, as � → ∞ , both upper and lower bounds of 1 −
√

�̂�k

L̂k
 approach zero; hence 

lim𝛾→∞
�̂�k

L̂k
= 1 for all k ≥ 0 since the bounds are independent of k.

Consequently, as � → ∞ , the numerator in (26) remains bounded, whereas the 
denominator would tend to infinity. Since 𝛼k > 0,∀ k , then as � → ∞ , �

2
k

�k
→ 0 for all 

k ≥ 0 . Therefore, given any 𝜖1 > 0 , then for all k ≥ 0 there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1 

such that for all � ≥ �1 , 
�2
k

�k
≤ �1.

Finally, we show (P5). We showed that as � → ∞ , L̂k → ∞ , and lim𝛾→∞ �̂�k = ∞ . It is 
readily clear that as � → ∞ , �k → 0 for all k ≥ 0 . Using the same argument of the proof of 
Lemma 1 whereas � → ∞ , the numerator of �k remains bounded and its denominator goes 
to infinity. Thus, as � → ∞ , �k → 0.

Example This example is intended just to show that (2) and (3) can immediately esti-
mate the largest eigenvalue and the smallest non-zero eigenvalue of A.

We consider the following matrix

with eigenvalues {100.02, 40.98} . We use Δx = [1 1]T . We adopt a tuned � = 1.3 to obtain 
L̂0 = 100.5 and �̂�0 = 41.4 . However, with � = 2 , we obtain L̂0 = 154.7 and �̂�0 = 88.3 . As 
expected for larger values of � , we obtain larger values of L̂ , which can exceed the maxi-
mum eigenvalue of A.   ◻

Appendix C: Proof of Theorem 1

In what follows we modify Lemma 1 and Theorem 4 in Ghadimi et al. (2015), where the 
HB hyper- parameters are assumed constant, to our time-varying case (1).

Lemma 2 Let {Uk}k≥0 and {Vk}k≥0 be non-negative sequences of real scalars satisfying

where {v1,k}k≥0 , {u1,k}k≥0 and {v2,k}k≥0 are positive sequences of real scalars, and 
{u2,k}k≥0 is a sequence of non-negative scalars. If qu1,k + u2,k ≤ q2 and 0 ≤

v2,k

v1,k
≤ q , for 

q ∈ (0, 1) and for all k ≥ 0 , then the sequence {Uk}k≥0 generated by (27) satisfies

Proof of Lemma 2 It is readily clear that (28) holds for k = 0 . We add zUk , with z ≥ 0 to 
both sides of (27)

1 −

√
1 +

L

𝜇𝛾
≤ 1 −

√
�̂�k

L̂k

≤ 1 −
(
1 +

𝜇2

L2𝛾2
−

2L

𝜇𝛾

) 1

4

.

A =

[
41 1

1 100

]

(27)Uk+1 + v1,k+1Vk+1 ≤ u1,kUk + u2,kUk−1 + v2,kVk

(28)Uk ≤ qk((q + 1 − u1,0)U0 + v1,0V0).
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if U0 = U−1 and the following two inequalities hold

then Sk+1 ≤ (z + u1,k)Sk , where Sk ≜ Uk + zUk−1 + v1,kVk . For (31) to hold, we need 

z2 + u1,kz − u2,k ≥ 0,∀ k or z ≥
−u1,k+

√
u2
1,k
+4u2,k

2
,∀ k . In addition, for (32) to hold, we need 

z ≥
v2,k

v1,k
− u1,k,∀ k . Therefore, for both (31) and (32) to hold, we need

In order to have Sk converges to zero at a linear rate, it is sufficient to have 
0 ≤ z + u1,k ≤ q < 1,∀ k , or

Note that since u1,k ≥ 0 and u2,k ≥ 0 , then the first element of max{., .} is non-negative. In 

addition, for 
u1,k+

√
u2
1,k
+4u2,k

2
≤ q , then we need u2

1,k
+ 4u2,k ≤ (2q − u1,k)

2 or qu1,k + u2,k ≤ q2 . 
Furthermore, 0 ≤

v2,k

v1,k
≤ q.

Since 0 ≤ z + u1,k ≤ q < 1,∀ k , then

Since Sk = Uk + zUk−1 + v1,kVk is the summation of non-negative scalars, this ends the 
proof.   ◻

Theorem  1 Suppose that f(x) is strongly convex and L-smooth. Then, there exists a 
�0 ≥ max

{
4
(

L

�
+
√

L2

�2
− 1

)
,
4(L+1)

�

}
 such for 𝛾 > 𝛾0 , the sequence {xk} generated by 

algorithm (1) with step-size �k and hyper-parameter �k in (4), satisfies

where q ∈ (0, 1) , and x∗ is the unique optimal solution that minimizes f(x).

