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Abstract: The article presents a mixed deep neural network (DNN) approach for detecting micron-
scale fatigue damage in high-strength polycrystalline aluminum alloys. Fatigue testing is conducted
using a custom-designed apparatus integrated with a confocal microscope and a moving stage to
accurately pinpoint the instance of micron-scale crack emergence. The specimens are monitored
throughout the duration of the experiment using a pair of high-frequency ultrasonic transducers. The
mixed DNN is trained with ultrasonic time-series data that are obtained from two sets of specimens
categorized by different stress concentration factors. To understand the effects of mixing the data from
both types of specimens, a parametric analysis is performed by varying the amount of training data
from each specimen to develop a series of mixed DNNs. The mixed DNN, when tested on unseen
data from both specimens, exhibits an accuracy of over 95%. This article, therefore, demonstrates a
successful alternative to customized DNNs for new types, geometries, or stress concentration factors
in the materials under consideration.

Keywords: fatigue damage detection; deep neural network; mixed learning; structural health moni-
toring; machine learning

1. Introduction

Fatigue damage detection is one of the most important challenges that structural
engineers encounter [1]. Although fatigue has been studied for a long time, a predictive
framework to accurately and comprehensively estimate the fatigue life of a component
is still elusive. This is mainly due to the massively vast parameter space that drives such
failures in an operational setup [2]. Several factors, such as the load conditions, history,
frequency, part geometry, presence of stress concentration factors, material microstructures,
and defects, contribute to fatigue failure. While these factors may be accounted for to a
certain extent through laboratory-based experiments to develop predictive models, they are
often accompanied by unprecedented levels of uncertainties in operation. Hence, a compre-
hensive experimentation to understand their coupled effects can become overwhelmingly
expensive to perform [3]. Analytical and computational modeling are often performed to
augment the understanding of fatigue failures. However, owing to their computational cost,
these numerical models are often carried out on reduced-scale geometries. Consequently,
a quantifiable generalized framework that can predict the fatigue behavior of any new
materials and manufacturing processes remains a major research focus to date [4]. A broad
categorization of fatigue-related research is shown in Figure 1a. The focus is either toward
a ‘prediction’ or a ‘detection’ framework. The prediction framework is mainly targeted
toward influencing design criteria that can enable a fatigue-resistant component, whereas
the detection framework is useful in a working environment. The studies in the prediction
framework can be further divided into three main domains, viz., analytical, computational,
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and empirical. A recent review paper by Liao et al. [5] summarizes four classes of analyt-
ical techniques that are pursued for this problem, viz., nominal stress approaches, local
stress-strain approaches, critical distance theories, and weighting control-parameter-based
approaches. High-fidelity computational frameworks are being mainly developed using
crystal plasticity simulations [6,7]. Empirical frameworks, the oldest and comparatively
more error-prone among the three, have been documented through several design crite-
ria [8]. The detection framework on the other hand, is targeted toward developing better
sensing mechanisms [9] or improving the data analysis therein [10]. The detection frame-
work provides real-time information about a component’s health and, therefore, is critical
in ensuring the safe operation of fatigue-critical components in operation [11].

Figure 1. (a) A block diagram highlighting the impact of stress concentration on fatigue failure. A
schematic of the (b) traditional machine learning and (c) proposed mixed learning model inspired by
multilingual deep neural networks.

