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Symbolic time series analysis (STSA) plays an important role in the
investigation of continuously evolving dynamical systems, where the
capability to interpret the joint effects of multiple sensor signals is
essential for adequate representation of the embedded knowledge.
This technical brief develops and validates, by simulation, an STSA-
based algorithm to make timely decisions on dynamical systems for
information fusion and pattern classification from ensembles of
multisensor time series data. In this context, one of the most
commonly used methods has been neural networks (NN) in their
various configurations; however, these NN-based methods may
require large-volume data and prolonged computational time for
training. An alternative feasible method is the STSA-based
probabilistic finite state automata (PFSA), which has been shown
in recent literature to require significantly less training data and to
be much faster than NN for training and, to some extent, for testing.
This technical brief reports a modification of the current PFSA
methods to accommodate (possibly heterogeneous and not neces-
sarily tightly synchronized) multisensor data fusion and (supervised
learning-based) pattern classification in real-time. Efficacy of the
proposedmethod is demonstrated by fusion of time series of position
and velocity sensor data, generated from a simulation model of the
forced Duffing equation. [DOI: 10.1115/1.4062830]
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1 Introduction

Recently data-driven pattern classification by time series analysis
has been extensively reported in open literature, for which several
standard methods of machine learning (ML) are available (e.g., see
[1] and references therein). Neural networks (NN) in their various
configurations [2–4] have apparently become one of the most
popular methods for time-series-based pattern classification. How-
ever, many of these NN techniques may not be suitable for real-time
detection classification in evolving dynamical systems, because the
training time could be too large for such applications, or because the
available training data might not be adequate. In this context,
Bhattacharya and Ray [5,6] have reported the classification of
different regimes in models of chaotic dynamical systems as well as
in real-life chaotic systems (e.g., combustion processes), based on
time-series analysis of single-sensor data. This classification tool
needs to be extended for the usage of multisensor data to (possibly)
achieve better classification performance; however, multiple (i.e.,
two or more) sensors may require generation of joint probability
density functions, which is often computationally expensive for
real-time applications even if only two sensors are used.
Copula [7,8] is one such method that is capable of generating

(multivariate) joint probability density functions by combining the
marginal densities of individual sensors with a postulated kernel
function. In this context, Iyengar et al. [9] reported copula-based
fusion of audio and video signals to obtain the joint density for
anomaly detection in a binary classification problem. Another
alternative feasible approach to data fusion is mutual information-
based [10] treatment of multiple-sensor time series, which also
requires computation of joint probability density functions. To this
end, Sarkar et al. [11] reported anomaly detection in a swirl-
stabilized combustor by making use of the mutual information
between pressure and temperature signals, where the concept of
symbolic time series (STSA) was applied for analyzing the
probabilistic finite state automata (PFSA) [12,13].
This technical brief proposes a real-time analytical method for

sensor data fusion as well as the associated problem of (supervised
learning-based) pattern classification from ensembles of (possibly
heterogeneous and not necessarily tightly synchronized) multi-
sensor time series data. The proposed method, which does not
require the computation of joint probability density functions, is an
extension of the single-sensor STSA-based PFSA algorithm of
Bhattacharya and Ray [5] for real-time execution. The underlying
algorithm has been validated by simulation on a model of the forced
Duffing equation [14].

2 Probabilistic Finite State Automata

This section introduces the basic concepts of PFSA [12,13] in the
setting of STSA [15,16].

2.1 Background andMathematical Theory. For PFSA-based
signal analysis, the ensemble of observed time-series data from a
homogeneous (i.e., statistically stationary) Markov chain is
partitioned into a finite number of cells. Then, the time series is
symbolized, where a symbol represents the cell in which the signal
data-point lies. This process converts the (continuous-valued) time
series into a string of symbols, where each symbol in the string
belongs to a (finite-cardinality) alphabet1 [17,18]. The final step inPresent address: Department of Automation and Electrical Engineering, Zhejiang
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of cells used for quantization of signal data points. In other words, each cell in the
partition uniquely represents a symbol.