(29)
Uk+1 + zUk + v1,k+1Vk+1 ≤ (u1,k + z)Uk + u2,kUk−1

+ v2,kVk

(30)= (u1,k + z)
(
Uk +

u2,k

u1,k + z
Uk−1 +

v2,k

u1,k + z
Vk

)

(31)
u2,k

u1,k + z
≤ z

(32)
v2,k

u1,k + z
≤ v1,k,

(33)z ≥ max
{−u1,k +

√
u2
1,k

+ 4u2,k

2
,
v2,k

v1,k
− u1,k

}
,∀ k.

(34)0 ≤ max
{u1,k +

√
u2
1,k

+ 4u2,k

2
,
v2,k

v1,k

}
≤ q < 1,∀ k.

Uk+1 + zUk + v1,k+1Vk+1 ≤ q(Uk+1 + zUk−1 + v1,kVk)

≤ ⋯ ≤ qk+1((1 + z)U0 + v1,0V0)

≤ qk+1((q + 1 − u1,0)U0 + v1,0V0)

(35)f (xk) − f (x∗) ≤ qk(f (x0) − f (x∗))
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Proof of Theorem 1 Since f(x) is L-smooth, then

We have from (1),

and

Substituting the above equalities into (36), subtracting f (x∗) from each side and arranging 
terms, we obtain

We multiply both sides of (37) by 1−�kL
2�k

 , add the resulting identity to (38), and rearrange 
terms yields

Since f(x) is smooth and �-strongly convex, then from Nesterov (2003) or Polyak- Lojasie-
wicz (PL) inequality, we have

Thus, from (39) and the above inequality

We arrange the terms of (40) and put it in the form of (27), we obtain

(36)
f (xk+1) − f (xk) ≤⟨∇f (xk), xk+1 − xk⟩

+
L

2
��xk+1 − xk��2

(37)
��xk+1 − xk��2 =�2

k
��∇f (xk)��2 + �2

k
��xk − xk−1��2

− 2�k�k⟨∇f (xk), xk − xk−1⟩

⟨∇f (xk), xk+1 − xk⟩ = − �k��∇f (xk)��2
+ �k⟨∇f (xk), xk − xk−1⟩

(38)

f (xk+1) − f (x∗) ≤ f (xk) − f (x∗) +
L�2

k

2
��xk − xk−1��2

− �k

�
1 −

�kL

2

�
��∇f (xk)��2

+ �k(1 − L�k)⟨∇f (xk), xk − xk−1⟩

(39)

f (xk+1) − f (x∗) +
1 − �kL

2�k
||xk+1 − xk||2 ≤ f (xk) − f (x∗)

−
�k

2
||∇f (xk)||2 +

�2
k

2�k
||xk − xk−1||2

||∇f (xk)||2 ≥ 2�(f (xk) − f (x∗))

(40)

f (xk+1) − f (x∗) +
1 − �kL

2�k
||xk+1 − xk||2 ≤ f (xk) − f (x∗)

− ��k(f (xk) − f (x∗)) +
�2
k

2�k
||xk − xk−1||2
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This inequality is in the form of (27) (Lemma 2) where we identify f (xk) − f (x∗) with Uk , 
and ||xk − xk−1||2 with Vk , and

In what follows, we show that all conditions of Lemma 2 are satisfied.
From the definition of �k , it is clear that 𝛼k ≤

4

L̂k
 . Since L̂k ≥ 𝜇𝛾 , then �k ≤

4

��
 for all 

k ≥ 0 . Thus, for 𝛾 > 4
(

L

𝜇
+
√

L2

𝜇2
− 1

)
≥ 4

L

𝜇
≥ 4 , we have 0 < 𝛼k𝜇 < 1 , and 

0 < 1 − 𝛼k𝜇 < 1 . Similarly, �kL ≤
4L

��
 and since 𝛾 > 4

L

𝜇
 , then 0 < 𝛼kL < 1 and 1 − 𝛼kL > 0 . 

Thus, for all k ≥ 0 , {v1,k}k≥0 and {u1,k}k≥0 become sequences of positive scalars. It is read-
ily clear that {v2,k}k≥0 is a sequence of positive scalars and {u2,k}k≥0 is a sequence of zero 
(or non-negative) scalars.

We are left to show that for some constant q ∈ (0, 1) , we have qu1,k + u2,k ≤ q2 , and 
0 ≤

v2,k

v1,k
≤ q . We next consider, qu1,k + u2,k = qu1,k = q(1 − �k�).

Let q =
(�+1)L−�

(�+1)L
 ; hence, q ∈ (0, 1) . From Proposition 1 (P3), we have for all k ≥ 0

Consequently,

Therefore, q(1 − 𝛼k𝜇) < q2.
Next, we show 0 ≤

v2,k

v1,k
≤ q or 0 ≤

�2
k

�k

�k−1

1−�k−1L
≤ q.