The elemental philosophy of the sensor-based approach is underpinned by the sensors’
ability to continuously stream data that has the health information of a component encoded
in it. By analyzing this stream of data via data-driven approaches, reliable strategies
can be developed to detect fatigue damage in real-time [12]. Over the past few decades,
rapid growth of deep learning methodologies has ushered a new era in damage detection
analysis algorithms [10,13–16]. As summarized by Zhao et al. [15], the state-of-the-art deep
learning methods, such as autoencoders, restricted Boltzmann machines, deep Boltzmann
machines, convolutional neural nets (CNNs), and recurrent neural nets (RNNs), have
shown promising applications to this field. CNNs have shown a particular proclivity
to problems that have dealt with imaging datasets [14,16]. However, in the majority of
complex structures, such as aerospace or automobiles, the reliance is solely on time-series-
based sensors, which can be processed with varied methods. For instance, through an
autoencoder, acoustic emission data were analyzed to localize damage [17]. With Bayesian
Graph Neural Nets, Mylonas et al. [18] demonstrated the application of strain gauge
sensors. Amiri et al. [19] studied damage detection in spot welds using ultrasonics and
artificial neural nets (ANNs). Similarly, Bansode and Billore [20] used ANNs to study
fatigue failures in rotary shafts.
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Dharmadhikari et al. showed the excellence of deep neural networks (DNNs) for
fatigue crack detection in notched specimens using ultrasonics [21]. Along similar lines,
Amiri et al. [19], Xu et al. [22] used ultrasonics to study damage detection. In addition to a
direct application of such sensors, computational assistance in guided wave-based damage
detection has also been studied with neural nets [23,24]. However, much of the existing
research has focused on damage detection of specimens having a fixed geometry, as shown
in Figure 1b. It is well known that notches create localized stress concentrations that may
significantly alter failure mechanisms. Since DNNs are trained with a huge amount of data,
a logical follow-up question is: would a similar volume of training data be needed for any
new specimen type? This question becomes even more paramount if the specimens are
built with new manufacturing processes (e.g., additive manufacturing [25]) or expensive
materials (e.g., nickel-based Rhenium containing superalloys [26]). In trying to find a
solution to these challenges, if a DNN trained in some other material systems or geometries
aids in any way, it would result in huge cost savings. Although there are transfer learning
approaches to answer such problems [27], they often result in individual models for each
specimen geometry and, therefore, may lead to an intractable number of trained models.
While these questions are rather firsts-of-their-kinds in the applied mechanics field, they are
not new in other domains, such as natural language processing [28].

A common theme among the language research problems is to develop a unified
natural language processing framework for sparsely available language data (such as Urdu
or Tibetan) from similar yet vastly available counterparts (such as Hindi or Mandarin)
using a mixed learning strategy that can be schematically represented through Figure 1c.
Based on the success of this framework in translating a representative phrase from any
language to the other, it is hypothesized that a single machine-learning framework can
also be developed for fatigue damage detection across different specimen geometries.
There can be several ways to design specimens with different geometry. In the structural
engineering community, the effects of stress concentration have been studied for a long time
and have led to well-defined theories for commonly occurring materials and geometries [3].
This article focuses on understanding the applications of mixed learning to specimens
distinguished by stress concentration factors (Figure 1a,b).

Two different stress concentration factors (Kt) are considered. The specimens are built
from Al7075-T6, an aluminum alloy that is extensively used in aerospace applications. A
custom-built fatigue testing apparatus is used to generate the required time-series data
during the entire duration of the tests using ultrasonic sensors. The tests provide crack
detection at a very early stage (∼45% fatigue life) owing to the use of a high-resolution
confocal microscope. Baseline deep neural nets (DNNs), trained individually for each Kt,
show above 95% accuracy. A unified DNN model is developed by mixing the data from
both Kts and training a single network. The unified model shows accuracies similar to the
baseline DNNs, indicating the success of the unified model through the mixed learning
process. To understand the impacts of the data contributions from both Kts, a parametric
analysis is conducted by varying the contribution from each Kt. Incredibly, with just 10%
training data from both datasets, the performance of the mixed DNN approaches close to
92% accuracy, showing its aptitude for success with scarce data for components with new
materials or manufacturing processes.

The article is divided into five sections, including the present one. Section 2 sum-
marizes the experimental protocol, followed by a data analysis methodology in Section 3.
Section 4 presents the results and discussion, and Section 5 presents the conclusions and
future work.