Journal of Dynamic Systems, Measurement, and Control SEPTEMBER 2023, Vol. 145 / 094502-1
CopyrightVC 2023 by ASME

D
ow

nloaded from
 http://asm

edigitalcollection.asm
e.org/dynam

icsystem
s/article-pdf/145/9/094502/7027470/ds_145_09_094502.pdf by The Pennsylvania State U

niversity user on 25 Septem
ber 2023

https://crossmark.crossref.org/dialog/?doi=10.1115/1.4062830&domain=pdf&date_stamp=2023-07-26


this process is the construction of PFSA. The following definitions
[5,12,13] are introduced here for completeness of this technical
brief.
DEFINITION 1. A finite state automaton (FSA) G, having a

deterministic algebraic structure, is a triple ðA,Q, dÞ where:

� A is a (nonempty) finite alphabet, i.e., its cardinality jAj is a
positive integer.

� Q is a (nonempty) finite set of states, i.e., its cardinality jQj is a
positive integer.

� d : Q�A ! Q is a deterministic state transition map.

DEFINITION 2. A symbol block, also called a word, is a finite-length
string of symbols belonging to the alphabetA, where the length of a
word w¢s1s2 � � � s‘ with every si 2 A is jwj ¼ ‘, and the length of
the empty word � is j�j ¼ 0. The parameters of an FSA are extended
as:

� The set of all words, constructed from the symbols in A and
including the empty word �, is denoted as A?.

� The set of all words, whose suffix (respectively, prefix) is the
word w, is denoted as A?w (respectively, wA?).

� The set of all words of (finite) length ‘, where ‘ is a positive
integer, is denoted as A‘.

DEFINITION 3. A probabilistic finite state automaton (PFSA) J is a
pair ðG, pÞ, where:

� The (deterministic) finite state automaton (FSA) G is called
the underlying FSA of the PFSA J.

� The probability map p : Q�A ! ½0, 1� is called the morph
function (also known as symbol generation probability
function) that satisfies the condition:

P
s2Apðq, sÞ ¼ 1 for

each q 2 Q. The map p can be represented by a jQj � jAj
stochastic matrix P (i.e., each element of P is non-negative
and each row sum of P is unity [19, 20]). In that case, the
PFSA can be represented as a quadruple J ¼ ðA,Q, d,PÞ.

� The state transition probability function s : Q� Q ! ½0, 1� is
constructed by combining the map d and the matrixP, which
can be structured as a jQj � jQj state transition probability
matrix T. In that case, the PFSA can also be described as the
triple J ¼ ðA,Q, TÞ.

� The sum-normalized left-eigenvector of such an ergodic2

matrix T, corresponding to the (unique) eigenvalue 1, is the
(positive) state probability vector, p, of the PFSA. This is
guaranteed by stochasticity and ergodicity [19] of T.

Prior to partitioning, the ensemble of time series for each sensor is
normalized to have zeromean and unity variance to remove any bias
from the signal and to ensure that a fixed set of partition boundaries
can be used across the complete range of time-series data for training
[5]. A fixed partitioning ensures that there is no need to recompute
the partitioning boundaries at every step, which is important for real-
time applications. This procedure also allows different PFSAs to be
compared, which is essential for dynamically representing the
evolving physical process for real-time pattern classification.

