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Shalabh Gupta† and Asok Ray‡
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University Park, PA 16802, USA

Abstract

Gradual development of anomalies (i.e., deviations from the nominal condition)
may alter the quasi-static behavior patterns of human-engineered complex systems.
This chapter presents a recently reported technique of pattern recognition, called Sym-
bolic Dynamic Filtering (SDF), for early detection and prognosis of such changes in
behavior patterns due to slowly evolving anomalies that may be benign or malignant.
The underlying concept of SDF is built upon the principles of Symbolic Dynamics,
Information Theory, and Statistical Signal Processing, where time series data from
selected sensor(s) in the fast time scale of the process dynamics are analyzed at dis-
crete epochs in the slow time scale of anomaly evolution. The key idea here is early
detection and identification of (possible) changes in quasi-static statistical patterns of
the dynamical system behavior. An important feature of this pattern recognition tech-
nique is extraction of the relevant statistics by conversion of the time series data into
a symbol sequence by appropriate coarse-graining of the imbedded information. As
an alternative to the currently practiced method of phase-space partitioning in the time
domain, a new concept of partitioning is introduced for symbol generation, based on
wavelet analysis of the time series data. This chapter also discusses various aspects
of the wavelet-based partitioning tool, such as selection of the wavelet basis, noise
mitigation, and robustness to spurious disturbances. The partitioning scheme is built
upon the principle of maximum entropy such that the regions of the data space with
more information are partitioned finer and those with sparse information are parti-
tioned coarser. The algorithms of SDF are constructed to solve two problems: (i)
Forward problem of Pattern Recognition for (offline) characterization of the anom-
alous behavior, relative to the nominal behavior; and (ii) Inverse problem of Pattern
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Identification for (online) estimation of parametric or non-parametric changes based
on the knowledge assimilated in the forward problem and the observed time series data
of quasi-stationary process response.

The concept of SDF has been experimentally validated on two laboratory appara-
tuses for identification of anomalous patterns. The first apparatus is an active nonlinear
electronic system with a slowly varying dissipation parameter and the second appara-
tus is a special-purpose computer-controlled fatigue test machine that is instrumented
with ultrasonic flaw detectors and an optical travelling microscope. Time series data
of observed variables have been used to experimentally validate the SDF algorithm.

1. Introduction

In diverse fields of science and engineering, the underlying physical process is modelled as
a finite-dimensional dynamical system in the setting of an initial value problem as:

dx(t)
dt

= f(x(t), u(t),η(t), t); x(t0) = x0 (1)

y(t) = g(x(t), u(t)) + υ(t) (2)

where t ∈ [t0,∞) denotes the time of process evolution; f describes the time evolution
of the state trajectory; g represents the measurement model; x ∈ Rn is the state vector;
u ∈ Rm is the input excitation vector; y ∈ Rp is the measurement vector of sensor outputs;
η ∈ R` is the (possibly non-additive) process noise vector; and υ ∈ Rq is the measurement
noise vector.

Parameter identification and robust solutions of such models are often very difficult to
achieve due to uncertain, nonlinear and nonstationary dynamics [1]. For example, no ex-
isting model can capture the dynamical behavior of fatigue damage at the grain level based
on the basic fundamentals of molecular physics [2]. Furthermore, in real-time applications,
the analysis becomes computationally very expensive for a high-dimensional model. In
general, these models could be very sensitive to the initial and boundary conditions and
also on certain system parameters. Small deviations in critical parameters may produce
large variations in the evolution of the system response for (apparently) identical operat-
ing conditions. Therefore, sole reliance on model-based analysis for pattern recognition is
infeasible because of the difficulty in achieving requisite accuracy with available computa-
tional resources. As such, the problem is simplified using observation-based estimation of
the underlying mathematical structure of the system and its relevant parameters. Typically,
a map of the dynamical process (in discrete time) is described as:

xk+1 = ϕk(xk, uk, ηk) (3)

yk = γ(xk, uk) + υk (4)

where k is the discrete time index; ϕ describes the time evolution of the state trajectory; γ
represents the measurement model; x is the state vector in the phase space; u is the input
excitation vector; y is the measurement vector; η is the (possibly non-additive) process
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noise; and υ is the measurement noise. Evolution of the dynamical process generates time
series data of system outputs x0, x1, . . . , xk, . . . starting from an initial point x0. Since x is
usually hidden and ϕ is generally unknown especially for anomalous systems, the problem
needs to be investigated by alternative means of extraction of relevant information from the
time series data set Y = {y0, y1, ..., yk, . . . } of selected observable outputs (e.g., sensor
data), as shown in Fig. 1.

Figure 1. Measurement of the physical process by a set of observable parameters.

In view of the above discussion, the analysis of time series data from available sensors is
needed for real-time pattern recognition. While there exist many reported techniques (e.g.,
particle filtering [3][4]) for combined model-based and data-driven pattern recognition, the
real-time execution of such tools is an open research issue. This chapter addresses the
problem of real-time information extraction and presents data-driven pattern recognition
for early detection and prognosis of changes in behavior patterns due to slowly evolving
anomalies in dynamical systems. (Note: Anomaly in a dynamical system can be defined
as a deviation of its behavior pattern from the nominal pattern that is viewed as the desired
healthy behavior.)

1.1. Background and Motivation

The response of a complex dynamical system can change due to the development and pro-
gression of small anomalies that gradually evolve over a long period of service life. Sub-
sequent growth of anomalies from the nominal pattern can directly affect the performance
and reliability of the system and introduce undesirable behavioral characteristics.

Anomalies can be associated with either parametric or non-parametric changes in the
dynamics of the complex system. Parametric changes are usually related to the degradation
in the precision of a single or multiple parameters that are used to construct the model of
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the system. For example, a change in the stiffness parameter of the diaphragm of a flexible
mechanical coupling between two shafts can lead to misalignments and cause the whirling.
This phenomenon may increase the machine vibrations and eventually lead to failures of the
bearing or the coupling. However, the change in the stiffness parameter is a consequence
of the fatigue damage gradually evolving over a long period of operation. The associated
changes in the system dynamics can be directly related to changes in the parameters that
form an integral part of the system model. Therefore, the time series data of the observed
process variables can be directly used to estimate the model parameters.

The other possible changes that can occur in a system are termed as non-parametric
changes that are difficult to precisely measure, identify and model, and a direct relation of
their effects on the performance variables may be unknown. However, these non-parametric
changes may affect the responses of observable variables. As such, non-parametric changes
can also be detected from the time series data of certain observable process variables. Often,
external sensors are necessary to detect changes in such systems. The exact interpretation
and quantification of these changes might not be feasible because of the lack of knowledge
of the underlying physics. For example, small growth of fatigue damage in the crack initia-
tion region can be represented as a non-parametric change, and time series data of sensors
(e.g., ultrasonic flaw detector) can be used to detect the growth of small microstructural
changes in the crack initiation regime [2].

The observed pattern changes are often indicatives of hidden damage that may degrade
safety and reliability of machine operations. Accurate prediction and quantification of hid-
den damage could be infeasible due to lack of relevant information or inadequacy of analyt-
ical tools that extract such information. This problem is often circumvented by conservative
enforcement of large safety factors, which could prohibitively increase the life cycle cost
of operating machinery. A possible solution to reduction of overly conservative safety fac-
tors is to have frequent inspection that also turns out to be expensive and time-consuming
if maintenance actions are taken based on fixed usage intervals. From these perspectives,
it is logical to have on-line identification of anomalous patterns, which would allow con-
tinual re-evaluation and extension of service life and enhance inherent protection against
unforeseen early failures. This information will also reduce the frequency of inspections,
i.e., increase the mean time between major maintenance actions. Furthermore, early detec-
tion of anomalies and identification of incipient fault patterns are essential for prognosis of
forthcoming failures to avert colossal loss of expensive equipment and human life [5].

The discussion above evinces the need for developing capabilities of pattern recognition
and anomaly detection for prognosis and estimation of impending failures (e.g., the onset
of wide-spread fatigue crack damage in mechanical structures) for reliable and safe opera-
tion of human-engineered systems as well as for enhanced availability of their service life.
Furthermore, since modelling of the physical process could be inaccurate and infeasible
for real-time execution, the information derived from relevant observed variables (i.e., sen-
sor time series data) is often necessary to detect the resulting parametric or non-parametric
changes. As such, a data-driven pattern recognition methodology has been presented in this
chapter for anomaly detection and prognosis of forthcoming failures. This chapter presents
an information-based technique, called Symbolic Dynamic Filtering (SDF) [6], for pattern
recognition and online identification of anomaly patterns.
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1.2. Methodology

The anomaly detection methodology is formulated to achieve the following objectives:

• Information-based identification of anomaly progression patterns - The possible
sources of information can include time series data of appropriate sensors mounted
on the critical components at different spacial locations of the complex dynamical
system. The other possible sources include outputs of the analytical models that are
sensitive to small changes in the system dynamics;

• Real-time execution - The analytical tools must be computationally efficient and have
the capability of real-time execution on commercially available inexpensive plat-
forms;

• Capability of small change detection - The pattern recognition methodology for
anomaly detection must be sensitive to small changes and have the capability of pro-
viding early warnings of incipient faults. The methodology must also be capable
of estimating fault precursors to formulate a decision and control policy for damage
mitigation and life extension;

• Robustness to measurement noise and disturbances - The pattern recognition tool
must be robust to noise and disturbances and must have low probability of false
alarms.

The theme of pattern recognition and anomaly detection, formulated in this chapter, is
built upon the concepts of Symbolic Dynamics [7], Finite State Automata [8], Information
Theory and Statistical Signal Processing [9] as a means to qualitatively describe the dy-
namical behavior in terms of symbol sequences [1] [10]. The chapter presents symbolic
dynamic filtering (SDF ) [11] [7] [1] to analyze time series data of sensors and/or observ-
able variables for detection and identification of gradually evolving anomalies in complex
dynamical systems.

The core concept of SDF is based on appropriate phase-space partitioning of the dy-
namical system to yield an alphabet to obtain symbol sequences from time series data
[12] [13] [14]. The time series data of appropriate sensors are processed and subse-
quently converted from the domain of real numbers into the domain of (discrete) sym-
bols [7] [1]. The resulting symbol sequence is a transform of the original time series se-
quence such that the loss of information is minimized in the sense of maximized entropy.
The chapter has adopted wavelet-based partitioning approach for symbol sequence gener-
ation [6] [15]. Wavelet based partitioning approach is robust and is particularly effective
with noisy data [15].

Subsequently, tools of Computational Mechanics [6] [16] [17] are used to identify sta-
tistical patterns in these symbolic sequences through construction of a (probabilistic) finite-
state machine [6] [8]. Transition probability matrices of the finite state machines, obtained
from the symbol sequences, capture the pattern of the system behavior by means of in-
formation compression. For anomaly detection, it suffices that a detectable change in the
pattern represents a deviation of the nominal pattern from an anomalous one. The state
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probability vectors, which are derived from the respective state transition matrices under
the nominal and an anomalous condition, yield a statistical pattern of the anomaly.

Symbolic dynamic filtering (SDF ) for anomaly detection is an information-theoretic
pattern recognition tool that is built upon a fixed-structure, fixed-order Markov chain, called
the D-Markov machine [6]. Recent literature [2] [18] has reported experimental validation
of SDF -based pattern recognition by comparison with other existing techniques such as
Principal Component Analysis (PCA) and Artificial Neural Networks (ANN ); SDF has
been shown to yield superior performance in terms of early detection of anomalies, ro-
bustness to noise [15], and real-time execution in different applications such as electronic
circuits [18], mechanical vibration systems [19], and fatigue damage in polycrystalline al-
loys [2][20].

1.3. Organization

This chapter is organized in eleven sections and three appendices. Section 1. provides
a background and motivation for data-driven pattern recognition for anomaly detection.
Section 2. briefly introduces the notion of nonlinear time series analysis and presents the
two-time-scale problem formulation for anomaly detection using symbolic dynamic filter-
ing. Section 3. provides a brief overview of symbolic dynamics and encoding of time series
data. Section 4. presents the wavelet-based partitioning technique for symbol sequence
generation. Section 5. describes the maximum entropy approach for partitioning the data.
presents two ensemble approaches for statistical pattern representation. Section 6. describes
the construction of a finite state machine for pattern generation from the symbol sequences.
Section 7. presents the notion of anomaly measure to quantify the changing patterns of
anomalous behavior of the dynamical system form the information-theoretic perspectives.
Section 8. provides a brief summary of the anomaly detection procedure along with dif-
ferent advantages of SDF . Section 9. provides an overview of the forward and inverse
problems. Section 10. presents experimental results on a nonlinear active electronic circuit
and fatigue damage test apparatus to demonstrate efficacy of the SDF -based pattern recog-
nition and anomaly detection technique. Section 11. summarizes and concludes the chapter
with recommendations for future research. Appendix A. explains the physical significance
of different information-theoretic quantities. Appendix B. presents a comparison of two
concepts of finite sate machines that are used for construction of hidden Markov models
from symbol sequences. Appendix C. introduces the concept of shift spaces.

2. Problem Formulation

This section presents the problem formulation for pattern recognition and anomaly detec-
tion based on symbolic dynamic filtering (SDF ) in complex dynamical systems. The un-
derlying concepts and essential features of SDF [6] are presented in the next section.

2.1. Non-linear Time Series Analysis for Pattern Recognition

This section presents nonlinear time series analysis (NTSA) that is needed to extract rele-
vant physical information on the dynamical system from the observed data. NTSA tech-
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Figure 2. Pictorial view of the two time scales: 1) slow time scale where anomalies evolve
and 2) fast time scale where data acquisition is done.

niques are usually executed in the following steps [12]:

1. Signal Separation: The (deterministic) time-dependent signal {y(n) : n ∈ N}, where
N is the set of positive integers, is separated from noise, using time-frequency and
other types of analysis.