2. Experimental Method

This section reports the description and methods of the experimental procedure to
validate the theoretical results.
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2.1. Specimen Design

Figure 2 depicts the specimen designs following the ASTM E466 standard [29] used in
this study. The specimens are made of high-strength Al7075-T6 alloy that meets the ASTM
B209 standard [30]. The specimens are designed to have a one-sided stress concentration
factor (Kt) to allow for controlled initiation of fatigue cracks for imaging purposes. Several
specimen geometries are simulated using Solidworks and eventually, two geometries
yielding Kts of 7.1 and 8 are down-selected. For brevity, the specimens having Kt of 7.1
are attributed as Kt1 and the specimens having Kt of 8 are attributed as Kt2. Both sets of
specimens, owing to their distinct Kt values, will exhibit different failure lives. A higher
Kt implies larger localized stress fields. These fields can be easily computed through a
finite element simulation, as shown in Figure 3. The figures depict the stresses in both
notches for a tensile load of 2 kN. The simulations are performed using a Linear Elastic
Isotropic model with an elastic modulus of 72 GPa, and a Poisson’s ratio of 0.33. These
differences ultimately impact the instance of crack detection and the fatigue lives of the
specimens, as observed in Figure 4. Kt2, with a more damaging impact, lowers the fatigue
life and accelerates the crack appearance instance as compared to Kt1. The instance of
crack detection (or appearance) corresponds to a crack opening displacement of 3 µm [21],
as detected by the confocal microscope. An elaborate description of the assistance of the
confocal microscope in these experiments is presented later in Section 3.2.

Figure 2. Specimen designs for (a) Kt1 and (b) Kt2 (all dimensions are in mm).

Figure 3. Local stress field visualization for (a) Kt1 and (b) Kt2 specimens using a finite element-based
simulation.
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Figure 4. Comparison between the crack detection and failure instances for Kt1 and Kt2 in terms of
the number of load cycles.

2.2. Fatigue Testing

The experimental protocol has been described in detail by [21,31–33] and is briefly
summarized in the present work. Figure 5a,b depict the fatigue testing apparatus. The
apparatus is made up of four parts: (i) MTS testing equipment, (ii) a confocal microscope
mounted on a moving stage, (iii) a moving stage, and (iv) ultrasonic sensors. The MTS
testing equipment is a 25 kN servo-hydraulic setup. The specimens are mounted on the
apparatus using custom grips and are subjected to tensile-tensile fatigue loading with a
mean load of 3 kN and a stress ratio (min. stress/max. stress) of 0.5 at 20 Hz. Data are
collected on a regular basis during the test using the confocal microscope and ultrasonic
sensors. The tests are conducted through an MTS controller using an automated routine
from the Multi-Purpose TestWare software suite.

The placement of the ultrasonic transmitter and receiver utilized during the fatigue
test is kept constant at 10 mm for all experiments. The sensors used in the current study are
obtained from Olympus (Shinjuku, Japan) and have a base frequency of 10 MHz, and are
sampled at 100 MHz while using a pulse-echo scheme. The sensor data are in the form of a
time series. In addition to ultrasonic sensors, the specimens are also monitored through a
confocal microscope that is focused on the inside surface of the high-stress concentration
region where fatigue cracks are likely to originate [34].

Figure 5. (a) Custom fatigue testing apparatus highlighting the specimen, confocal microscope,
moving stage, and grips. (b) Ultrasonic sensors mounted with a 3D-printed housing on the specimens.
Reprinted from [27] with permission under the terms and conditions of the Creative Commons
Attribution (CC BY) license.
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2.3. Ultrasonic Signals