2.2 D-Markov Machines. The PFSA structure of a D-Markov
machine generates symbol strings s1s2 � � � s‘ : ‘ 2 N and sj 2 A� �
based on the underlying homogeneous Markov chain. The
construction of a D-Markov machine assumes that generation of
the next symbol depends only on a finite history of the lastD or less
consecutive symbols, i.e., the (most recent) symbol block of length
not exceeding D. A D-Markov machine is defined as:

DEFINITION 4.AD-Markovmachine [12, 13] is a PFSA in the sense
of Definition 3, and it generates symbols that solely depend on the
(most recent) history of at most D consecutive symbols, where the
positive integer D is called the depth of the machine. Equivalently, a
D-Markov machine is a statistically stationary Markov chain
S ¼ � � � s�1s0s1 � � �, where the probability of occurrence of a
new symbol depends only on the last consecutive (at most) D
symbols, i.e.,

P½snj � � � sn�D � � � sn�1� ¼ P½snjsn�D � � � sn�1�

Consequently, for w 2 AD (see Definition 2), the equivalence class
A?wof all (finite-length) words, whose suffix is w, is qualified to be a
D-Markov state that can be denoted as w.
A numerical procedure to generate the morph matrix P from a

finite-length symbol string follows [12].
Given a fixed alphabet size jAj and depth D of a D-Markov

machine, the maximum possible number of states is jAjD. For a
(finite-length) symbol string S, the occurrence of each state is
sequentially counted, and let Nij denotes the number of times the
symbol sj 2 A is emitted from the state qi 2 Q. Thus

Pij ¼ p qi, sjð Þ¢ 1þ Nij

jAj þP
‘Ni‘

(1)

The rationale for initializing the count of each element to 1 in Eq. (1)
is that if no event is generated at a state q 2 Q; then, there should be
no preference to any particular symbol, and it is logical to have
pðq, sÞ ¼ 1=jAj 8s 2 A, i.e., the uniform distribution of event
generation at the state q. The above procedure guarantees that the
PFSA, constructed from a (finite-length) symbol string, must have a
clearly defined morph matrix P and the associated state transition
probability matrix T; both of these matrices must be (element-wise)
strictly positive. The ergodicity and stochasticity [19,20] of bothP
and T are guaranteed by this construction.
Remark 5. If the depth of the D-Markov machine is unity (i.e.,

D¼ 1), then the state set Q and symbol alphabet A become
equivalent (e.g, jQj ¼ jAj); therefore, the morph matrix P and the
state transition probability matrix T become indistinguishable if
D¼ 1.

3 Development of the Underlying Algorithms

This section develops the algorithms of data fusion and pattern
classification from ensembles of time series data, generated from
multiple (possibly heterogeneous and not necessarily tightly
synchronized) sensors. Let there be m ð� 2Þ sensors that generate
the above ensembles of time series of vector data xjk

n o
, where the

superscript j 2 1,…,mf g points to the specific sensor in the array
and the subscript k 2 N indicates the (possibly slightly approxi-
mate) time instants at which the data are collected.
The individual PFSAs are now constructed for each of the m

sensors from the respective (normalized) time series xjk

n o
with

(possibly different) partitioning schemes for individual sensors. In
this technical brief, the maximum entropy partitioning (MEP) (or
possibly uniform partitioning (UP) [17]) has been used for
symbolization of time series. Consequently, since there are no
iterative loops in the PFSAalgorithms, the execution of both training
and classification (or testing) algorithms should be reasonably fast
for real-time applications.
Two constraints are imposed for the PFSA construction from the

time series of each of the m sensor data sets: (i) identical alphabet
size jAj > m and (ii) depth D¼ 1. While the first constraint assures
dimensional compatibility of the matrices and vectors among
different classes, the second constraint reduces computational
complexity of the underlying algorithms for real-time applications.
The following two problems are presented below in the PFSA
framework.
Problem1. Fusion of the information extracted from the dataset of

m ð� 2Þ sensors, or a selected subset of this set, without the need of

2A homogeneous finite-stateMarkov chain is called ergodic if each state of the chain
can move to any state of the chain, including itself, in finitely many transitions. In other
words, its state transition probability matrix is ergodic if and only if
(qi ! qj () qj ! qi 8i, j in finitely many transitions) [19].
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computing their joint probability density functions (e.g., from
individual marginal density functions).
Problem 2. Real-time (supervised learning-based) pattern

classification of test data by using the knowledge base of training
data, generated from the aforesaidm sensors, into exactly one of the
following C classes: c 2 C¢ 0, 1,…, ðC� 1Þ� �

, where the class
c¼ 0 is the nominal class and any individual anomaly is designated
by a specific class, c> 0.
To address the above two problems, algorithms are built upon the

concept of orthogonal projection of the emerging real-time
information from the test data onto the null-space of the matrix
formed by stacking the ð1� jAjÞ state probability vectors generated
from the ensemble of training data by using all of them sensor data.
This action results in the construction of an ðm� jAjÞ matrix, for
each of the C classes, i.e., for each c 2 C, in the training phase. It is
noted that, in this technical brief, these matrices have been obtained
by simulation of individual sensor time series for all c 2 C classes.
The key idea is succinctly presented below as:

From the (training) time series of each pattern class, a hyperplane is
constructed in the feature space. The feature vector, generated from the
sensor time series of test data to be classified, is projected onto each
hyperplane for thresholdless classification [21].

The above concept is elaborated below.
Training phase: In this technical brief, the training phase is

conducted based on the (simulated) sensor time series for each class
c 2 C. The training algorithm is built upon an ensemble of
(normalized) time series from each of the C classes, based on the
user-specified parameters, such as alphabet size jAj > m, and depth
D¼ 1. Themorphmatrix for each class c 2 C is computed asPtrn�c,
for c ¼ 0,…, ðC� 1Þ; in this setting, the individual projection
matrix for each class is obtained from the respectivemorphmatrices
as explained below.
From the PFSAs, belonging to each of the m sensors, the m state

probability vectors are constructed, each of which is a ð1� jAjÞ
vector. These vectors are stacked together to form an ðm� jAjÞ
matrix Htrn�c of rank m, corresponding to each class c 2 C, as
explained later in Remark 6. Then, the ðjAj � jAjÞ orthogonal
projectionmatrix onto the null space ofHtrn�c is constructed for each
class c 2 C as:

Ptrn�c¢IjAj�jAj � HT
trn�c½Htrn�cH

T
trn�c��1Htrn�c (2)

Classification (or test) phase: In the classification phase, the task is
to identify, in real-time, the unknown class c 2 C to which the vector
time series under test is expected to belong. The test time-series is
symbolized by using the same partitioning technique and the same
parameters (e.g., the same jAj > m and D¼ 1) as in the training
phase. Accordingly, the resulting morph matrix Pj

tst and the
corresponding ðm� jAjÞ test matrix Htst, constructed from the m
sum-normalized state probability vectors pjtst, j ¼ 1,…,m, of the m
sensors, are generated by following the same procedure as in the
training phase. Now the ðm� jAjÞ matrix Htst is projected onto the
null space of Htrn�c for each class c 2 C resulting in C different
ðm� jAjÞ projected matrices HtstPtrn�c (see Eq. (2)) for each
c 2 0, 1,…, ðC� 1Þ� �

. A class c? that yields the smallest norm of
the (m� jAj) matrixHtstPtrn�c? is identified to be the class to which
the test data are expected to belong, i.e.,

Identified Class c? ¼ argmin
c2 0,1,…, ðC�1Þf g

jjHtstPtrn�cjj (3)

where the norm, used in Eq. (3) is the induced 2-norm (i.e., the norm
k X k¢ square root of the maximum singular value of XTX);
however, the type of the norm is not critical here because of the norm
equivalence in finite-dimensional vector spaces. It is also noted that
the above decision-making in Eq. (3) is thresholdless [21].
Remark 6. The (1� jAj) state probability vector, pjtrn�c, is

associatedwith the respective sensor j in each class c 2 C. Even if the

MEP [17] is used for all of them sensor time series, the generated set
of m row vectors pjtrn�c’s in Htrn�c should be mutually linearly
independent (i.e., the ðm� mÞmatrix Htrn�cH

T
trn�c being invertible)

for each c 2 C, because of the following reasons:

� The partitioning is done with a modestly large ensemble of
training data belonging to all C different classes.