2. Phase Space Reconstruction: Based on the Takens’ Embedding theorem [21], time
lagged or delayed variables are used to construct the state vector x(n) in a phase
space of dimension dE (which is diffeomorphically equivalent to the attractor of the
original dynamical system) as follows:

x(n) = [y(n), y(n + T ), · · · , y(n + (dE − 1)T )] (5)

where the time lag T is determined using mutual information; and one of the ways to
determine dE is the false nearest neighbors test [12].

3. Signal Classification: Signal classification and system identification in nonlinear
chaotic systems require a set of invariants for each subsystem of interest followed
by comparison of observations with those in the library of invariants. The invariants
are properties of the attractor and could be independent of any particular trajectory.
These invariants can be divided into two classes: fractal dimensions and Lyapunov ex-
ponents. Fractal dimensions characterize geometrical complexity of dynamics (e.g.,
spatial distribution of points along a system orbit); and Lyapunov exponents describe
the dynamical complexity (e.g., stretching and folding of an orbit in the phase space)
[22].

4. Modeling and Prediction: This step involves determination of the parameters of the
assumed model of the dynamics, which is consistent with the invariant classifiers
(e.g., Lyapunov exponents, and fractal dimensions).

The first three steps show how chaotic systems may be separated from stochastic ones
and, at the same time, provide estimates of the degrees of freedom and the complexity of
the underlying dynamical system. Based on this information, Step 4 formulates a dynamic
model that can be used for prediction of anomalies and incipient faults. The functional
form often used in this step, includes orthogonal polynomials and radial basis functions.
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This chapter has adopted an alternative class of discrete models [6] inspired from Automata
Theory [8], which is built upon the principles of Symbolic Dynamics [7].

Anomaly detection using SDF is formulated as a two-time-scale problem as explained
below.

• The fast time scale is related to the response time of process dynamics. Over the
span of a given time series data sequence, the behavioral statistics of the system
are assumed to remain invariant, i.e., the process is assumed to have statistically
stationary dynamics at the fast time scale. In other words, statistical variations in the
internal dynamics of the system are assumed to be negligible on the fast time scale.

• The slow time scale is related to the time span over which the process may exhibit
non-stationary dynamics due to (possible) evolution of anomalies. Thus, an observ-
able non-stationary behavior can be associated with anomalies evolving at a slow
time scale.

A pictorial view of the two time scales is presented in Figure 2. In general, a long time
span in the fast time scale is a tiny (i.e., several orders of magnitude smaller) interval in
the slow time scale. For example, fatigue damage evolves on a slow time scale, possibly
in the order of months or years, in machinery structures that are operated in the fast time
scale approximately in the order of seconds or minutes. Hence, the behavior pattern of
fatigue damage is essentially invariant on the fast time scale. Nevertheless, the notion of
fast and slow time scales is dependent on the specific application, loading conditions and
operating environment. As such, from the perspective of anomaly detection, sensor data
acquisition is done on the fast time scale at different slow time epochs separated by uniform
or non-uniform intervals on the slow time scale.

2.2. Procedure for Anomaly Detection

The SDF -based anomaly detection requires the following steps:

• Time series data acquisition on the fast time scale from appropriate sensors or from
the response of process variables - Collection of data sets is done at different slow
time epochs. As stated in the previous subsection, the choice of time scales is de-
pendent on the application and requires an approximate a priori knowledge about the
time period of evolution of anomalies.

• Transformation of time series data from the continuous domain to the symbolic do-
main - This is done by partitioning the data into finitely many discrete regions to gen-
erate symbol sequences at different slow time epochs [7] [1] (details in Section 3.).
The chapter has presented a wavelet-based partitioning scheme for symbol sequence
generation (details in Section 4.).

• Construction of a finite state machine - The machine is constructed from the symbol
sequence generated at the nominal condition (details in Section 6.)
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Figure 3. Conceptual view of symbolic dynamic filtering.

• Calculation of the pattern vectors at different slow time epochs - The elements of
these pattern vectors consist of the visiting frequencies of the finite state machine
states (details in Section 6.)

• Identification of behavioral changes- Anomaly detection is based on the information
derived from the evolution of the pattern vector at different slow time epochs with
respect to the one at the nominal condition (details in Section 7.)

The anomaly detection problem is separated into two parts [6]: (i) forward problem of
Pattern Recognition for (offline) characterization of the anomalous behavior, relative to the
nominal behavior; and (ii) inverse problem of Pattern identification for (online) estimation
of parametric or non-parametric changes based on the knowledge assimilated in the for-
ward problem and the observed time series data of quasi-stationary process response. The
inverse problem could be ill-posed or have no unique solution. That is, it may not always
be possible to identify a unique anomaly pattern based on the observed behavior of the dy-
namical system. Nevertheless, the feasible range of parameter variation estimates can be
narrowed down from the intersection of the information generated from inverse images of
the responses under several stimuli. The algorithms of SDF can be implemented to solve
both these problems.

Often dynamical systems are either self-excited (e.g., vibrating pedestals of rotating
machinery) or they can be stimulated with a priori known exogenous inputs to recognize
(possible) anomaly patterns from the observed stationary response (e.g., ultrasonic excita-
tion for fatigue crack detection). In both cases, it is envisioned that complex dynamical
systems will acquire the ability of self-diagnostics through usage of the proposed anom-
aly detection technique that is analogous to the diagnostic procedure employed in medical
practice. The latter case of self-excited excitation is similar to the notion of injecting med-
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ication or inoculation on a nominally healthy patient in the sense that a dynamical system
would be excited with known stimuli (chosen in the forward problem) in the idle cycles for
self diagnosis and process monitoring. The inferred information on health status can then
be used for the purpose of damage mitigating or life-extending control [23].

3. Symbolic Dynamics and Encoding

This section provides a brief review of the concept of Symbolic Dynamics and its usage for
encoding nonlinear system dynamics from observed time series data. Upon collection of a
time series data set at a slow time epoch, the next step is transformation from the domain of
real numbers to the domain to discrete symbols. As discussed in Section 1., sole usage of a
dynamic model may not always be feasible due to unknown parametric and non-parametric
uncertainties and noise. A convenient way of learning the dynamical behavior is to rely on
the additional information provided by (sensor-based) time series data [24][12].

A tool for behavior description of nonlinear dynamical systems is based on the concept
of formal languages for transitions from smooth dynamics to a discrete symbolic description
[1]. The phase space of the dynamical system is partitioned into a finite number of cells,
so as to obtain a coordinate grid of the space. A compact (i.e., closed and bounded) region
Ω ∈ Rn, within which the (stationary) motion under the specific exogenous stimulus is
circumscribed, is identified. Encoding of Ω is accomplished by introducing a partition
B ≡ {B0, · · · , Bm−1} consisting of m mutually exclusive and exhaustive cells such that

Bj ∩Bk = ∅ ∀j 6= k and
m−1⋃

j=0

Bj = Ω (6)

The dynamical system describes an orbit by the time series data as: O ≡
{x0, x1 · · · , xk · · · }, xi ∈ Ω, which passes through or touches the cells of the partition
B. Let us denote the cell visited by the trajectory at a time instant as a random variable S
that takes a symbol value s ∈ A. The set A of m distinct symbols that label the partition
elements is called the symbol alphabet (Note: 2 ≤ |A| < ∞). As the system evolves in
time, the trajectory travels through various blocks in its phase space and the corresponding
symbol s ∈ A is assigned to it, thus converting the time series data sequence to a symbol
sequence. Each initial state x0 ∈ Ω generates a sequence of symbols defined by a mapping
from the phase space into the symbol space as:

x0 → si0si1si2 · · · sik · · · (7)

The mapping in Eq. (7) is called Symbolic Dynamics as it attributes a legal (i.e., phys-
ically admissible) symbol sequence to the system dynamics starting from an initial state.
(Note: A symbol alphabet A is called a generating partition of the phase space Ω if every
legal symbol sequence uniquely determines a specific initial condition x0, i.e., every sym-
bolic orbit uniquely identifies one continuous space orbit.) In general, a dynamical system
would only generate a subset of all possible sequences of symbols as there could be some
illegal (i.e., physically inadmissible) sequences. Figure 3 pictorially elucidates the concepts
of partitioning a finite region of the phase space and mapping from the partitioned space
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into the symbol alphabet. This represents a spatial and temporal discretization of the sys-
tem dynamics defined by the trajectories. Figure 3 also shows conversion of the symbol
sequence into a finite-state machine as explained in later sections.

Symbolic dynamics can be viewed as coarse graining of the phase space, which is sub-
jected to (possible) loss of information resulting from granular imprecision of partitioning
boxes, measurement noise and errors, and sensitivity to initial conditions. However, the es-
sential robust features (e.g., periodicity and chaotic behavior of an orbit) are expected to be
preserved in the symbol sequences through an appropriate partitioning of the phase space
[1]. Although the theory of phase-space partitioning is well developed for one-dimensional
mappings, very few results are known for two and higher dimensional systems [10].

4. Wavelet-Based Partitioning

A crucial step in SDF is extraction of relevant information, imbedded in the measured
time series series data, to generate symbol sequences. Symbol generation requires par-
titioning of the data space to obtain the symbol sequences [11] [24]. Various partitioning
techniques have been suggested in literature for symbol generation, which include variance-
based [25], entropy-based [26], and hierarchial clustering [27] methods. A survey of clus-
tering techniques is provided in [28]. In addition to these methods, another scheme of
partitioning, based on symbolic false nearest neighbors (SFNN ), was reported by Kennel
and Buhl [14]. The objective of SFNN partitioning is to ensure that points that are close
to each other in the symbol space are also close to each other in the phase space. Partitions
that yield a smaller proportion of symbolic false nearest neighbors are considered optimal.
However, this partitioning method may become cumbersome and extremely computation-
intensive if the dimension of the phase space is large. Moreover, if the time series data
is noise-corrupted, then the symbolic false neighbors would rapidly grow in number and
require a large symbol alphabet to capture the pertinent information on the system dy-
namics. Therefore, symbolic sequences as representations of the system dynamics should
be generated by alternative methods because phase-space partitioning might prove to be
a difficult task in the case of high dimensions and presence of noise. The wavelet trans-
form [29] largely alleviates these shortcomings and is particularly effective with noisy data
from high-dimensional dynamical systems. As such, this chapter has presented a wavelet-
based partitioning approach [6] [15] for construction of symbol sequences from the time
series data.

4.1. Wavelet Analysis of Time Series Data

This section presents generation of wavelet coefficients from measured time series data,
and their arrangement for symbol generation. Specifically, issues of wavelet basis and scale
range selection are also addressed. A wavelet is a function ψ ∈ L2(R) with a zero average:

∫ ∞

−∞
ψ(t)dt = 0. (8)



28 Shalabh Gupta and Asok Ray

which is normalized such that ||ψ||2 = 1. The wavelet transform of a function f(t) ∈ H is
given by

Fα,β =
1√
α

∫ ∞

−∞
f(t)ψ∗(

t− β

α
)dt, (9)

where α > 0 is the scale, β is the time shift, and H is a Hilbert space. Wavelet analysis
alleviates the difficulties associated with Short-Time Fourier Transform via adaptive usage
of long windows for retrieving low frequency information and short windows for high fre-
quency information [29]. The ability to perform flexible localized analysis is one of the
striking features of wavelet transform. In addition to this, wavelet preprocessing helps in
noise mitigation.

In multi-resolution analysis (MRA) of wavelet transform, a continuous signal f ∈ H,
where H is a Hilbert space, is decomposed as a linear combination of time translations of
scaled versions of a suitably chosen scaling function φ(t) and the derived wavelet function
ψ(t). Let the sequence {φj,k} belong to another Hilbert spaceM with a countable measure,
where the scale s = 2j and time translation τ = 2−jk. If the sequence {φj,k} is a frame
for the Hilbert space H with a frame representation operator L, then there are positive real
scalars A and B such that:

A||f ||2H ≤ ||Lf ||2M ≤ B||f ||2H ∀f ∈ H, (10)

where Lf = {< f, φj,k >} and ||Lf ||M is an appropriate norm, e.g., ||Lf ||M =√∑
j

∑
k | < f, φj,k > |2 is a candidate norm; and < x, y > is the inner product of x and

y, both belonging to H [15]. The above relationship is a norm equivalence and represents
the degree of coherence of the signal f with respect to the frame set of scaling functions;
it may be interpreted as enforcing an approximate energy transfer between the domains H
and L(H). A measure of coherence between the signal and wavelet may be obtained from
the cross-correlation between them that is defined as

Γf,ψα =
< f, ψα >

||f ||2||ψα||2 (11)

where ψα is the suitably scaled wavelet and < f,ψα > is the inner product between the
vectors f and ψα.

In other words, for all signals f ∈ H, a scaled amount of energy is distributed in
the coefficient domain where the scale factor lies between A and B [29]. However, the
energy distribution is dependent on the signal’s degree of coherence with the underlying
frame {φj,k}. For a signal f , which is coherent with respect to the frame {φj,k}, norm
equivalence in the frame representation necessarily implies that a few coefficients contain
most of the signal energy and hence have relatively large magnitudes. Similarly, pure noise
signal w being incoherent with respect to the set {φj,k}, must have a frame representation
in which the noise energy is spread out over a large number of coefficients. Consequently,
these coefficients have a relatively small magnitude [30].