A total of 15 specimens each for both Kts are tested using the aforementioned experi-
mental protocol. During the experiments, ultrasonic signals are continuously recorded until
the specimen fails. For both the Kts, roughly 30,000 individual signals are collected per
specimen leading to a vast volume of data. When these signals are concatenated together
sequentially, a visible attenuation is observed, as shown in Figure 6a,b for both specimens.
An insight into the nature of the individual signals is shown through zoomed-in plots at
three windows (named 1, 2, and 3). A representative concatenation of three individual
signals is also shown for all three windows in Figure 6a. Each one of these individual
signals is for one data point. The first window depicts a healthy signal, followed by an
attenuated version in the second window. The third window is mainly noise, indicating
that the specimen has developed a significantly large crack to obstruct the ultrasonic trans-
mission path. At this juncture, there are two major points that need to be addressed to
define the problem proposed in this article. First, although signal attenuation is clearly
evident while moving towards failure, the exact instance of crack appearance cannot be
determined solely with ultrasonic signals. Additional information is needed to corroborate
the failure. Secondly, there seems to be no visual difference between the two signals in
Figure 6a,b to differentiate between Kts. There is a difference in the nature and amplitudes
of the pulses. However, that is merely an experimental artifact and not an indication of
any Kt.

Figure 6. Concatenated Ultrasonic Signal for (a) Kt1 and (b) Kt2. Three zoomed-in windows attributed
as 1, 2, and 3 are shown in the corresponding insets.

2.4. Binary Classification Using the Confocal Microscope

The confocal microscope is focused on the location of high stress, shown through
a schematic in Figure 7a. This orientation enables the microscope to access the entire
region where the stress is likely to be higher (Figure 7b). During the experiment, through
continuous monitoring, the microscope can identify the exact instance of the emergence
of a crack in the fatigue damage process. Figure 7c depicts a portion of the high-stress
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region in a healthy state. The detection of a crack is shown in Figure 7d. Making use
of the high-resolution capability [34], this instance of crack detection with the confocal
microscope corresponds to a crack opening displacement of 3 µm. With further loading,
the crack continues to grow, as is evident in the images in Figure 7e. The objective of this
research is to study the capability of crack detection at the earliest stage (Figure 7d). By
mapping this information of crack emergence to the ultrasonic signals, a clear bifurcation
between a healthy and a cracked state can be established.

Figure 7. (a) A schematic showing the orientation of the confocal microscope. (b) A representative
imaging of the region of high stress. (c–e) Damage progression through a part of the high-stress
region in the healthy, crack detection, and crack growth stages, respectively.

Accordingly, the two ultrasonic signals from Figure 6 are now shown with healthy
and cracked labels in Figure 8, and similar labeling is performed for the data from all the
specimens. Table 1 shows the exact amount of signals collected for each Kt in addition to
the relative distribution among the healthy and cracked classes. The signals, while traveling
through any material, are impacted by the varied local stress fields, as shown in Figure 3.
These differences are created due to the stress concentration factors and, in turn, have
their signatures embedded into the ultrasonic signals. Hence, although the signals look
virtually similar, the bifurcation between the healthy and cracked states would be heavily
dependent on Kts. By virtually similar, the authors imply that the individual signals from
both the specimens have three peaks, as indicated in window #1 in Figure 6a; the difference
in relative magnitudes of these three peaks is not an indication of the specimen geometry
but an experimentally induced random behavior. These observations, thereby, motivate the
pursuit of a damage detection methodology that can have a unified basis to identify cracks
irrespective of the Kt.

Table 1. Data distribution among the two classes for both Kts.

Specimen Type Total Data Healthy Data Cracked Data

Kt1 448,939 204,571 244,368

Kt2 458,655 196,175 262,480
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Figure 8. ‘Healthy’ and ‘cracked’ labeling of the ultrasonic signals for (a) Kt1 and (b) Kt2.

3. Data Analysis Methodology

Figure 9 broadly compares the mixed learning framework to a traditional (separate
DNN for each Kt) approach. Figure 9a shows the commonplace DNN training and testing
approaches observed in ref. [21] where a DNN is trained for a particular problem (or
Kt). In the long run, this may create a hurdle due to the vast number of Kts that can
demonstrate minute changes. Mixed learning, as shown in Figure 9, tackles this problem
by showing a method to create a single DNN that can adapt to multiple Kts without any
modifications. The following paragraphs elaborate on a step-by-step procedure that leads
to mixed learning.