� The individual pjtrn�c’s are generated for each class c 2 C from
smaller segments of training data, which are also contami-
nated with unavoidable sensor noise [16].

However, as a very rare event, if the above assertion is not true (e.
g., the inversion of the ðm� mÞ matrix Htrn�cH

T
trn�c causes a

numerical problem), then either an alternative data partitioning tool
could be used to make the rank of Htrn�c ¼ m, or the classes should
be redefined in the training phase.

4 Validation on a Chaotic Simulation Model

The process model in this simulation task is developed on a
second-order forced Duffing equation [13,14], which represents the
nonautonomous dynamics of a mass-spring-damper system,
equippedwith a nonlinear spring having a cubic stiffness coefficient,
under a harmonic excitation, with initial conditions yð0Þ ¼ 0 and
_yð0Þ ¼ 0, as described below

€yðtÞ þ b _yðtÞ þ a1 yðtÞ þ a3 ðyðtÞÞ3 ¼ A cosðXtÞ (4)

where the unit of time is second (abbreviated as “s” in the sequel), y
is the position, _y is the velocity, €y is the acceleration, and X is the
angular frequency (in radians/s) of the input excitation; and the
parameters a1 ¼ 1:0, a3 ¼ 1:0,A¼ 22.0, andX ¼ 5:0 are held fixed
for all simulation runs, and the dissipation parameter b has different
constant values in the range of 0.10 to 0.35 at an increment of 0.05
for individual simulation runs, similar to what was done in [13].
The second-order nonautonomous state-space model is con-

structed with the phase variables xt1¢yðtÞ and xt2¢ _yðtÞ. In the
simulation runs, the fourth-order Runge–Kutta method of numerical
integration [22] has been used with a (fixed) step size of 1ms (i.e.,
0.001 s). The measurement model consists of two sensors that
provide the measurements of (noise-contaminated) time series data
for y and _y, respectively. In order to emulate a real-life physical
environment, two kinds of noise are injected into the dynamical
system model [23] as described below.

� Additive process noise: Stationary white Gaussian noise
wt¢ApNð0, 1Þ, to emulate the effects of uncertainties due to
unmodeled dynamics, where N(0, 1) represents zero-mean
unit variance Gaussian noise and the parameter Ap in the
process noise model is kept constant for individual simulation
runs.

� Multiplicative sensor noise: Stationary white Gaussian
noise vt1¢AmNð0, 1Þ and stationary white Gaussian noise
vt2¢AmNð0, 1Þ have been generated from different seed
numbers of a random number generator to emulate the effects
of (statistically independent) measurement uncertainties in
the position and velocity sensors, respectively. Usually
instrumentation manufacturers’ specifications guarantee not
to exceed a specified fraction, Am, of the average measured
value within a given statistical confidence. The parameter Am

in both sensor noise models is kept constant for individual
simulation runs.

Process model (injected with additive noise):

_xt1 ¼ xt2 (5)

_xt2 ¼ �a1x
t
1 � a3ðxt1Þ3 � bxt2 þ A cosðXtÞ þ wt (6)

Measurement model (injected with multiplicative noise):
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zt1 ¼ xt1ð1þ vt1Þ ¼ xt1 þ xt1 v
t
1 (7)

zt2 ¼ xt2ð1þ vt2Þ ¼ xt2 þ xt2 v
t
2 (8)

The injected process noise and sensor noise make the model of
system dynamics behave as a random process, which is represented
by the (stochastic) forced Duffing system in Eqs. (5)–(8). Simulated
time series plots of y have been displayed in a previous publication
[13] for the same model parameters including different constant
values of the dissipation parameter b. Since these plots have similar
trends as the current simulation plots, they are not presented in this
technical brief. However, Fig. 1 displays a family of phase plots for
the six different values of b in the absence and presence of both
process noise and sensor noise.