Let f̃ be a noise corrupted version of the original signal f expressed as:

f̃ = f + σ w, (12)
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where w is additive white gaussian noise with zero mean and unit variance and σ is the
noise level. Then, the inner product of f̃ and φj,k is obtained as:

< f̃, φj,k >= < f, φj,k >︸ ︷︷ ︸
signal part

+σ < w, φj,k >︸ ︷︷ ︸
noise part

. (13)

The noise part in Eq. ( 13) may further be reduced if the scales over which coefficients are
obtained are properly chosen.

Wavelet preprocessing of time series data for SDF consists of three steps namely

1. Selection of appropriate wavelet basis

2. Selection of scales

3. Generation of wavelet coefficients for the chosen scales

4.1.1. Selecting a Wavelet Basis

Choice of wavelet primarily depends on the signal being analyzed. However, there are few
properties that may be considered while selecting a wavelet basis. These are described
below:

• Time-Frequency Localization:
A wavelet transform derives its strength from its potential ability to localize the en-
ergy of the signal in the time-scale plane. In turn, a wavelet transform’s localizing
ability is directly inherited from the analyzing wavelet. If the analyzing wavelet is
not well localized either in time and/or frequency, then the wavelet transform will
exhibit the same non-locality. But localization in one domain comes necessarily at
the cost of another. The uncertainty principle [30] determines the time and frequency
localization of the wavelet. As extreme cases ‘haar’ wavelet is well localized in time
but not in frequency while it is vice-versa with ‘sinc’ wavelet. Figure 4 depicts the
‘haar’ wavelet and its fourier transform magnitude while the ‘sinc’ wavelet and its
fourier transform magnitude are shown in Figure 5. ‘Gaussian’ wavelets [31] provide
better localization when both domains are taken into consideration.

• Vanishing moments:
A wavelet ψ has p vanishing moments if

∫ ∞

−∞
tkψ(t)dt = 0 for 0 ≤ k < p (14)

This means that ψ is orthogonal to any polynomial of degree p − 1. If a function
f is smooth and ψ has enough vanishing moments, then the wavelet coefficients
< f, ψj,k > are small at fine scales [29]. This property is quite beneficial in cap-
turing faults/anomalies which often manifest as higher order terms in a power series
expansion of a signal.
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Figure 5. Sinc Wavelet and its Fourier Transform Magnitude

• Support:
The support size and number of vanishing moments are a priori independent in gen-
eral. However for orthogonal wavelets, p vanishing moments imply that the support is
at least of size 2p−1. When choosing a wavelet, there is a trade-off between the num-
ber of vanishing moments and support [29]. From the perspective of fault/anomaly
detection while the increase in vanishing moments enhances detection, the increase
in support leads to increased computation. Daubechies wavelets are optimal in the
sense that they have minimal support for a given number of vanishing moments.

Many wavelets may satisfy one or more of these desirable properties. In such a case,
it is advantageous to choose a wavelet basis that is coherent with the signal. A signal is
coherent with a set of functions if its inner product representation with respect to that set is
succinct in the sense that relatively few coefficients in the representation domain have large
magnitude [30]. Accordingly noise may be viewed as lack of coherence with respect to the
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set of functions.

4.1.2. Choice of Wavelet Scales

For every wavelet, there exists a certain frequency called the center frequency Fc that has
the maximum modulus in the Fourier transform of the wavelet [32]. The pseudo-frequency
fp of the wavelet at a particular scale α is given by the following formula [33]:

fp =
Fc

α ∆t
, (15)

where ∆t is the sampling interval. Figure 6 depicts the center frequency associated with
the Daubechies wavelet ‘db4’ [29] [31]. The Power Spectral Density (PSD) of the signal
provides the information about the frequency content of the signal. This information along
with Eq. (15) can be used for scale selection. The procedure of selecting the scales is
summarized below:

• Identification of the frequencies of interest through PSD analysis of time series data

• Substitution of the above frequencies in place of fp in Eq. (15) to obtain the respective
scales in terms of the known parameters Fc and ∆t
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Figure 6. Center Frequency Approximation for Wavelet db4

The wavelet coefficients of the signal are significantly large when the pseudo-frequency
fp of the wavelet corresponds to the locally dominant frequencies in the underlying signal.
Upon selection of the wavelet basis and scale range, the wavelet coefficients are obtained
using Eq. 9.

4.2. Symbolization of Wavelet-data

The wavelet coefficients are stacked at selected time-shift positions, starting with the small-
est value of scale and ending with its largest value and then back from the largest value
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to the smallest value of the scale at the next instant of time shift. In the sequel, this one-
dimensional array of re-arranged wavelet coefficients is called the scale series data, which is
structurally similar to time series data in the phase space. For symbol generation, the scale
series data can be handled in a similar way as time series data. The scale series data are
then partitioned to construct the symbol alphabet and to generate symbol sequences. Sub-
sequent analysis in SDF methodology depends on statistics of symbols rather than their
order of appearance. Hence ordering of wavelet coefficients does not have a significant
impact. Moreover, scale series construction simplifies the process of symbol generation.

In the wavelet-based partitioning scheme the maximum and minimum of the scale series
are calculated and the ordinates between the maximum and minimum are divided into equal-
sized regions. These regions are mutually disjoint and thus form a partition. Each region
is then labelled with one symbol from the alphabet. If the data point lies in a particular
region, it is coded with the symbol associated with that region. Thus, a sequence of symbols
is created from a given sequence of scale series data. This type of partitioning is called
uniform partitioning. Note that the partition segments in uniform partitioning are of equal
size. Intuitively, it is more reasonable if the information-rich regions of the data set are
partitioned finer and those with sparse information are partitioned coarser. To achieve this
objective, a partitioning method is adopted such that the entropy of the generated symbol
sequence is maximized [15]. Details of maximum entropy partitioning are presented in
Section 5..

As an alternative to the partitioning of scale series data different partitions can also be
constructed for each chosen scale and subsequently statistical information can be extracted
from the corresponding symbol sequences generated from each scale separately. This en-
ables more specific information extraction at each scale. Another alternative is to treat each
scale as a separate dimension and the coefficients of that scale can be considered as the
evolution in time in that scale. This leads to a multi-dimensional scale space analogous
to phase space. This multi-dimensional space can then be partitioned to generate symbol
sequences [34].

4.3. Validation of Wavelet-Based Partitioning

This section presents simulation cases to validate symbolization of measured time series
data via partitioning of the wavelet coefficients. The underlying concepts are illustrated by
two examples [15][34]. Example 1 illustrates how the choice of basis and scale affect the
wavelet transform coefficients and example 2 illustrates noise suppression using wavelets.

4.3.1. Example 1: Choice of Wavelet Parameters

This example illustrates how the choice of wavelet basis and scale range affects the co-
efficients that, in turn, determine symbol generation for pattern recognition and anomaly
detection [6]. Let us consider the following signal,

y(t) = cos(2πt) ∀t ∈ [−5, +5]. (16)

The frequency of y(t) in Equation (16) is 1.00 Hz. The signal y(t) is sampled at 100 Hz
(i.e., the sampling interval ∆t = 0.01s). The only information that is necessary to describe
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this signal is its frequency. So a wavelet well localized in the frequency domain would be
ideally suited for analyzing this signal. Since gaussian wavelets provide good localization
in frequency, they are considered suitable candidates. To demonstrate the importance of
choosing a suitable wavelet the signal is also analyzed with wavelet ‘db1’ which suffers
from poor frequency localization.

The next step in wavelet selection is determining the best wavelet in the gaussian family.
For this purpose, the correlation measure in Equation (11) is utilized. Table 1 provides the
correlation of the signal with gaussian wavelets 1 through 10.

Table 1. Gaussian Wavelet Correlation

Wavelet Γ

gaus1 0.5960
gaus2 0.5939
gaus3 0.5965
gaus4 0.5726
gaus5 0.5949
gaus6 0.5734
gaus7 0.5948
gaus8 0.5745
gaus9 0.5901
gaus10 0.5908

It is observed that the correlation of all wavelets with the signal are almost equal. This
is expected since gaussian wavelets are successive derivatives of the gaussian scaling func-
tion. For analysis, wavelet ‘gaus3’ is chosen. Figure 7 depicts an appropriately scaled and
translated version of the ‘gaus3’ wavelet with the signal y(t).

The wavelet coefficients of the signal y(t) are obtained for various scales with both
wavelets, ‘gaus3’ and ‘db1’. The norm of the coefficients corresponding to each scale
and the pseudo-frequencies of the wavelet corresponding to the chosen scales are calcu-
lated. Figure 8 shows the plot of the norm of coefficients and the pseudo-frequencies of the
wavelet.

It is observed in Figure 8 that, for both wavelets ‘gaus3’ and ‘db1’, the maximum of the
norm is obtained at fp ≈ 1.00 Hz. In fact, it is exactly at 1.00 Hz for ‘gaus3’. Furthermore,
the value of the peak norm achieved with ‘gaus3’ is appreciably greater than that with
wavelet ‘db1’. In other words, the coefficients obtained with ‘gaus3’ are more significant,
at select scales, than those obtained with ‘db1’. Another observation is that the norm curve
for ‘gaus3’ shows a greater rate of decay across pseudo-frequencies than that of ‘db1’.
More energy is concentrated in a narrow band frequencies around 1.00 Hz in the case of
‘gaus3’. These observations imply that high energy compaction can be achieved with fewer
coefficients if the wavelet and the scales are chosen as stated in Sections 4.1.1.and 4.1.2..
A favorable implication of fewer coefficients is fewer number of symbols for analysis and
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hence an improvement in computational efficiency.

4.3.2. Example 2: Noise Suppression

This example demonstrates the noise suppression achieved with wavelets. Let the signal
y(t) in Eq. (16) be corrupted with additive zero-mean white Gaussian noise w(t),

ỹ(t) = y(t) + σ w(t). (17)

A common measure of noise in a noise-corrupted signal is the signal-to-noise ratio that
is defined as:

SNR , ||y||2H
||σ w||2H

, (18)

where y and w are functions of time. Similar to Equation (18), the signal-to-noise ratio in
the wavelet domain is defined as:

S̃NR , ||Ly||2M
||σ Lw||2M

, (19)

where Ly and Lw represent the wavelet coefficients of the signal y and the noise w.
Numerical experiments have been performed with σ ∈ {0.05, 0.1}. The signal is sam-

pled at 100 Hz (i.e., ∆t = 0.01s). The scales are determined following Eq. (15), such that
the pseudo-frequency of the wavelet matches the frequency of the signal. Figure 9 depicts
the time domain plot (left plate) and coefficient plot (right plate) of the signal y and white
Gaussian noise having standard deviation σ = 0.05. Similarly, Figure 10 depicts the time
domain plot (left plate) and coefficient plot (right plate) of the signal y and white Gaussian
noise having standard deviation σ = 0.10. Table 2 lists the values of SNR and S̃NR,
averaged over 20 simulation runs.

It can be observed from Table 2 that S̃NR À SNR which implies that the wavelet-
transformed signal is significantly de-noised relative to the time-domain signal. This is
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Table 2. SNR Values

σ = 0.05 σ = 0.1
SNR 191.55 50.89
S̃NR 25195 4281.5

expected because the noise is incoherent with the wavelet while the signal enjoys a great
degree of coherence with the wavelet. Thus, symbols generated from wavelet coefficients
would reflect the characteristics of the signal with more fidelity than those obtained with
time domain signals.

5. Maximum Entropy Partitioning

As discussed earlier in Section 4.2. the partitioning is done such that the regions with more
information are partitioned finer and those with sparse information are partitioned coarser.
This is achieved by maximizing the Shannon entropy [35], which is defined as:

H = −
|A|∑

i=1

pi log(pi) (20)

where pi is the probability of the ith segment of the partition and summation is taken over all
segments. As a consequence of maximum entropy, uniform probability distribution of states
is obtained (i.e., pi = 1

|A| ∀ i) that makes the partition coarser in regions of low data density
and finer in regions of high data density. Figure 11 shows an example of wavelet-based
maximum entropy partitioning from the time series data of ultrasonic signals generated
from a special purpose fatigue damage test apparatus [2]. The partitioning in Figure 11 is
shown for alphabet set A={0,1,...,5} for alphabet size |A| = 6.
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Figure 9. Signal and Noise Profiles at σ = 0.05 [34]
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A comparison of wavelet-based partitioning using maximum entropy principle and
other partitioning approaches such as using symbolic false nearest neighbors [14] and uni-
form partitioning is reported in recent publications [15] where wavelet-based partitioning
has shown comparable performance with several orders of magnitude smaller execution
time. This feature is well suited for real-time applications for early detection of anomalies.
However, construction of an optimum partitioning scheme for symbol sequence generation
is still an area of active research and is suggested as a future work.

5.1. Algorithm of Maximum Entropy Partitioning

The algorithm for obtaining maximum entropy partition is straightforward and is described
in this section. Since the consequence of maximum entropy is uniform distribution of states,
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Figure 11. Wavelet space maximum entropy partitioning of ultrasonic data from a special
purpose fatigue test apparatus [2].

the algorithm consists of determining the partition such that each element has equal number
of data-points. Let N be the length of the data set and |A| be the size of the symbol alphabet
(i.e., the number of disjoint elements in the partition). The data set is sorted in ascending
order. Starting from the first point in the sorted data, every consecutive data segment of
size b N

|A|c is obtained that forms a distinct element of the partition, where bxc represents
the greatest integer less than or equal to x. This procedure generates the maximum entropy
partitioning.

5.2. Selection of Alphabet Size

Selection of the alphabet size |A| is an area of active research; an entropy-based approach
has been adopted for selecting |A| in this chapter. Let H(k) denote the Shannon entropy of
the symbol sequence obtained by partitioning the data set with k symbols.