Figure 9. (a) Using the healthy and cracked labels from the confocal microscope, an individual DNN
can be trained and tested for either Kt1 or Kt2 using the respective dataset. (b) A single mixed DNN
can be trained and tested from both Kt1 and Kt2 data.

3.1. Dataset Bifurcation Strategy, Training of Baseline DNNs, and Transductive Analysis

The first step of training any DNN is to create a training and testing split of the
available data from both Kts (i.e., Kt1 and Kt2), as shown in Figure 10a. Although fairly
common in all machine learning analyses, the distribution of this split is often ad-hoc
(80–20% in this case) and is based on an intelligent estimate of the problem. The reason to
explicitly mention this step is to emphasize the subsequent parametric analysis that delves
into understanding the effects of such data splits. At this stage, however, following the
train–test split, a separate DNN (Figure 10b) is trained and tested for each Kt to create a
baseline for further performance comparison. The DNN is represented using a consistent
nomenclature DNNTest: YY

Train: XX where XX and YY represent the training and testing data
used for the analysis, respectively. For example, the baseline DNN for Kt2 (denoted as
DNNTest: 20Kt2

Train: 80Kt2
) is trained using 80% of the available data and tested on the remaining 20%.

The DNN has a fully connected structure with seven dense hidden layers and one dense
output layer with a single neuron. The network receives raw, unprocessed signal data as
its input. The hidden layers use the ReLU (Rectified Linear Unit) activation function [35],
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while the output layer uses a sigmoid activation function [35]. The model is inspired by
the encoder-decoder architecture [35], where inputs are compressed to a 2D latent space
and then expanded again to reconstruct the original input. A low-dimensional latent space
created due to such a structure can help in interpreting the behavior of the DNN in future
studies. Logistic regression [35] is carried out on the reconstructed output. Since the task is
a mutually exclusive binary classification problem, binary cross-entropy [35] is used as the
loss function.

Figure 10. (a) Training and testing dataset bifurcation independently for Kt1 and Kt2. (b) Baseline
DNN training and testing with respective datasets for both Kts. (c) Baseline DNN architecture.
(d) Transductive analysis—evaluating pre-trained DNNs in (b) by switching the test datasets for
each Kt.
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The hyperparameters for the model, i.e., the number of neurons for each hidden layer
and the learning rate, are selected through a grid-search algorithm using KerasTuner [36]
to ensure the optimality in terms of accuracy and speed of convergence. The optimum
network (Figure 10b) has 428, 132, 96, 2, 96, 132, and 428 neurons in the seven layers, with a
learning rate of 0.0004 for the Adam optimizer [36]. The fully-connected DNN architecture
is shown in Figure 10c. The vast volume of data ensures that the computation rarely
encounters over-fitting, and hence techniques such as L2 regularization and dropouts have
not been used in this model. Following the construction of these baseline DNNs, their pre-
trained capabilities are tested on data from another Kt without any training. DNNTest: 20Kt2

Train: 80Kt1

and DNNTest: 20Kt1
Train: 80Kt2

, therefore, evaluates the universal applicability of pretrained DNNs
(DNNTrain: 80Kt1 and DNNTrain: 80Kt2 ) across different stress concentration factors, as shown
in Figure 10d. Such an analysis is also termed as ‘transductive’ analysis in the machine
learning literature.

3.2. The Mixed Learning Approach

DNNTrain: 80Kt1 and DNNTrain: 80Kt2 demonstrate that each Kt may need a customized
DNN using the traditional supervised machine learning tools. This is not a sustainable
solution in the long run due to the multitude of DNNs that would be needed for different
Kts [8]. Therefore, in an attempt to avoid the generation of individual DNNs, the mixed
learning approach pools in the data from multiple sources to train a single network. As
shown in Figure 11, the training data from Kt1 and Kt2 are used together to train a single
DNN denoted by DNNTrain: 80Kt1+80Kt2 . In doing so, the network is trained to invariably
work on both datasets without the need for a Kt identification label.