We first show that for 𝛾 > 𝛾2 ≜
4(L+1)

𝜇
 , we have 0 <

𝛼k

1−𝛼kL
< 1 for all k. We know 𝛼k > 0 

and we already showed that for 𝛾 > 4
L

𝜇
 , then 1 − 𝛼kL > 0 . Next, we consider

It is clear that the upper bound of �k
1−�kL

 is less than one for 𝛾 >
4(L+1)

𝜇
.

Thus, for all k ≥ 0 , �
2
k

�k

�k−1

1−�k−1L
≤

�2
k

�k
 . From Lemma 1 we have for all k ≥ 0 and for any 

q > 0 , there exists a 𝛾1 >
L

𝜇
+
√

L2

𝜇2
− 1 ≥

L

𝜇
 such that for all � ≥ �1 , 

�2
k

�k
≤ q or v2,k

v1,k
≤ q < 1.

Therefore, for all for all k ≥ 0 and 𝛾 > 𝛾0 ≜ max
{
𝛾1, 4

(
L

𝜇
+
√

L2

𝜇2
− 1

)
,
4(L+1)

𝜇

}
 , we 

have all conditions of Lemma 2 satisfied. Therefore, one can apply Lemma 2 to conclude 
the linear convergence in (35).   ◻

f (xk+1) − f (x∗) + v1,k+1||xk+1 − xk||2
≤ u1,k(f (xk) − f (x∗)) + u2,k(f (xk−1) − f (x∗))

+ v2,k||xk − xk−1||2

v1,k+1 =
1 − �kL

2�k
, u1,k = 1 − �k�, u2,k = 0, v2,k =

�2
k

2�k
.

𝛼k ≥
4

(
√
𝛾 +

√
𝛾 + 1)2L

>
1

(𝛾 + 1)L
.

1 − 𝛼k𝜇 < 1 −
𝜇

(𝛾 + 1)L
= q.

𝛼k

1 − 𝛼kL
=

4��
L̂k +

√
�̂�k

�2

− 4L

<
4

𝛾𝜇 − 4L
.
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Appendix D: Proof of Theorem 2

We first state Theorem 1 in Gitman et al. (2019).

Theorem 1 in Gitman et al. (2019). Let F satisfy Assumptions 1–3. Additionally, assume 
0 ≤ vk ≤ 1 and the non-negative sequences {�k} and {�k} satisfy the following conditions:

Then the sequence {xk} generated by the QHM algorithm satisfies

Moreover, we have

The QHM algorithm with vk = 1 is the Stochastic Heavy Ball method.

Proof of Theorem 2 The hyper-parameters of our SAHB are given by: �̂�k = min
{
𝛼k,

C

(k+1)𝜈

}
 , 

𝛽k = min
{
𝛽k,

1

(k+2)𝜈

}
 , 0.5 < 𝜈 ≤ 1 , C > 0 , and �k and �k are positive and defined in (4).

Making use of Theorem 1 in Gitman et al. (2019), we only need to show that

Since 𝛽k ≤
1

(k+2)𝜈
 , then supk 𝛽k < 1 and limk→∞ 𝛽k = 0 . In addition, since �̂�k ≤

C

(k+1)𝜈
 and 

0.5 < 𝜈 ≤ 1 , then by using the integral test we have 
∑∞

k=0
�̂�2
k
< ∞.

Due to Lipschitz continuity of ĥ (Assumption 4), we obtain ‖ĥk‖2 ≤ L2
G
‖Δxk‖2 . There-

fore, Pk =
‖ĥk‖2
‖Δxk‖2 ≤ L2

G
 , which implies that L̂k ≤ 𝛾LG.

On the other hand, �̂�k ≜
‖ĥk−L̂kΔxk‖

‖Δxk‖ ≤
‖ĥk‖
‖Δxk‖ + L̂k , thus, �̂�k ≤ (𝛾 + 1)LG . Since 

𝛼k ≜
4

(

√
L̂k+

√
�̂�k)

2

 , we conclude that

Hence, there is a finite K such that �̂�k = C∕(k + 1)𝜈 for all k ≥ K . Since 
�̂�k ≥ 0,

∑∞

k=0
�̂�k ≥

∑∞

k=K
�̂�k = ∞.

Since all the sufficient conditions in Gitman et al. (2019) are satisfied, then we deduce 
both (11) and (12), and this ends the proof.   ◻
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(41)
∞∑
k=0

𝛼k = ∞,

∞∑
k=0

𝛼2
k
< ∞, lim

k→∞
𝛽k = 0, 𝛽 ≜ sup

k

𝛽k < 1.

lim inf
k→∞

‖∇F(xk)‖ = 0 a.s.

lim sup
k→∞

F(xk) = lim sup
k→∞,‖∇F(xk)‖→0

F(xk) a.s.

∞∑
k=0

�̂�k = ∞,

∞∑
k=0

�̂�2
k
< ∞, lim

k→∞
𝛽k = 0, 𝛽 ≜ sup

k

𝛽k < 1.

�k ≥
4

(
√
� +

√
� + 1)2LG

.
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