H(k) = −
i=k∑

i=1

pilog(pi), (21)

where H(1) = 0 because pi = 1 with i = 1. If the underlying data set has sufficient
information content, then the entropy achieved under maximum entropy partitioning would
be log(k), which corresponds to the uniform distribution. We define a quantity h(·) to
represent the change in entropy with respect to the number |A| of symbols as,

h(k) , H(k)−H(k − 1) ∀k ≥ 2. (22)

The algorithm for alphabet size selection is given below.

Step 1: Set k = 2. Choose a threshold εh, where 0 < εh << 1.
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Step 2: Sort the data set (of length N ) in the ascending order.

Step 3: Every consecutive segment of length bN
k c in the sorted data set (of length N )

forms a distinct element of the partition.

Step 4: Convert the raw data into a symbol sequence with the partition obtained in Step 3.
If the data point lies within or on the lower bound of a partition, it is coded with the
symbol associated with that partition.

Step 5: Compute the symbol probabilities pi, i=1,2,...k.

Step 6: Compute
H(k) = −∑i=k

i=1 pilog2pi and
h(k) = H(k)−H(k − 1).

Step 7: If h(k) < εh, then exit and set |A| = k; else increment k by 1 and go to Step 3.

In general, a small εh leads to a large size of the symbol alphabet, resulting in increased
computation. Also a larger alphabet makes the partitioning finer. This might increase the
probability of false symbols being induced by noise. On the other hand, a large εh leads
to a small alphabet size that may prove inadequate for capturing the pertinent information.
Hence, there is a trade-off between accuracy and computational speed when εh is chosen.
The variance of the noise process associated with the signal may serve as a guideline for
selection of εh.

For the purpose of pattern recognition and anomaly detection, the partitioning is per-
formed with alphabet size |A| at the nominal condition (time epoch t0), and subsequently it
is kept constant for all (slow time) epochs {t1, t2, ....tk....}, i.e. the structure of the partition
is fixed at the nominal condition. In other words, the partitioning structure generated at the
nominal condition serve as the reference frame for data analysis at subsequent slow time
epochs.

6. Finite State Machine Construction

Given the intricacy of phase trajectories in complex dynamical systems, the challenge is
to identify their patterns in an appropriate category by using one of the following two
alternative approaches:

• The single-item approach, which relies on Kolmogorov Chiatin (KC) complexity,
also known as algorithmic complexity [35], for exact pattern regeneration;

• The ensemble approach, which regards the pattern as one of many possible experi-
mental outcomes, for estimated pattern regeneration.

While the single-item approach is common in coding theory and computer science,
the ensemble approach has been adopted in this chapter due to its physical and statistical
relevance. As some of the legal symbol sequences may occur more frequently than others,
a probability is attributed to each observed sequence. The collection of all legal symbol
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sequences S−M · · ·S−2S−1S0S1 · · ·SN , N,M = 0, 1, 2 · · · , defines a stochastic process
that is a symbolic probabilistic description of the continuous system dynamics.

Let us symbolically denote a discrete-time, discrete-valued stochastic process as:

S ≡ · · · , S−2S−1S0S1S2 · · · (23)

where each random variable Si takes exactly one value in the (finite) alphabet A of m
symbols (see Section 3.). The symbolic stochastic process S is dependent on the specific
partitioning of the phase space and is non-Markovian, in general. Even if a partitioning that
makes the stochastic process a Markov chain exists, identification of such a partitioning
is not always feasible because the individual cells may have fractal boundaries instead of
being simple geometrical objects. In essence, there is a trade-off between selecting a simple
partitioning leading to a complicated stochastic process, and a complicated partitioning
leading to a simple stochastic process. Having defined a partition of the phase space, the
time series data is converted to a symbol sequence that, in turn, is used for construction
of a finite state machine using the tools of Computational Mechanics [16] as illustrated in
Figure 3.

This chapter presents a new information-theoretic technique based on Dth order
Markov chains for finite-state machine construction from a given symbol sequence S for
identifying patterns based on time series analysis of the observed data. At any instant t,
the sequence of random variables can be split into a sequence

←−
S t of the past and a se-

quence
−→
S t of the future. Assuming conditional stationarity of the symbolic process S (i.e.,

P [
←−
S t|−→S t = −→s ] being independent of t), the subscript t can be dropped to denote the past

and future sequences as
←−
S and

−→
S , respectively. A symbol string, made of the first L sym-

bols of
−→
S , is denoted by

−→
S L. Similarly, a symbol string, made of the last L symbols of

←−
S ,

is denoted by
←−
S L.

Prediction of the future
−→
S necessitates determination of its probability conditioned on

the past
←−
S , which requires existence of a function ε mapping histories ←−s to predictions

P (
−→
S |←−s ). In essence, a prediction imposes a partition on the set

←−
S of all histories. The

cells of this partition contain histories for which the same prediction is made and are called
the effective states of the process under the given predictor.

6.1. The D-Markov Machine

This section presents a new alternative approach for representing the pattern in a symbolic
process, which is motivated from the perspective of anomaly detection. The core assump-
tion here is that the symbolic process can be represented to a desired level of accuracy as a
Dth order Markov chain, by appropriately choosing D ∈ N.

Definition 6..1 A stochastic symbolic stationary process S ≡ · · ·S−2S−1S0S1S2 · · · is
called Dth order Markov process if the probability of the next symbol depends only on the
previous (at most) D symbols, i.e. the following condition holds:

P (Si|Si−1Si−2 · · ·Si−D · · · ) = P (Si|Si−1 · · ·Si−D) (24)

Alternatively, symbol strings
←−
S ,
←−
S ′ ∈ ←−

S become indistinguishable whenever the re-
spective substrings

←−
S D and

←−
S ′D, made of the most recent D symbols, are identical.
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Thus, a set {←−S L : L ≥ D} of symbol stings can be partitioned into a maximum of |A|D
equivalence classes whereA is the symbol alphabet. Each symbol string in {←−S L : L ≥ D}
either belongs to one of the |A|D equivalence classes or has a distinct equivalence class. All
such symbol strings belonging to the distinct equivalence class form transient states, and
would not be of concern to anomaly detection for a (fast-time-scale) stationary condition
under (slowly changing) anomalies. Given D ∈ N and a symbol string ←−s with |←−s | = D,
the effective state q (D,←−s ) is the equivalence class of symbol strings as defined below:

q(D,←−s ) = {←−S ∈ ←−S :
←−
S D = ←−s } (25)

and the set Q(D) of effective states of the symbolic process is the collection of all such
equivalence classes. That is,

Q(D) = {q(D,←−s ) : ←−s ∈ ←−S D} (26)

and hence |Q(D)| = |A|D. A random variable for a state in the above set Q of states is
denoted by Q and the jth state as qj .

Definition 6..2 The probability of transitions from state qj to state qk belonging to the set
Q of states under a transition δ : Q×A → Q is defined as

πjk = P
(
s ∈ −→S 1 | qj ∈ Q, (s, qj) → qk

)
;

∑

k

πjk = 1; (27)

Given an initial state and the next symbol from the original process, only certain succes-
sor states are accessible. This is represented as the allowed state transitions resulting from
a single symbol. Note that πij = 0 if s2s3 · · · sD 6= s′1 · · · s′D−1 whenever qi ≡ s1s2 · · · sD

and qj ≡ s′1s
′
2 · · · s′D. Thus, for a D-Markov machine, the stochastic matrix Π ≡ [πij ]

becomes a branded matrix with at most |A|D+1 nonzero entries.

6.2. Machine Construction

Once the symbol sequence is obtained, the next step is the construction of a finite state
machine and calculation of the state visit frequencies to generate the state probability vector
as depicted in Figure 3 by the histograms. The partitioning as described in the Section 5. is
performed at time epoch t0 of the nominal condition that is chosen to be a healthy condition.
A finite state machine [8] is then constructed, where the states of the machine are defined
corresponding to a given alphabet A and window length D. The alphabet size |A| is the
total number of partitions while the window length D is the length of consecutive symbol
words forming the states of the machine [6]. The states of the machine are chosen as
all possible words of length D from the symbol sequence, thereby making the number
n of states to be equal to the total permutations of the alphabet symbols within words
of length D (i.e., n ≤ |A|D; some of which may be forbidden with zero probability of
occurrence). For example, if A = {0, 1}, i.e., |A| = 2 and D = 2, then the number
of states is n ≤ |A|D = 4; and the possible states are Q={00, 01, 10, 11} as shown in
Fig. 12. A large alphabet may be noise-sensitive while a small alphabet could miss the
details of signal dynamics. Similarly, a high value of D is extremely sensitive to small
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signal distortions but would lead to a large number of states requiring more computation
power. Using the symbol sequence generated from the time series data, the state machine
is constructed on the principle of sliding block codes [7] as explained below.

Figure 12. Finite state automaton with D=2 and A = {0, 1}.

The construction of a D-Markov machine is fairly straightforward. Given D ∈ N, the
states are as defined in Eqs. (25) and (26). The window of length D on the symbol se-
quence . . . si1 si2 . . . sik . . . is shifted to the right by one symbol, such that it retains the
last (D-1) symbols of the previous state and appends it with the new symbol si` at the
end. The symbolic permutation in the current window gives rise to a new state. The ma-
chine constructed in this fashion is called D-Markov machine [6] because the probability
of occurrence of symbol si` on a particular state depends only on the configuration of that
state, i.e., the previous D symbols. The partitioning alphabet A and word length D deter-
mined at the nominal condition (time epoch t0) are kept constant for all (slow time) epochs
{t1, t2, ....tk....}, i.e. the structure of the machine is fixed at the nominal condition. That
is, the partitioning and the state machine structure generated at the nominal condition serve
as the reference frame for data analysis at subsequent slow time epochs. For D=1, the set
of states bears an equivalence relation to the alphabet A of symbols [36]. The states of
the machine are marked with the corresponding symbolic word permutation and the edges
joining the states indicate the occurrence of an event si` . The occurrence of an event at a
state may keep the machine in the same state or move it to a new state. The language of
the machine is usually incomplete in the sense that all states might not be reachable from a
given state.

Thus, for a D-Markov machine, the irreducible stochastic matrix Π ≡ [πij ] describes
all transition probabilities between states such that it has at most |A|D+1 nonzero entries.
The left eigenvector p corresponding to the unit eigenvalue of Π is the state probability
vector under the (fast time scale) stationary condition of the dynamical system [6]. On
a given symbol sequence ....si1si2 ...sil .... generated from the time series data collected
at slow time epoch tk, a window of length D is moved by keeping a count of occur-
rences of word sequences si1 · · · siDsiD+1 and si1 · · · siD which are respectively denoted
by N(si1 · · · siDsiD+1) and N(si1 · · · siD). Note that if N(si1 · · · siD) = 0, then the state
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q ≡ si1 · · · siD ∈ Q has zero probability of occurrence. For N(si1 · · · siD) 6= 0, the transi-
tions probabilities are then obtained by these frequency counts as follows

πjk ≡ P [qk|qj ] =
P [qk, qj ]

P [qj ]
=

P (si1 · · · siDs)
P (si1 · · · siD)

⇒ πjk ≈
N(si1 · · · siDs)

N(si1 · · · siD)
(28)

where the corresponding states are denoted by qj ≡ si1si2 · · · siD and qk ≡ si2 · · · siDs.
The time series data under the nominal condition (set as a benchmark) generates the state
transition matrix Π0 that, in turn, is used to obtain the state probability vector p0 whose el-
ements are the stationary probabilities of the state vector, where p0 is the left eigenvector of
Π0 corresponding to the (unique) unit eigenvalue. Subsequently, state probability vectors
p1, p2, . . . pk.... are obtained at slow-time epochs t1, t2, . . . tk.... based on the respective
time series data. Machine structure and partitioning should be the same at all slow-time
epochs; only the entries of the Π-matrix may change at different slow-time epochs. The
evolution of the derived state probability vectors from the nominal condition at different
slow time epochs determine the pattern changes occurring in the dynamics of the system.
Having discussed the details of finite state machine construction the next few sections pro-
vide the details for the choice of parameters such as the depth D and the length of the
symbol sequence required to generate the stochastic matrix Π.

6.3. Selection of Depth D

The procedure of selection of the alphabet size |A| was discussed in Section 5.2.. This sec-
tion provides a procedure for selection of the depth D. D is a crucial parameter since the
number of states varies exponentially with D. A very small depth could mean insufficient
memory for the D-Markov machine to appropriately represent the symbolic process. On the
other hand, an unnecessarily large D would result in a large number of states, leading to ex-
tremely small values of state probabilities and an inaccurate Π-matrix. A procedure based
on entropy rate has been developed for selecting the depth of the D-Markov machine. The
key idea is that increasing the depth beyond a certain value does not lead to any appreciable
change in entropy; equivalently, the entropy rate would be very small. Given the current
state, the entropy rate hµ of a symbolic stochastic process is defined as the uncertainty in
the next symbol.

hµ = −
n∑

i=1

pi

|A|∑

j=1

π̃ijlog2π̃ij (29)

where pi is the probability of occurrence of ith state; π̃ij is the probability of occurrence of
jth symbol in the ith state; n is the number of states in the probabilistic finite state machine;
and |A| is the alphabet size. Being a measure of uncertainty, hµ monotonically decreases
as the depth D of the D-Markov machine is increased. Beyond a certain point, increasing
D will not lead to any change in the entropy rate. This is the asymptotical entropy rate and
the corresponding D is optimal for the machine. With ideal noise-free data hµ converges to
zero. However, with noisy data, hµ may only monotonically decrease to a small non-zero
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value, depending on the magnitude and the type of noise. Thus, the test for the optimum D
relies on how hµ converges as D is increased.