Figure 11. A single mixed DNN (DNNTrain:80Kt1+80Kt2 ) trained using a mixed dataset comprising of
both Kt1 and Kt2 data; tested on data from both Kts separately.

The mixed DNN is trained to understand these properties through its multi-layered
and fully connected network. Although the procedure remains fairly straightforward, the
novel applications to fatigue damage detection engender several questions that need to be
thoroughly studied. Specifically, the implications of varying the amount of data from both
Kts can prove to be beneficial to the structural engineering community that often deals
with data and testing limitations. For instance, new materials or expensive manufacturing
techniques have limited testing information. Under such circumstances, can an accurate
damage detection model be built with such mixed learning? How much data is essential to
have a reliable DNN for damage detection? To answer such questions, the mixed DNN is
further probed with a parametric analysis by varying the training data from both Kts. A
generalized behavior of the mixed DNN is thereby studied by using DNNTest:(100−α)Kt1

Train:αKt1+βKt2
and

DNNTest:(100−β)Kt2
Train:αKt1+βKt2

where α and β represent the training data volume variation from 10% to
80%. Since low data can possibly lead to unreliable, underfitted models, the training–testing
split followed in this analysis is such that models trained with a lower percentage of the
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training data are tested on a higher percentage of testing data. In this way, the reliability of
the models is also ensured.

Note that, in summary, all DNNs are built with the objective of identifying the health
of a specimen by just looking at the ultrasonic signals. To achieve this target, a ground truth
needs to be established between the healthy and cracked signals. Since these ultrasonic
signals (and sensors) are not capable of segregating healthy signals from cracked ones, a
confocal microscope is used as an additional information source. The confocal microscope
provides the instant at which a crack emerges. During each fatigue test, all signal data
acquired after this instant are labeled as cracked. The labeled data from all the specimens
are then pooled together, and a training–testing data split is created. The training data are
used to train the DNNs, and the testing data (which are previously unseen) are used to
evaluate the capability of the DNNs in correctly distinguishing the healthy and cracked
signals. This methodology, therefore, attempts to emulate a real scenario where a lab-
trained and confocal-aided DNN is deployed to identify a crack by just processing an
ultrasonic signal.

3.3. Performance Metrics

Since the goal of all DNNs discussed in this paper is binary classification, their perfor-
mance is best represented using a confusion matrix [36] that visualizes the capability of the
classifier in accurately predicting a healthy or a cracked signal. In general, the confusion
matrix helps in computing three quantifiable metrics, viz., the sensitivity (true positive rate),
specificity (true negative rate), and accuracy (average of sensitivity and specificity). As a
corollary to the typical positive–negative terminology used in machine learning literature,
a positive occurrence in this situation is equivalent to the cracked state, and a negative
occurrence corresponds to a healthy state. Accordingly, sensitivity is the percentage of
correctly diagnosing the data labeled as cracked, and specificity is the percentage of recog-
nizing healthy data. It is imperative for all DNNs to have high sensitivity in this damage
detection problem, particularly in safety-critical environments. This ensures the reliable
detection of cracked components. High overall accuracy is indicative of a good all-round
performance in identifying both classes of data.