5 Results of Algorithm Validation by Simulation

To validate the results of the data fusion and (supervised learning-
based) pattern classification algorithm, six pattern classes (i.e.,
C¼ 6) are defined in the training phase corresponding to six
different values of the dissipation parameter b ¼ 0:1, 0:15,
0:20, 0:25, 0:3, and 0.35 in the model of the forced Duffing system
in Eqs. (5)–(8). All simulated data are down-sampled to have a fixed
interval of 0.1 s in the time series to be analyzed, where each sample
of the time-series data contains such 500 data points, implying that
the time window size is 50 s. Since the effects of window size
selection on classification accuracy have been reported in details
earlier (e.g., see Refs. [5,12,20]), such analysis is not repeated here.
The training set consists of 6000 samples (of stationary

oscillations) of time series (i.e., data acquired after the initial
transients have died out), where each class contains 1000 samples;
similarly, each set of test data consists of 1000 samples. Simulations
were also conducted with different numbers of training data in each
of the six classes as well as different numbers of testing data points.
Since these results were largely similar, on the average, and no
specific conclusions could be drawn from these results, they are not
reported here.
In each of the above simulation runs, MEP [17] was used for

symbol generation, and the depth of the corresponding D-Markov
machine (see Definition 4 in Sec. 2) was set as D¼ 1. The alphabet
sizewas selected to be jAj ¼ 6,whichwould allow up to 5 sensors to
be included in the measurement set. A larger value of alphabet size
(i.e., jAj > 6) was found to yield no appreciable increase in the
classification performance and may require longer data strings, as
explained in Ref. [12].
The classification performance is summarized in Table 1. These

results suggest that the proposed data fusionmay indeed improve the
classification performance, even in the presence of process noise,

provided that the amplitude of the sensor noise is sufficiently low,
which necessitates the usage of high-quality sensors. The following
observation is made from the results presented in Table 1.

As the quality of sensors degrades (e.g., the sensors become more
noisy), the classification performance may deteriorate, because the
additional sensor may bring in less useful (and possibly harmful)
information. In other words, data fusion and pattern classification with
additional (inferior-quality) sensors may actually degrade the
performance. Therefore, a decision to use the information from an
additional channel of sensor data should be carefully made for data
fusion, especially if these additional sensors are not of very good
quality. Hence, it is recommended to avoid the usage of low-precision
sensor data, because the imprecise information added by such sensors
may actually poison the information generated by the remaining good
sensors, instead of improving the classification performance.

Remark 7. The above observation of possible degradation of the
classification performance may not apparently agree with the
classical notion of mutual information that is always non-negative
[10]. This fact implies that the addition of a low-quality sensor
should not reduce the total information, regardless of how noisy the
sensor is. This apparent anomaly is explained below from an
information-theoretic point of view.
The mutual information Iðs1, s2Þ is the relative entropy between

the joint distribution, pðs1, s2Þ of time series of two sensors (s1 and
s2) and their product distribution pðs1Þpðs2Þ [10]. This notion is
conceptually different from that of pattern classification (e.g., see
Problem 2 in Sec. 3) that addresses identification of the class to
which test data belong. Therefore, future research is recommended
in Sec. 6 on information-theoretic aspects of both data fusion and
pattern classification.

5.1 Computation Time. The simulation runs were conducted
on a personal computer running with Intel I9-1085K CPU in the
PYTHON3.8 environment. In this setting, the computation time for a
typical training samplewas �250ms,while that for classification of
a typical single test sample was �9 ms.