6.4. Machine State Reduction

For a chosen depth D, the machine contains |A|D states, i.e., the number of states increase
in exponential steps of alphabet size |A|. Therefore, for the purpose of state reduction
the states with very small probabilities can be deleted without affecting the ability of the
machine to represent the underlying symbolic process. The states of a D-Markov Machine
can be classified into two categories:

• Recurrent states: These are the states that are visited an infinite number of times if
one runs the machine infinitely.

• Transient States: These are the states that are visited finitely often with only small
probabilities. For all practical purposes, for a transient state qtr

lim
N→∞

P (qtr) = 0

where N is the length of the symbolic data string.

6.4.1. Removing Transient States

Transient states can be eliminated by setting a threshold ε (0 < ε ¿ 1) on the state visit
probability. The value of ε can be chosen based on the length of the symbol sequence such as
ε = 1

N . Therefore, all states having probability less than ε can be removed as transient states
that are visited possibly due to noise. In addition to removing transient states, the number
of states may be further reduced by merging similar states. The criterion and procedure for
state merging is given below.

6.4.2. State Merging Algorithm

A symbol string u is called a descendent of its ancestor v if u = wv, where w is a non-null
string. Similarly, a string u is called a child of v, if u = av, where a ∈ A such that a child
has one symbol more than its parent into the past. Therefore, the following are implied:

• Any string v can have at most have |A| number of children.

• If σ = σ1σ2...σD and γ = γ1γ2...γD are children of the same parent, then σi = γi ∀
i = 2, 3, ...D

If σ and γ are the states of D-Markov machine and are children of the same parent then
upon occurrence of a new symbol ‘a’ they lead to the same state transition, i.e.

δ(σ, a) = δ(γ, a)
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where δ is the state transition function. Therefore, states that are children of the same parent
and have the same transition probabilities, can be merged to form a single state, i.e., if qi

and qj are children of the same parent and if

π̃ik = π̃jk ∀ k = 1, 2, ...|A|
then the states qi and qj can be merged to form a single state; π̃jk is as defined in Eq. (29).
If for depth D > 1, the generated Π matrix has two identical rows, then it implies that the
corresponding states are children of the same parent and have the same symbol probabilities.
Hence, these states can be merged. In case of noisy data, a threshold ε > 0 is defined to
check the equality of two rows such that if

max
k
|πik − πjk| < ε

then the two states can be merged. After state merging the corresponding entries in the state
probability vector and the Π matrix have to be appropriately modified. Consider a machine
where states qi and qj are to be merged, then the following steps are required:

1. If j > i, remove state qj and merge with state qi

2. Set pi = pi + pj

3. Delete the jth row of the Π matrix.

4. Set πki = πki + πkj ∀ k = 1, 2......n and delete the jth column of the Π matrix.

As an illustrative example for selection of D and appropriate state reduction, let us
consider a data set that yields a symbol stream ~S = ...000100010001... on the alphabet
A = {0, 1} [34]. Table 3 provides the number of states after state merging and the cor-
responding entropy rate of the inferred D-Markov machine for various depths. As seen in
Table 3, the number of states in the generated machine remains the same for depth D ≥ 3.
Correspondingly, the entropy rate remains at zero. This implies that the minimum depth for
correct representation for this symbol string is 3. The required number of states is less than
|A|D in this case. Next we consider the case where a small amount of white noise is added
to the raw data that produced the symbol stream ~S. Table 4 provides the number of states
after state merging and the entropy rate of the D-Markov machine for various depths. Al-
though the number of states inferred seem to increase with increasing depth, it can observed
that the change in entropy rate hµ is very small beyond D = 3. This means that very little in-
formation is gained by increasing the depth and the uncertainty in the system is largely due
to the noise. Hence a criterion for the selection of optimal depth of the D-Markov machine
can be established in terms of a lower bound on the change in the entropy rate.

6.5. Stopping Rule for Length of the Symbol Sequence

Another important parameter is the length of symbol sequence required to generate the sta-
tistics from the D-Markov machine. This section presents a stopping rule that is necessary
to find a lower bound on the length of symbol sequence required for parameter identifi-
cation of the stochastic matrix Π. The stopping rule [37] [38] is based on the proper-
ties of irreducible stochastic matrices [39]. The state transition matrix is constructed at
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Table 3. Number of states and Entropy Rate for ideal string [34]

Depth Number of States Entropy Rate

(D) after state merging (hµ)

0 1 0.810

1 2 0.689

2 3 0.500

3 4 0.000

4 4 0.000

5 4 0.000

Table 4. Number of states and Entropy Rate for noisy string [34]

Depth No of States Entropy Rate

(D) after state merging (hµ)

0 1 0.818

1 2 0.721

2 4 0.530

3 6 0.070

4 8 0.050

5 12 0.045

the rth iteration (i.e., from a symbol sequence of length r) as (r) that is an n × n irre-
ducible stochastic matrix under stationary conditions. Similarly, the state probability vector
p(r) ≡ [p1(r) p2(r) · · · pn(r)] is obtained as

pi(r) =
ri∑n

j=1 ri
(30)

where ri is the number of symbols in the ith state such that
∑n

i=1 ri = r for a symbol
sequence of length r. The stopping rule makes use of the Perron-Frobenius Theorem [39]
to establish a relation between the vector p(r) and the matrix (r). Since the matrix (r) is
stochastic and irreducible, there exists a unique eigenvalue λ = 1 and a corresponding left
eigenvector p(r) (normalized to unity in the sense of absolute sum). The (normalized) left
eigenvector p(r) represents the state probability vector, provided that the matrix parameters
have converged after a sufficiently large number of iterations. That is,

p(r) = p(r)(r) as r →∞ (31)

Following Eq. (30), the absolute error between successive iterations is obtained such
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... ↑↓↓↑↓↑ ... ↑↑↓↑↓ ... ≡ ...100101...11010...

Figure 13. Equivalence between the one dimensional structure of Ising spin system and a
symbolic sequence with alphabet size |A| = 2 where A = {0,1}.

that
‖ (p(r)− p(r + 1)) ‖∞=‖ p(r) (I− (r)) ‖∞≤ 1

r
(32)

where ‖ • ‖∞ is the max norm of the finite-dimensional vector •.
To calculate the stopping point rstop, a tolerance of η (0 < η ¿ 1) is specified for the

relative error such that:

‖ (p(r) − p(r + 1)) ‖∞
‖ (p(r)) ‖∞ ≤ η ∀ r ≥ rstop (33)

The objective is to obtain the least conservative estimate for rstop such that the dominant
elements of the probability vector have smaller relative errors than the remaining elements.
Since the minimum possible value of ‖ (p(r)) ‖∞ for all r is 1

n , where n is the dimension
of p(r), the best worst case value of the stopping point is obtained from Eqs. (32) and (33)
as:

rstop ≡ int

(
n

η

)
(34)

where int(•) is the integer part of the real number •.

6.6. Statistical Mechanical Concept of D-Markov Machine

In statistical mechanics, a few macroscopic parameters (e.g. pressure and temperature) are
used to describe the global properties of the system in terms of the estimates derived from
the distribution of the elementary particles in various micro states [40]. In the same fashion,
the behavior of a dynamical system can be investigated both from microscopic and macro-
scopic points of view [10]. In the study of a dynamical system, the measured time series
data of the observable variables on fast time scale can be analyzed to generate the pattern
vectors in terms of probability distributions, which can be used to describe the macroscopic
or global behavior of the system at a particular slow time epoch. The information de-
rived from these pattern vectors can be further compressed into a few scalar macroscopic
parameters such as the entropy, and the Euclidean norm. This analogy is termed as the
thermodynamic formalism of dynamical systems [10].

This section outlines an analogy between the structural features of the D-Markov ma-
chine and those of spin models in Statistical Mechanics [6] [41]. The primary concept of
symbolic dynamic analysis of a dynamical system is to represent the dynamics with a se-
quence of symbols. Analogously, one may consider the one dimensional lattice chain of
spins in spin models as being a stationary time series of discrete measurements or the sym-
bolic dynamics arising from the partitioning of the phase space of a dynamical system [42].
The Ising model is one of the foundations of statistical mechanics commonly used to de-
scribe the magnetic properties of ferromagnetic substances [40] [43]. Each spin sn in the
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Ising model can take only two possible orientations which are represented as +1 and −1.
It is intuitive that in a physical system spins that are located at neighboring lattice sites
strongly influence each other, whereas spins far away from each other do not have much in-
fluence on each other [40] [10]. The structure of one dimensional Ising model is analogous
to the symbolic sequence generated from partitioning the time series data with alphabet
size |A| = 2. The Potts model is a generalization of the Ising model [43] to more than
two components [44] [45], i.e., it describes a spin model where each spin sn can take one
of the ‘r’ different possible spin values sk : k ∈ 1, 2, · · · , r. As such, the structure of one
dimensional Potts model is structurally analogous to the symbolic sequence generated from
partitioning the time series data with alphabet size |A| = r > 2. The analogy is illustrated
in Fig. 13 for the simple case of Ising model which is analogous to the symbol sequence
with alphabet size |A| = 2 where A = {0,1}.

A symbolic sequence is called D-Markov if the probability of occurrence of a symbol
depends on the previous D symbols. The range of interaction between the spins can be
considered analogous (to some extent) to depth D of the D-Markov machine. For D=1,
the finite-state machine construction is analogous to the one-dimensional spin model with
nearest neighbor interactions. For D ≥ 2, the spin interactions extend beyond the nearest
neighbor and represent a higher order Markov process.

7. Pattern Identification and Anomaly Detection

Behavioral pattern changes may take place in dynamical systems due to accumulation of
faults and progression of anomalies. The pattern changes are quantified as deviations from
the nominal pattern (i.e., the probability distribution at the nominal condition). The re-
sulting anomalies (i.e., deviations of the evolving patterns from the nominal pattern) are
characterized by a scalar-valued function, called Anomaly Measure (ψ). Several measures
can be defined based on the structure of the D-Markov machine. One such measure is the
induced norm of the difference between the state transition matrix Πk at slow time epoch
tk and the nominal state transition matrix Π0

ψk = ||Πk −Π0|| (35)

Alternatively, measures of anomaly can be derived directly from the state probability
vector p that is the left eigenvector corresponding to the unique unity eigenvalue of the
Π-matrix. The anomaly measure at a slow time epoch tk is then obtained as:

ψk ≡ d
(

pk, p0
)

(36)

where d(•, •) is an appropriately defined distance function and pk is the state probability
vector at the slow time epoch tk. The distance function can chosen to be a standard norm
of the difference between the probability vector at slow time epoch tk and the probability
vector at the nominal condition t0. For example, a possible choice for anomaly measure is:

ψk ≡ ||pk − p0||r (37)

where || • ||r for r ∈ [1,∞) is the Hölder norm of •, which is the Euclidean norm for r = 2.
In general, other distance measures can also be chosen because, in a finite-dimensional
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vector space, all norms are equivalent [36][46]. Another candidate for the anomaly measure
is the angle between the two state probability vectors. This measure is defined as:

ψk = arccos
(

< pk, p0 >

||pk||2||p0||2

)
(38)

where < x, y > is the inner product between the vectors x and y. The measures mentioned
above, satisfy the requirements of a metric. But other measures, that do not qualify as a
metric, for example, the Kullback-Leibler distance [35] may also be used.

ψk = −
|A|∑

i=1

pk
i log2

pk
i

p0
i

. (39)

The anomaly measure ψ can also be constructed based on the following information-
theoretic quantities: entropy rate, excess entropy, and complexity measure of a symbol
string S (see Appendix A.).

• The entropy rate hµ(S) quantifies the intrinsic randomness in the observed dynamical
process.

• The excess entropy E(S) quantifies the memory in the observed process.

• The statistical complexity Cµ(S) of the state machine captures the average memory
requirements for modelling the complex behavior of a process.

Given two symbol strings S and S0, it is possible to obtain a measure of anomaly by adopt-
ing any one of the following three alternatives:

M(S,S0)) =




|hµ(S)− hµ(S0)|, or
|E(S)−E(S0)|, or
|Cµ(S)− Cµ(S0)|

Note that each of the anomaly measures, defined above, is a pseudo metric [36]. For
example, let us consider two periodic processes with unequal periods, represented by S and
S0. For both processes, hµ = 0, so that M(S,S0) = 0 for the first of the above three
options, even if S 6= S0. It is to be noted that choice of the anomaly measure depends on
the application example and sensitivity of change detection.

Having presented the different possible forms of anomaly measure, an example is pre-
sented to demonstrate robustness of the state probability vector p [15]. The vector p must
be robust relative to measurement noise and spurious disturbances and, at the same time,
be sensitive enough to detect small slowly-varying anomalies from the observed data set. A
distortion measure for the symbol probability vector is introduced below.

δt , ||pt − p̃t||1, (40)

where the subscript t denotes that the probability vectors correspond to symbols generated
from time domain signals; and || • ||1 is the sum of the absolute values of the elements of
the vector •. The vector pt, with ||pt||1 = 1, corresponds to the uncorrupted signal and
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p̃t corresponds to the signal corrupted with additive zero-mean white Gaussian noise with
standard deviation σ (Eq. (16)). Similar to Eq. (40), distortion measure in the wavelet scale
domain is defined as:

δs , ||ps − p̃s||1, (41)

where the subscript s denotes that the probability vectors correspond to symbols generated
from wavelet scale domain signals (i.e., scale series data). Therefore, lower is the distor-
tion ratio, closer is the probabilistic representation of the corrupted signal to that of the
uncorrupted signal, i.e., greater is the robustness to noise and spurious disturbances.