4. Results and Discussion
4.1. Performance of the Baseline DNNs and Transductive Analysis

The individual performance of the baseline DNNs (DNNTest:20Kt1
Train:80Kt1

and DNNTest:20Kt2
Train:80Kt2

)
for both Kts is shown in Figure 12a,b [27]. Both networks show a balanced performance
for healthy and cracked classes with over 95% sensitivity and specificity. This perfor-
mance shows a marginal improvement over other DNN architectures [21] and a significant
improvement (∼10%) as compared to the symbolic analysis-based approach on similar
data [31,37], which also emphasizes the excellence of DNNs for such problems. The accu-
racies for each Kt serve as a benchmark to compare against all subsequent modifications
to the DNNs. The performance of the transductive analysis (by switching testing data
between Kts) is shown in Figure 12c,d [27]. Incredibly, the analysis shows a significant loss
in performance with an overall accuracy of 60.9% and 56.99%, respectively, for Kt1 and Kt2.
Owing to different stress concentrations, the specimens are expected to exhibit different
fatigue lives. With this insight, intuitively, one would, therefore, assume that the difference
between the signals from both specimens would be predominantly observed after crack
initiation. However, the poor performance in Figure 12c,d is balanced across both the
classes with low magnitudes of sensitivity and specificity, thereby indicating a variation in
the data across both classes. These results from the transductive analysis further motivate
the need to develop better learning methods to enable unified damage detection.
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Figure 12. Confusion matrices for (a) Kt1 baseline DNN and (b) Kt2 baseline DNN. Confusion
matrices for (c,d) transductive analysis, and (e,f) mixed learning. Reprinted (a–d) from [27] with
permission under the terms and conditions of the Creative Commons Attribution (CC BY) license.

4.2. Performance of the Mixed Learning Framework

The poor performance of the transductive analysis provides the motivation for the
mixed learning approach. To that end, a single DNN (DNNTrain:80Kt1+80Kt2 ) is now trained
with 80% of the data from both Kts. The only difference between the baseline DNNs and
this mixed DNN is the elimination of individual networks for each Kt. Following the
training, DNNTrain:80Kt1+80Kt2 is tested on both datasets separately. The results are shown
through confusion matrices in Figure 12e,f. The performance is closely matched to the
baseline DNNs in Figure 12a,b. The specificity of the mixed DNN is almost similar to the
baselines, whereas sensitivity is impacted by roughly 1.5% due to the new training strategy.
This success of the mixed DNN provides several practical advantages that can be reaped for
better and more efficient damage detection models in the future. Particularly, mechanical
components are bound to have differences in stress concentrations and geometries. The
low accuracies in transductive analysis prove the need for DNNs that can work across such
changes. The mixed DNN shows that a unified model can help simplify the monitoring of
such components.

However, the mixed training also highlights the need for massive amounts of data
for a single DNN. Since there are no studies that have analyzed the need for data in such
problems, a data-dependent parametric analysis is conducted by varying the training data
from 10% to 80% for both Kts. The capabilities of the resulting grid of 64 DNNs are tested
on the data from each Kt individually. Through a series of boxplots, Figure 13a shows
the nature of the performance metrics of Kt1 test data when the training data percentage
of Kt1 is varied from 10% to 80%. As expected, an increase in the training data shows an
overall increase in all three metrics. On an unexpected note, the lowest accuracy for 10% of
the data is still admirably at 92%. The lowest sensitivity, however, is close to 87% at 10%
training data. In general, as compared to the specificity, sensitivity is consistently lower
across all the networks. This indicates that the DNNs are better at detecting healthy data;
or as an alternative corollary, learning to identify the cracked signals is a more difficult
problem. The performance at 10% training data offers an interesting comparison to the
transductive analysis. The transductive analysis is a special case of mixed DNN where the
data contribution of one Kt is 0%. The 60% accuracies from the transductive analysis are
spiked to 92% with just 10% of the data. This further emphasizes the learning acumen of
the mixed DNNs with sparse data.
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Figure 13. Distributions of the sensitivity, specificity, and accuracy of the Kt1 test data with variations
in the training data percentages for (a) Kt1 and (b) Kt2. The center lines in the boxplots represent the
median, and the outliers are shown with diamonds.

In Figure 13b, the performance distribution of Kt1 test data with variations in Kt2
training data is shown. The distributions follow no discernible trend, indicating there is
no impact of Kt2 training data on Kt1 performance. This, in turn, indicates the intricate
capability of the mixed DNN to learn specific identifiers for each Kt. However, due to the
low interpretability of such deep networks, an exact learning criterion of these networks for
each Kt cannot be explained within the purview of this analysis. While testing on Kt2 data,
similar trends are observed, as shown in Figure 14a,b. The performance is not impacted by
an increase in Kt1 data, whereas a steady improvement is seen with an increase in Kt2 data.
A different perspective on these results is shown through the six contour plots in Figure 15.
For both Kt1 and Kt2 testing data, the accuracy ((a) and (b)) and sensitivity ((c) and (d))
show distinct contours. A gradual increase in performance is visible towards the right
for Kt1, whereas the increase is upward for Kt2. The high magnitudes and low variance
of specificity (Figure 15e,f) make it difficult to understand the trends, but, in general, the
specificity being higher than sensitivity can be clearly observed.