6 Summary, Conclusions, and Future Work

This technical brief has developed a concept of real-time data
fusion and (supervised learning-based) pattern classification from
ensembles of (possibly heterogeneous and not necessarily tightly
synchronized)multisensor time series data, where the usage of high-
quality sensors is recommended. The reported work is an extension
of an earlier similar concept that was validated for (real-life)
combustion data of single-sensor time series from an experimental
apparatus [5].
The proposed concept of multisensor data fusion and pattern

classification has been validated in this technical brief by simulation
on a dynamic model of the forced Duffing equation that may exhibit
chaotic behavior and bifurcation as a model parameter is perturbed.
The underlying theory is built upon STSA-based PFSA [12,13].
Since the algorithm does not require the construction of joint
probability density functions from the available multiple-sensor
measurements, the underlying algorithms are computationally
efficient and are ideally suited for real-time decision-making.
Specifically, the proposedmethod does not require a large ensemble
of training data, and the training time is significantly smaller than
that of a typical neural network [2–4] to perform similar tasks [5].
While there are many areas of theoretical and experimental

research to improve the proposed method of (real-time) multisensor
data fusion and pattern classification, the following six topics are
suggested by the authors for future research:

(1) Quantitative comparison (e.g., accuracy, robustness, and
computational complexity) of data fusion & classification
performance of the proposed method with those of deep
neural networks in their different configurations: This

Fig. 1 Phase-space trajectories for the forced Duffing equation
with b50:10,0:15,0:20,0:25,0:30, and 0:35;a151:0;a351:0;X55:0;
and A522.0. The smooth trajectories are without any noise (i.e.,
Ap50 and Am50); the wrinkled trajectories are with additive
process noisewt¢ApNð0,1Þ, where Ap50:20, and multiplicative

sensor noise vt
1¢Amx

t
1Nð0,1Þ and vt

2¢Amx
t
2Nð0,1Þ, where

Am50:05.
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research is necessary to demonstrate that the proposed
method is a competitive tool of machine learning.

(2) Information-theoretic research for accommodation of low-
quality sensors: This research is necessary to enhance the
proposed method as a tool of machine learning that is
compatible with a variety of inexpensive sensors and quasi-
reliable sources of information.

(3) Handlingmixed synchronous and asynchronous information:
This research is necessary to enhance the capability of the
proposed data fusion and pattern classification method by
taking advantage of different available sources of relevant
mixed information (e.g., audio data, video images, and text
messages).

(4) Learning dynamically changing data that are not restricted to
be statistically quasi-stationary [20]: This research is
necessary to improve the proposed data fusion & classifica-
tion under transient operations.

(5) Augmentation of pattern classification to include unsuper-
vised learning: This research is necessary for situations,
where the classes need to be defined autonomously instead of
prior class allocation by the user.

(6) Experimentation for concept validation in various physical
applications: This research is necessary for acceptance of the
proposed method for (real-life) scientific & industrial
applications.
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Table 1 Classification accuracy under different sensors with additive process noise and multiplicative sensor noise

Additive process noise

Ap ¼ 0:000 Ap ¼ 0:100 Ap ¼ 0:200

Multiplicative sensor noise y _y y and _y y _y y and _y y _y y and _y

Am ¼ 0:000 96.0% 87.3% 99.7% 91.7% 86.0% 97.5% 86.4% 83.1% 93.8%
Am ¼ 0:005 94.5% 85.3% 98.6% 91.4% 83.5% 97.2% 86.1% 81.3% 92.9%
Am ¼ 0:010 92.6% 81.4% 97.1% 90.4% 80.5% 95.3% 86.3% 78.5% 91.3%
Am ¼ 0:020 90.2% 73.3% 92.8% 89.5% 71.9% 92.2% 85.3% 71.6% 89.4%
Am ¼ 0:030 88.7% 65.9% 89.3% 87.2% 65.0% 88.8% 85.1% 64.7% 85.6%
Am ¼ 0:040 86.0% 57.7% 83.5% 85.5% 57.7% 84.3% 83.8% 57.7% 83.0%
Am ¼ 0:050 83.5% 50.4% 80.6% 84.1% 50.5% 79.7% 81.8% 49.7% 79.1%

In the table, values in bold represent higher accuracy compared to their counterparts.
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