The partitions are obtained, in case of time domain, by employing the maximum entropy
criterion on the time series data of the signal. In the wavelet domain, the partitions are
obtained with the corresponding scale series data, as defined in Section 4.1.. In both time
domain and wavelet domain, the probability vectors p and p̃ are computed with the same
partitions for the uncorrupted and corrupted signals.

The symbol alphabet size and depth are chosen to be |A|=4 and D=1 respectively. The
partitions are obtained as mentioned before for the signal y (Eq. (16)) and its transform,
i.e., the coefficient vector Ly. Table 5 lists the values of distortion ratios δt and δs, averaged
over 20 simulation runs.

Table 5. Distortion Ratios

σ = 0.05 σ = 0.1
δt 0.040 0.054
δs 0.006 0.010

It is seen that distortion measures are far smaller in the wavelet scale domain than those
in the time domain. This observation implies that the symbol probabilities are significantly
more robust to measurement noise and spurious disturbances in the wavelet domain than
in the time domain. Hence, it may be inferred that symbols generated from the wavelet
coefficients would be better for anomaly detection as the effects of noise to induce errors in
the symbol probabilities are significantly mitigated.

8. Summary and Advantages of SDF

The SDF procedure of anomaly detection is summarized below.

8.1. Summary of SDF Procedure

• Acquisition of time series data from appropriate response variable(s) under the nom-
inal condition at time epoch t0, when the system is assumed to be in the healthy state
(i.e., zero anomaly measure)

• Generation of the wavelet transform coefficients, obtained with an appropriate choice
of the wavelet basis and range of scales [15]
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• Maximum entropy partitioning of the wavelet space at the nominal condition with
alphabet size |A|; and generation of the corresponding symbol sequence (Note: The
partitioning is fixed for subsequent time epochs.)

• Construction of the D-Markov machine states from the symbol alphabet size |A| and
the window length D (Note: The structure of the finite state machine is also fixed for
subsequent slow time epochs.)

• Generation of the pattern vector defined by the state probability vector p0 by passing
the symbol sequence obtained at time epoch t0 through the finite state machine

• Time series data acquisition at subsequent slow time epochs, t1, t2, ...tk..., and their
conversion to the wavelet domain to generate respective symbolic sequences based
on the partitioning at time epoch t0

• Generation of the state probability vectors p1, p2, ...pk, .. at different slow time
epochs, t1, t2, ....tk.... from the respective symbolic sequences using the finite state
machine constructed at time epoch t0

• Computation of scalar anomaly measures ψ1, ψ2, ..., ψk, ... at different slow-time
epochs, t1, t2, ..., tk, ...

8.2. Advantages of SDF

After having discussed the underlying principles and essential features of SDF -based pat-
tern recognition and anomaly detection, the major advantages of SDF are listed below:

• Robustness to measurement noise and spurious signals[15]- The procedure of SDF
is robust to measurement noise and spurious disturbances and it filters out the noise
at different steps. First of all, coarse graining of the continuous data (i.e., partitioning
into finite blocks) and generation of a symbol sequence eliminate small measurement
noise [6]. Secondly, the wavelet transform also contributes in signal-noise separation
of the raw time series data by proper choice of scales [15]. Finally, the state probabil-
ities are generated by passing a long symbol sequence over the finite state machine,
which further eliminates small (zero-mean) measurement noise;

• Adaptability to low-resolution sensing due to coarse graining in space partitions [6];

• Capability for early detection of anomalies because of sensitivity to signal distortion
and real-time execution on commercially available inexpensive platforms [2] [18];

• Applicability to networked communication systems due to the capability of data com-
pression into low-dimensional pattern vectors and error-free transmission over net-
worked systems. Future research is envisioned in the area.
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9. Forward and Inverse Problems

As stated earlier in Section 1., the anomaly detection problem is separated into two sub-
problems: 1) the forward (or analysis) problem and 2) the inverse (or synthesis) problem.
The forward problem consists of prediction of outcomes, given a priori knowledge of the
underlying model parameters. In absence of an existing model this problem requires gener-
ation of behavioral patterns of the system evolution through off-line analysis of an ensemble
of the observed time series data. On the other hand, the inverse problem consists of estima-
tion of critical parameters characterizing the system under investigation using the actual ob-
servations. Inverse problems arise in different engineering disciplines such as geophysics,
structural health monitoring, weather forecasting, and astronomy. Inverse problems often
become ill-posed and challenging due to the following reasons: (a) high dimensionality
of the parameter space under investigation and (b) in absence of a unique solution where
change in multiple parameters can lead to the same observations.

In presence of sources of uncertainties, any parameter inference strategy requires esti-
mation of parameter values and also the associated confidence intervals, or the error bounds,
to the estimated values. As such, inverse problems are usually solved using the Bayesian
methods that allow observation based inference of parameters and provide a probabilistic
description of the uncertainty of inferred quantities. A good discussion of inverse problems
is presented by Tarantola [47].

In context of anomaly detection, the tasks and solution steps of these two problems as
followed in this chapter are discussed below.

9.0.1. Forward Problem

The primary objective of the forward problem is identification of changes in the behavioral
patterns of system dynamics due to evolving anomalies on the slow time scale. Specifically,
the forward problem aims at detecting the deviations in the statistical patterns in the time
series data, generated at different time epochs in the slow time scale, from the nominal
behavior pattern. The solution procedure of the forward problem requires the following
steps:

F1. Collection of time series data sets (at fast time scale) from the available sensor(s) at
different slow time epochs;

F2. Analysis of these data sets using the SDF method as discussed in earlier sections to
generate pattern vectors defined by the probability distributions at the corresponding
slow time epochs. The profile of anomaly measure is then obtained from the evolution
of this pattern vector from the nominal condition;

F3. Generation of a family of such profiles from multiple experiments performed under
identical conditions to construct a statistical pattern of anomaly growth. Such a fam-
ily represents the uncertainty in the evolution of anomalies in dynamical systems due
to its stochastic nature. This step is required in systems where there is a source of
parametric or non-parametric uncertainty. For eg., in case of fatigue damage, the un-
certainty arises from the random distribution of microstructural flaws in the body of
the component leading to a stochastic behavior [48].
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9.0.2. Inverse Problem

The objective of the inverse problem is to infer the anomalies and to provide estimates of
system parameters from the observed time series data and system response in real time.
The decisions are based on the information derived in the forward problem. For eg., in
the context of fatigue damage, identical structures operated under identical loading and
environmental conditions show different trends in the evolution of fatigue due to surface
and sub-surface material uncertainties [20]. Therefore, as a precursor to the solution of
the inverse problem, generation of an ensemble of data sets is required during the forward
problem for multiple fatigue tests conducted under identical operating conditions. Anomaly
estimates can be obtained at any particular instant in a real-time experiment with certain
confidence intervals using the information derived from the ensemble of data sets of damage
evolution generated in the forward problem [6]. The solution procedure of the inverse
problem requires the following steps:

I1. Collection of time series data sets (in the fast time scale) from the available sensor(s)
at different slow time epochs up till the current time epoch in a real-time experiment
as in step F1 of the forward problem;

I2. Analysis of these data sets using the SDF method to generate pattern vectors defined
by probability distributions at the corresponding slow time epochs. The value of
anomaly measure at the current time epoch is then calculated from the evolution
of this pattern vector from the nominal condition. The procedure is similar to the
step F2 of the forward problem. As such, the information available at any particular
instant in a real-time experiment is the value of the anomaly measure calculated at
that particular instant;

I3. Detection, identification and estimation of an anomaly (if any) based on the computed
anomaly measure and the statistical information derived in step F3 of the forward
problem.

The family of anomaly measure profiles is analyzed in the inverse problem section
to generate the requisite statistical information. In general inverse problem corresponds
to pattern identification for estimation of parametric or non-parametric changes based on
the knowledge assimilated in the forward problem and the observed time series data of
quasi-stationary process response. The information available in real time is the value of the
anomaly measure obtained from the analysis of time series data of sensors at any particular
time epoch. This information is entered in the inverse problem section that provides the es-
timates of the useful parameters. The estimates can only be obtained within certain bounds
at a particular confidence level. The online statistical information of the damage status is
significant because it can facilitate early scheduling for the maintenance or repair of critical
components or to prepare an advance itinerary of the damaged parts. The information can
also be used to design control policies for damage mitigation and life extension.
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10. Application Examples

The concept of SDF has been experimentally validated on two laboratory apparatuses for
behavioral pattern identification. The first apparatus is an active nonlinear electronic system
with a slowly varying dissipation parameter and the second apparatus is a special-purpose
computer-controlled fatigue test machine that is instrumented with ultrasonic flaw detectors
and an optical travelling microscope.

10.1. Anomaly Detection in Nonlinear Electronic Systems

This example demonstrates efficacy of the symbolic dynamic filtering (SDF ) method for
anomaly detection in nonlinear systems. Experiments have been conducted on a laboratory
apparatus [6] that emulates a second-order non-autonomous, forced Duffing equation in real
time [49], modelled as:

d2y

dt2
+ β

dy

dt
+ y(t) + y3(t) = A cos(Ωt), (42)

where the dissipation parameter β varies slowly with respect to the response of the dy-
namical system; β = 0.1 represents the nominal condition; and a change in the value of
β is considered as an anomaly. With amplitude A = 22.0 and Ω = 5.0, a sharp change
in the behavior is noticed around β = 0.29, possibly due to bifurcation. The phase plots,
depicting this drastic change behavior, were presented by Ray [6] and are shown in Fig. 14.

Figure 14. Phase Plots for Electronic Circuit Experiment [6]

The objective of anomaly detection is to identify small changes in the parameter β as
early as possible and well before it manifests a drastic change in the system dynamics. The
experimental setup is a combination of electronic circuit designed with resistors (R), capac-
itors (C) and operational amplifiers and a computer interfaced with the circuit. The circuit
consists of R-C networks, which model the linear dynamics of the process, adders and volt-
age amplifiers. The nonlinearity is generated in the computer [34]. The adder sums up the
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input signal and the terms generated by the computer, thereby making the overall system
nonlinear. Further details of the experimental implementation are provided in [34]. Time
series data of the signal y(t) from the experimental apparatus were used for anomaly detec-
tion using SDF . Since ‘gaus1’ [32] matches the shape of the signal, the wavelet ‘gaus1’
was chosen for SDF . The scale series data (see Section 4. for details), at the nominal
condition, was partitioned into a symbol sequence starting with |A| = 2 and the threshold
parameter εh was chosen to be 0.2. It was seen that h monotonically decreases with |A| and
became less than εh for |A| = 8. Accordingly, the number of symbols |A| was chosen to
be 8. A smaller value of εh results in increased number of symbols, which would increase
computation with (possibly) no significant gain in accuracy of anomaly detection. The
partition was obtained using the maximum entropy principle from the data at the nominal
(β = 0.1) condition. Once the partition is generated, it remains invariant. As the dynamical
behavior of the system changes due to variations in β, the statistical characteristics of the
symbol sequences are also altered and so do the symbol probabilities. Finite state machine
was constructed using D=1 and state probability vectors were generated both under nom-
inal and anomalous conditions. Anomaly measure was chosen as the angle between these
vectors, Eq. (38).

Figure 15 depicts the anomaly measure plots obtained using wavelet-based partitioning
and phase space partitioning using symbolic false nearest neighbors (SFNN ) [14]. With
β increasing from 0.1, there is a gradual increase in the anomaly measure before the abrupt
change in the vicinity of β = 0.29 takes place. This indicates growth and detection of the
anomaly even before a drastic change in the dynamical behavior takes place. It is observed
that the results from maximum entropy partitioning with ‘gaus1’ wavelet are comparable to
SFNN partitioning. However, in this problem, the execution time for SFNN to generate
the partition is found to be≈ 4 hours, while that for maximum entropy partitioning is≈ 100
milliseconds on the same computer. Therefore, it may be inferred from this experiment that
maximum entropy partitioning is computationally several orders of magnitude less intensive
than SFNN partitioning while they yield similar performance from the perspectives of
anomaly detection.

10.2. Detection of Fatigue Damage in Mechanical Systems

This example demonstrates efficacy of the symbolic dynamic filtering (SDF ) method for
anomaly detection in mechanical systems. Fatigue damage is considered as the source of
anomaly. The experimental apparatus, shown in Figure 16, is a special-purpose uniaxial
fatigue testing machine, which is operated under load control or strain control at speeds up
to 12.5 Hz; a detailed description of the apparatus and its design specifications are reported
in [50]. The fatigue tests were conducted using center notched 7075-T6 aluminium spec-
imens, as shown in Fig. 17, at a constant amplitude sinusoidal load, where the maximum
and minimum loads were kept constant at 87MPa and 4.85MPa. The specimens used are
3 mm thick and 50 mm wide, and have a slot of 1.58 mm×4.5 mm at the center [41]. The
central notch is made to increase the stress concentration factor that ensures crack initiation
and propagation at the notch ends. The test apparatus is equipped with two types of sensors
that have been primarily used for damage detection:
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Figure 15. Anomaly Measure Plots

10.2.1. Travelling Optical Microscope

The travelling optical microscope, shown as part of the test apparatus in Figure 16, provides
direct measurements of the visible portion of a crack. The resolution of the optical micro-
scope is about 2 microns at a working distance of 10 to 35 cm and the images are taken at
a magnification of 75x.