Figure 14. Distributions of the sensitivity, specificity, and accuracy of the Kt2 test data with variations
in the training data percentages for (a) Kt1 and (b) Kt2. The center lines on the boxplots represent the
median, and the outliers are shown with diamonds.



Appl. Sci. 2023, 13, 1542 14 of 16

Figure 15. Contour plots showing variations in (a,b) Accuracy, (c,d) Sensitivity, and (e,f) Specificity
for Kt1 and Kt2, respectively.

5. Conclusions and Future Work

This paper presents a fatigue crack detection paradigm using ultrasonic signals
through deep learning across different Kts. Two baseline DNNs are trained for two different
stress concentration factors (Kt1 and Kt2). An accuracy of 95.8% and 96.1% is observed,
respectively, for Kt1 and Kt2. A transductive analysis is conducted to understand the capa-
bility of these pre-trained DNNs to detect damage in different Kts. The analysis shows a
steep drop in performance with accuracies of roughly 60%, indicating the disparity in the
seemingly identical data from both the Kts. To build a unified damage detection DNN, a
mixed learning approach is developed by combining the data from both Kts and training a
single network. The mixed approach successfully demonstrates performance closer to the
baseline DNNs. Delving further into the properties of mixed DNNs, a parametric analysis
is conducted by varying the amount of training data used from each Kt. A gradual increase
in performance is observed with an increase in the percentage of training data from 10%
to 80% for both Kts. Incredibly, even with low training data, accuracies above 90% are
observed in the analysis. The study, therefore, provides a basis for retraining with scarcely
available data.

All DNNs in this analysis are developed in-house without using any of the existing
pretrained networks. A study on fatigue-crack detection using a scattered-wave two-
dimensional cross-correlation imaging method [38] shows an accuracy of 96% for the
detection of 5-mm-long cracks and an accuracy of 99% for the detection of 10-mm-long
cracks. However, the proposed method is able to detect cracks of the order of 3 micrometers
of crack opening displacements with a maximum accuracy of 96% using relatively inex-
pensive ultrasonic sensors, thus showing that this method is not just feasible but actually
superior to the existing techniques under certain scenarios. From a data analysis perspec-
tive, a common competitor to the mixed learning approach is transfer learning [35], which
can also be used to solve a similar problem. A preceding study [27] with transfer learning
shows similar accuracies to the mixed learning approach. However, mixed learning tri-
umphs over transfer learning by eliminating the need for multiple DNNs. The combination
of high accuracy, ease of deployment, and parametric retraining can, therefore, make DNNs
a fantastic choice in fatigue-damage detection across industries.

However, the study does have some shortcomings that need to be addressed. The
current approach investigates the question at hand as a binary classification problem
without taking into consideration the sequence information present inside the time series.
This is a reason why most of the erroneous predictions are around the area in the time
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series where the crack first appears. Such behavior is expected because there is very little
visual or mathematical difference between the signals immediately before and after the
short crack initiation. Incorporating sequence information within the models, using long
short-term memory (LSTM) or generative adversarial network (GAN), might be able to
boost our accuracy further. Moreover, DNNs serve very much as a ’black-box’ model: it is
difficult to understand what features the model has learned in order to solve the problem
of fatigue crack detection. Employing an encoder–decoder-based structure can allow the
extraction of features from a 2D latent space. A systemic study of these features may allow
us to gain a deeper understanding of the mechanics of fatigue failure and, thus, serve as an
area of interest for future investigations.
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