10.2.2. Ultrasonic Flaw Detector

A piezoelectric transducer is used to inject ultrasonic waves in the specimen and an ar-
ray of receiver transducers is placed on the other side of notch to measure the transmitted
signal. The ultrasonic waves produced were 5MHz sine wave signals and they were emit-
ted during a very short portion at the peak of every load cycle. The sender and receiver
ultrasonic transducers are placed on two positions, above and below the notch, so as to
send the signal through the region of crack propagation and receive it on the other side, as
seen in Figure 18. As with the propagation of any wave, it is possible that discontinuities
in the propagation media will cause additive and destructive interference. Since material
characteristics (e.g., voids, dislocations and short cracks) influence ultrasonic impedance,
a small fault in the specimen is likely to change the signature of the signal at the receiver
end. Therefore, the received signal can be used to capture minute details and small changes
during the early stages of fatigue damage, which are not possible to detect by an optical
microscope [51] [52] [53].

The ultrasonic sensing device was triggered at a frequency of 5 MHz at each peak of
the (∼12.5 Hz) sinusoidal load. The slow time epochs were chosen to be 3000 load cycles
(i.e., ∼240 sec) apart. At the onset of each slow time epoch, the ultrasonic data points were
collected on the fast time scale of ∼8 sec, which produced a string of 10,000 data points. It
is assumed that during this fast time scale, no major changes occurred in the fatigue crack
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Figure 16. Computer-instrumented Apparatus for Fatigue Testing

Figure 17. Cracked Specimen with a Central Notch

behavior. The nominal condition at the slow time epoch t0 was chosen to be 5.0 kilocycles
to ensure that the electro-hydraulic system of the test apparatus had come to a steady state
and that no significant damage occurred till that point. The anomalies at subsequent slow-
time epochs, t1, t2, ....tk..., were then calculated with respect to the nominal condition at
t0. Following the SDF procedure for anomaly detection, the alphabet size for partitioning
was chosen to be |A| = 8 and window length of D = 1, while the mother wavelet chosen
to be ‘gaus2’ [32] because it closely matched the shape of the sinusoidal signals. (Absolute
values of the wavelet scale series data were used to generate the partition because of the
symmetry of the data sets about their mean.) This combination of parameters was capable
of capturing the anomalies earlier than the optical microscope. Increasing the value of |A|
further did not improve the results and increasing the value of D created a large number of
states of the finite state machine, many of them having very small or zero probabilities, and
required larger number of data points at each time epoch to stabilize the state probability
vectors. State probability vector p0 was obtained at the nominal condition of time epoch t0
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Figure 18. Schematic of Ultrasonic Sensors on a Test specimen

and the state probability vectors p1, p2, . . . pk.... were obtained at other slow-time epochs
t1, t2, . . . tk..... It is emphasized that the anomaly measure is relative to the nominal con-
dition which is fixed in advance and should not be confused with the actual damage at an
absolute level.

The six triplets of plates in Figure 19 show two-dimensional images of a specimen sur-
face, ultrasonic data and histograms of probability distribution of automaton states at six
different time epochs, approximately 5, 30, 40, 45, 60 and 78 kilocycles, exhibiting gradual
evolution of fatigue damage [41]. In each triplet of plates from (a) to (f) in Figure 19, the
top plate exhibits the surface image of the test specimen as seen by the optical microscope.
As exhibited on the top plates, the crack originated and developed on the right side of the
notch at the center. Histograms in the bottom plates of six plate triplets in Figure 19 show
the evolution of the state probability vector corresponding to fatigue damage growth on
the test specimen at different slow time epochs, signifying how the probability distribution
gradually changes from uniform distribution (i.e., minimal information) to delta distribu-
tion (i.e., maximum information). The middle plates show the ultrasonic time series data
collected at corresponding slow time epochs. As seen in Figure 19, the visual inspection of
the ultrasonic data does not reveal much information during early stages of fatigue damage
but the statistical changes are captured in the corresponding histograms.

The top plate in plate triplet (a) of Figure 19 shows the image at the nominal condition
(∼5 kilocycles) when the anomaly measure is taken to be zero, which is considered as the
reference point with the available information on potential damage being minimal. This is
reflected in the uniform distribution (i.e., maximum entropy) as seen from the histogram at
the bottom plate of plate pair (a). Both the top plates in plate triplets (b) and (c) at ∼30
and ∼40 kilocycles, respectively, do not yet have any indication of surface crack although
the corresponding bottom plates do exhibit deviations from the uniform probability distri-
bution. This is an evidence that the analytical measurements, based on ultrasonic sensor
data, produce damage information during crack initiation, which is not available from the
corresponding optical images.

The top plate in plate triplet (d) of Figure 19 at ∼45 kilocycles exhibits the first no-
ticeable appearance of a ∼300 micron crack on the specimen surface, which may be con-
sidered as the boundary of the crack initiation and propagation phases. This small surface
crack indicates that a significant portion of the crack or multiple small cracks might have
already developed underneath the surface before they started spreading on the surface. The
histogram of probability distribution in the corresponding bottom plate shows further de-
viation from the uniform distribution at ∼5 kilocycles. The top plate in plate triplet (e) of
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Figure 19. Pictorial view of the evolving fatigue crack damage, corresponding ultrasonic
data and histograms of probability distribution [41].
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Figure 19 at ∼60 kilocycles exhibits a fully developed crack in its propagation phase. The
corresponding bottom plate shows the histogram of the probability distribution that is sig-
nificantly different from those in earlier cycles in plate triplets (a) to (d), indicating further
gain in the information on crack damage. In this case, the middle plate also shows signifi-
cant drop in the amplitude of ultrasonic signals due to development of a large crack. The top
plate in plate triplet (f) of Figure 19 at ∼78 kilocycles exhibits the image of a completely
broken specimen. The corresponding bottom plate shows delta distribution indicating com-
plete information on crack damage. The middle plate shows a complete attenuation of the
ultrasonic signals.
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Figure 20. Performance comparison for fatigue damage detection.

The normalized anomaly measure curve in Figure 20 shows a possible bifurcation where
the slope of the anomaly measure changes dramatically indicating the onset of crack prop-
agation phase. First appearance of a fatigue crack on the surface of the specimen was
detected by the optical microscope at approximately 45 kilocycles, which is marked by the
dashed vertical line in Figure 20. The slope of the anomaly measure represents the anomaly
growth rate while the magnitude indicates the changes that have occurred relative to the
nominal condition. An abrupt change in the slope (i.e., a sharp change in the curvature) of
anomaly measure profile provides a clear insight into a forthcoming failure. The critical in-
formation lies in the region to the left of the vertical line where no crack was visible on the
surface. The slope of anomaly measure curve showed a clear trend of growth of anomaly
right after ∼15 kilocycles. This was the region where multiple small cracks were possibly
formed inside the specimen, which caused small changes in the ultrasonic signal profile. Fa-
tigue damage detection using SDF of ultrasonic data has been successfully implemented
in real time [2].
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11. Conclusions

This chapter presents a recently reported technique, called Symbolic Dynamic Filtering
(SDF), for pattern recognition and anomaly detection in dynamical systems. The underlying
concept of SDF is built upon the principles of Symbolic Dynamics, Information Theory, and
Statistical Signal Processing, where time series data from selected sensor(s) in the fast time
scale of the process dynamics are analyzed at discrete epochs in the slow time scale of
anomaly evolution. The chapter describes the underlying features of symbolic dynamics
and various aspects of wavelet-based partitioning for extraction of the relevant information
from the time series data of observable variables. Efficacy of the wavelet-based partitioning
tool has been demonstrated via different examples for noise mitigation and robustness to
spurious disturbances. Furthermore, the problem of anomaly detection is constructed into
two problems: (i) Forward problem of Pattern Recognition for (offline) characterization of
the anomalous behavior, relative to the nominal behavior; and (ii) Inverse problem of Pattern
Identification for (online) estimation of parametric or non-parametric changes based on the
knowledge assimilated in the forward problem and the observed time series data of quasi-
stationary process response.

The concept of SDF has been experimentally validated on two laboratory apparatuses
for identification of anomalous patterns. The first apparatus is an active nonlinear electronic
system with a slowly varying dissipation parameter and the second apparatus is a special-
purpose computer-controlled fatigue test machine that is instrumented with ultrasonic flaw
detectors and an optical travelling microscope. Statistical patterns generated from time
series data of observed variables have been used to validate the afore-said forward and
inverse problems.

Recent literature [2] [18] has also demonstrated experimental validation of SDF -based
pattern recognition by comparison with other existing techniques such as Principal Com-
ponent Analysis (PCA) and Artificial Neural Networks (ANN ); SDF has been shown
to yield superior performance in terms of early detection of anomalies, robustness to
noise [15], and real-time execution in different applications such as electronic circuits [18],
mechanical vibration systems [19], and fatigue damage in polycrystalline alloys [2]. The
codes of SDF are executable in real time and have been demonstrated in the laboratory
environment for on-line detection of fatigue damage, based on the analysis of ultrasonic
sensor signals, before any surface cracks are visible through the optical microscope in a
special-purpose fatigue testing apparatus.

The work, reported in this chapter, is a step toward building a reliable instrumentation
system for early detection of incipient faults and prognosis of potential failures. Further
theoretical and experimental research is necessary before its usage in industry. The on-
line information, provided by the anomaly measure, is useful for decision and control of
human-engineered complex system to sustain order and normalcy under both anticipated
and unanticipated faults and disturbances. For example, damage mitigation is an area of
future work in life extending control and self healing control. In this context, solution of
the inverse problem and development of performance bounds for safe reliable operation of
different engineering applications is an active area of current research.
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Appendix A. Information Theoretic Quantities

This appendix introduces the concepts of standard information-theoretic quantities: entropy
rate, excess entropy and statistical complexity [54], which are used to establish the anomaly
measure in Section 7..

Entropy Rate (hµ): The entropy rate of a symbol string S is given by the Shannon
entropy as follows:

hµ = lim
L→∞

H[L]
L

(43)

where, H[L] ≡ −∑
sL∈AL P (sL) log2(P (sL)) is the Shannon entropy of all L-blocks

(i.e., symbol sequences of length L) in S. The limit is guaranteed to exist for a stationary
process [35]. The entropy rate quantifies the irreducible randomness in sequences produced
by a source: the randomness that remains after the correlation and the structures in longer
and longer sequence blocks are taken into account. For a symbol string S represented as an
ε-machine, hµ = H[

−→
S 1|S].

Excess Entropy (E): The excess entropy of a symbol string S is defined as:

E =
∞∑

L=1

[hµ(L)− hµ] (44)

where hµ(L) ≡ H[L]−H[L− 1] is the estimate of how random the source appears if only
L-blocks in S are considered. Excess entropy measures how much additional information
must be gained about the sequence in order to reveal the actual per-symbol uncertainty hµ,
and thus measures difficulty in the prediction of the process. Excess entropy has alternate
interpretations such as: it is the intrinsic redundancy in the process; geometrically it is a
sub-extensive part of H(L); and it represents how much historical information stored in the
present is communicated to the future.

Statistical Complexity (Cµ)[54]: The information of the probability distribution of
causal states, as measured by Shannon entropy, yields the minimum average amount of
memory needed to predict future configurations. This quantity is the statistical complexity
of a symbol string S , defined by Crutchfield and Young [16] as :

Cµ ≡ H(S) = −
n−1∑

k=0

[Pr(Sk) log2Pr(Sk] (45)

where n is the number of states of the finite state machine constructed from the symbol
string S. As shown in [54], E ≤ Cµ in general, and Cµ = E + Dhµ.
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Appendix B. D-Markov Machine and Epsilon Machine

This appendix presents a comparison of two alternative techniques of finite-state machine
construction from a symbol sequence S . The the D-Markov machine, presented in Sec-
tion 6.1., is compared with the ε-machine formulation [55] for identifying patterns based
on time series analysis of the observed data. Both techniques rely on information-theoretic
principles (see Appendix A.) and are based on Computational Mechanics [16].

The ε-Machine: Like Statistical Mechanics [42][10], Computational Mechanics is
concerned with dynamical systems consisting of many partially correlated components.
Whereas Statistical Mechanics deals with the local space-time behavior and interactions of
the system elements, Computational Mechanics relies on the joint probability distribution
of the phase-space trajectories of a dynamical system. The ε-machine construction [16] [55]
makes use of the joint probability distribution to infer the information processing being per-
formed by the dynamical system. This is developed using the statistical mechanics of orbit
ensembles, rather than focusing on the computational complexity of individual orbits.

Let the symbolic representation of a discrete-time, discrete-valued stochastic process
be denoted by: S ≡ · · ·S−2S−1S0S1S2 · · · as defined earlier in Section 6.. At any instant
t, this sequence of random variables can be split into a sequence

←−
S t of the past and a

sequence
−→
S t of the future. Assuming conditional stationarity of the symbolic process S

(i.e., P [
←−
S t|−→S t = −→s ] being independent of t), the subscript t can be dropped to denote the

past and future sequences as
←−
S and

−→
S , respectively. A symbol string, made of the first L

symbols of
−→
S , is denoted by

−→
S L. Similarly, a symbol string, made of the last L symbols

of
←−
S , is denoted by

←−
S L.

Prediction of the future
−→
S necessitates determination of its probability conditioned on

the past
←−
S , which requires existence of a function ε mapping histories ←−s to predictions

P (
−→
S |←−s ). In essence, a prediction imposes a partition on the set

←−
S of all histories. The

cells of this partition contain histories for which the same prediction is made and are called
the effective states of the process under the given predictor. The set of effective states is
denoted by R; a random variable for an effective state is denoted by R and its realization
by ρ.

The objective of ε-machine construction is to find a predictor that is an optimal partition
of the set

←−
S of histories, which requires invoking two criteria in the theory of Computa-

tional Mechanics [17]:

1. Optimal Prediction: For any partition of histories or effective states R, the condi-
tional entropy H[

−→
S L|R] ≥ H[

−→
S L|←−S ], ∀L ∈ N, ∀←−S ∈ ←−S , is equivalent to remem-

bering the whole past. Effective statesR are called prescient if the equality is attained
∀L ∈ N. Therefore, optimal prediction needs the effective states to be prescient.

2. Principle of Occam Razor: The prescient states with the least complexity are selected,
where complexity is defined as the measured Shannon information of the effective
states:

H[R] = −
∑

ρ∈R

P (R = ρ) log P (R = ρ) (46)
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Equation (46) measures the amount of past information needed for future prediction
and is known as Statistical Complexity denoted by Cµ(R) (see Appendix A.).

For each symbolic process S, there is a unique set of prescient states known as causal
states that minimize the statistical complexity Cµ(R).

Definition B.1 [55] Let S be a (conditionally) stationary symbolic process and
←−
S be the

set of histories. Let a mapping ε :
←−
S → Υ(

−→
S ) from the set

←−
S of histories into a collection

Υ(
−→
S ) of measurable subsets of

←−
S be defined as:

∀Γ ∈ Υ(
−→
S ), ε(←−s ) ≡ {←−s ′ ∈ ←−S such that

P (
−→
S ∈ Γ|←−S = ←−s ) = P (

−→
S ∈ Γ|←−S = ←−s ′)} (47)

Then, the members of the range of the function ε are called the causal states of the
symbolic process S. The ith causal state is denoted by qi and the set of all causal states by
Q ⊆ Υ(

−→
S ). The random variable corresponding to a causal state is denoted by Q and its

realization by q.

Given an initial causal state and the next symbol from the symbolic process, only suc-
cessor causal states are possible. This is represented by legal transitions among the causal
states, and the probabilities of these transitions. Specifically, the probability of transition
from state qi to state qj on a single symbol s is expressed as:

T
(s)
ij = P

(−→
S 1 = s,Q′ = qj | Q = qi

)
∀qi, qj ∈ Q (48)

∑

s∈A

∑

qj∈Q

T
(s)
ij = 1 (49)

The combination of causal states and transitions is called the ε-machine (also known as
the causal state model [55]) of a given symbolic process. Thus, the ε-machine represents
the way in which the symbolic process stores and transforms information. It also provides
a description of the pattern or regularities in the process, in the sense that the pattern is
an algebraic structure determined by the causal states and their transitions. The set of
labelled transition probabilities can be used to obtain a stochastic matrix [39] given by:
T =

∑
s∈A T s where the square matrix T s is defined as: T s = [T s

ij ] ∀s ∈ A. Denoting
p as the left eigenvector of T , corresponding to the eigenvalue λ = 1, the probability of
being in a particular causal state can be obtained by normalizing ‖p‖`1 = 1. A procedure
for construction of the ε-machine is outlined below.

The original ε-machine construction algorithm is the subtree-merging algorithm as in-
troduced in [16] [17]. This approach has several shortcomings, such as lack of a system-
atic procedure for choosing the algorithm parameters, may return non-deterministic causal
states, and also suffers from slow convergence rates. Recently, Shalizi et al. [55] have de-
veloped a code known as Causal State Splitting Reconstruction (CSSR) that is based on state
splitting instead of state merging as was done in the earlier algorithm of subtree-merging
[16]. The CSSR algorithm starts with a simple model for the symbolic process and elab-
orates the model components only when statistically justified. Initially, the algorithm as-
sumes the process to be independent and identically distributed (iid) that can be represented



64 Shalabh Gupta and Asok Ray

by a single causal state and hence zero statistical complexity and high entropy rate. At this
stage, CSSR uses statistical tests to determine when it must add states to the model, which
increases the estimated complexity, while lowering the entropy rate hµ (see Appendix A.).
A key and distinguishing feature of the CSSR code is that it maintains homogeneity of the
causal states and deterministic state-to-state transitions as the model grows. Complexity of
the CSSR algorithm is: O(mLmax) + O(m2Lmax+1) + O(N), where m is the size of the al-
phabet A; N is the data size and Lmax is the length of the longest history to be considered.
Details are given in [55].

Comparison of D-Markov Machine and ε-Machine: An ε-machine seeks to find the
patterns in the time series data in the form of a finite-state machine, whose states are chosen
for optimal prediction of the symbolic process; and a finite-state automaton can be used as
a pattern for prediction [55]. An alternative notion of the pattern is one which can be used
to compress the given observation. The first notion of the pattern subsumes the second,
because the capability of optimal prediction necessarily leads to the compression as seen in
the construction of states by lumping histories together. However, the converse is not true
in general. For the purpose of anomaly detection, the second notion of pattern is sufficient
because the goal is to represent and detect the deviation of an anomalous behavior from
the nominal behavior. This has been the motivating factor for proposing an alternative
technique, based on the fixed structure D-Markov machine. It is possible to detect the
evolving anomaly, if any, as a change in the probability distribution over the states.

Another distinction between the D-Markov machine and ε-machine can be seen in terms
of finite-type shifts and sofic shifts [7] (see Appendix C.). Basic distinction between finite-
type shifts and sofic shifts can be characterized in terms of the memory: while a finite-type
shift has finite-length memory, a sofic shift uses finite amount of memory in representing
the patterns. Hence, finite-type shifts are strictly proper subsets of sofic shifts. While, any
finite-type shift has a representation as a graph, sofic shifts can be represented as a labelled
graph. As a result, the finite-type shift can be considered as an ”extreme version” of a D-
Markov chain (for an appropriate D) and sofic shifts as an ”extreme version” of a Hidden
Markov process [56], respectively. The shifts have been referred to as ”extreme” in the
sense that they specify only a set of allowed sequences of symbols (i.e., symbol sequences
that are actually possible, but not the probabilities of these sequences). Note that a Hidden
Markov model consists of an internal D-order Markov process that is observed only by a
function of its internal-state sequence. This is analogous to sofic shifts that are obtained by a
labelling function on the edge of a graph, which otherwise denotes a finite-type shift. Thus,
in these terms, an ε-machine infers the Hidden Markov Model (sofic shift) for the observed
process. In contrast, the D-Markov Model proposed in this paper infers a (finite-type shift)
approximation of the (sofic shift) ε-machine.

Appendix C. Finite-type Shift and Sofic Shift

This appendix very briefly introduces the concept of shift spaces with emphasis on fi-
nite shifts and sofic shifts that respectively characterize the D-Markov machine and the
ε-machine described in Appendix B.. The shift space formalism is a systematic way to
study the properties of the underlying grammar, which represent the behavior of dynamical
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systems encoded through symbolic dynamics. The different shift spaces provide increas-
ingly powerful classes of models that can be used to represent the patterns in the dynamical
behavior.

Definition C.1 LetA be a finite alphabet. The fullA-shift is the collection of all bi-infinite
sequences of symbols from A and is denoted by:

AZ = {x = (xi)i∈Z : xi ∈ A ∀i ∈ Z} (50)

Definition C.2 The shift map σ on the full shift AZ maps a point x to a point y = σ(x)
whose ith coordinate is yi = xi+1.

A block is a finite sequence of symbols over A. Let x ∈ AZ and w be a block over A.
Then w occurs in x if ∃ indices i and j such that w = x[i,j] = xixi+1 · · ·xj . Note that the
empty block ε occurs in every x.

Let F be a collection of blocks, i.e., finite sequences of symbols over A. Let x ∈ AZ

and w be a block over A. Then w occurs in x if ∃ indices i and j such that w = x[i,j] =
xixi+1 · · ·xj . For any such F , let us define XF to be the subset of sequences inAZ , which
do not contain any block in F .

Definition C.3 A shift space is a subset X of a full shift AZ such that X = XF for some
collection F of forbidden blocks over A.

For a given shift space, the collection F is at most countable (i.e., finite or countably
infinite) and is non-unique (i.e., there may be many suchF’s describing the shift space). As
subshifts of full shifts, these spaces share a common feature called shift invariance. Since
the constraints on points are given in terms of forbidden blocks alone and do not involve
the coordinate at which a block might be forbidden, it follows that if x ∈ XF , then so are
its shifts σ(x) and σ−1(x). Therefore σ(XF ) = XF , which is a necessary condition for a
subset of AZ to be a shift space. This property introduces the concept of shift dynamical
systems.

Definition C.4 Let X be a shift space and σX : X → X be the shift map. Then (X,σX)
is known as a shift dynamical system.

The shift dynamical system mirrors the dynamics of the original dynamical system from
which it is generated (by symbolic dynamics). Several examples of shift spaces are given
in [7].

Rather than describing a shift space by specifying the forbidden blocks, it can also be
specified by allowed blocks. This leads to the notion of a language of a shift.
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Definition C.5 Let X be a subset of a full shift, and let Bn(X) denote the set of all n-blocks
(i.e., blocks of length n) that occur in X . The langauge of the shift space X is defined as:

B(X) =
∞⋃

n=0

Bn(X) (51)

Sliding Block Codes: Let X be a shift space over A, then x ∈ X can be transformed
into a new sequence y = · · · y−1y0y1 · · · over another alphabet U as follows. Fix integers
m and n such that −m ≤ n. To compute yi of the transformed sequence, we use a function
Φ that depends on the “window” of coordinates of x from i − m to i + n. Here Φ :
Bm+n+1(X) → U is a fixed block map, called a (m + n + 1)-block map from the allowed
(m + n + 1)-blocks in X to symbols in U . Therefore,

yi = Φ(xi−mxi−m+1 · · ·xi+n) = Φ(x[i−m,i+n]) (52)

Definition C.6 Let Φ be a block map as defined in Eq. (52). Then the map φ : X → (U)Z

defined by y = φ(x) with yi given by Eq. (52) is called the sliding block code with memory
m and anticipation n induced by Φ.

Definition C.7 Let X and Y be shift spaces, and φ : X → Y be a sliding block code.

• If φ : X → Y is onto, then φ is called a factor code from X onto Y .

• If φ : X → Y is one-to-one, then φ is called an embedding of X into Y .

• If φ : X → Y has a inverse (i.e., ∃ a sliding block code ψ : Y → X such that
ψ(φ(x)) = x ∀x ∈ X and φ(ψ(y)) = y ∀ y ∈ Y ), then φ is called a conjugacy from
X to Y .

If ∃ a conjugacy from X to Y , then Y can be viewed as a copy of X , sharing all
properties of X . Therefore, a conjugacy is often called topological conjugacy in literature.

Finite-type Shifts: We now introduce the concept of finite-type shift that is the structure
of the shift space in the D-Markov machine proposed in the subsection 6.1..

Definition C.8 A finite-type shift is a shift space that can be described by a finite collection
of forbidden blocks (i.e., X having the form XF for some finite set F of blocks).

An example of a finite shift is the golden mean shift, where the alphabet is A = {0, 1} and
the forbidden set F={11}. That is, X = XF is the set of all binary sequences with no two
consecutive 1’s.

Definition C.9 A finite-type shift is M -step or has memory M if it can be described by a
collection of forbidden blocks all of which have length M + 1.

The properties of a finite-type shift are listed below:
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• If X is a finite-type shift, then ∃M ≥ 0 such that X is M -step.

• The langauge of the finite-type shift is characterized by the property that if two words
overlap, then they can be glued together along their overlap to from another word in
the langauge. Thus, a shift space X is an M -step finite-type shift iff whenever uv,
vw ∈ B(X) and |v| ≥ M , then uvw ∈ B(X).

• A shift space that is conjugate to a finite-type shift is itself a finite-type shift.

• A finite-type shift can be represented by a finite, directed graph and produces the
collection of all bi-infinite walks (i.e. sequence of edges) on the graph.

Sofic Shifts: The sofic shift is the structure of the shift space in the ε-machines [16]
[55]. Let us label the edges of a graph with symbols from an alphabet A, where two or
more edges are allowed to have the same label. Every bi-infinite walk on the graph yields a
point in AZ by reading the labels of its edges, and the set of all such points is called a sofic
shift.

Definition C.10 A graph G consists of a finite set V = V(G) of vertices together with a
finite set E = E(G) of edges. Each edge e ∈ E(G) starts at a vertex denoted by i(e) ∈ V(G)
and terminates at a vertex t(e) ∈ V(G) (which can be the same as i(e)). There may be more
that one edge between a given initial state and terminal state; a set of such edges is called
a set of multiple edges. An edge e with i(e) = t(e) is called a self-loop.

Definition C.11 A labelled graph G is a pair (G,L), where G is a graph with edge set E ,
and L : E → A assigns a label L(e) to each edge e of G from the finite alphabet A. The
underlying graph of G is G.

Definition C.12 A subset X of a full shift is a sofic shift if X = XG for some labelled
graph G. A presentation of a sofic shift X is a labelled graph G for which XG = X .

An example of a sofic shift is the even shift, which is the set of all binary sequences with
only even number of 0’s between any two 1’s. That is, the forbidden set F is the collection
{102n+1 : n ≥ 0}.

Some of the salient characterization of sofic shifts are presented below [7]:

• Every finite-type shift qualifies as a sofic shift.

• A shift space is sofic iff it is a factor of a finite-type shift.

• The class of sofic shifts is the smallest collection of shifts spaces that contains all
finite-type shifts and also contains all factors of each space in the collection.

• A sofic shift that does not have finite-type subshifts is called a strictly sofic. For
example, the even shift is strictly sofic [7].
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• A factor of a sofic shift is a sofic shift.

• A shift space conjugate to a sofic shift is itself sofic.

• A distinction between finite-type shifts and sofic shifts can be characterized in terms
of the memory. While finite-type shifts use finite-length memory, sofic shifts require
finite amount of memory. In contrast, context-free shifts require infinite amount of
memory [8].
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