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Chapter 1

REAL-TIME FATIGUE DAMAGE MONITORING
VIA IN SITU ULTRASONIC SENSING∗

Shalabh Gupta†and Asok Ray‡
Mechanical Engineering Department, The Pennsylvania State University

University Park, PA 16802, USA

Abstract

Estimation of structural damage and quantification of structural integrity are crit-
ical for safe and reliable operation of human-engineered complex systems. Fatigue
damage is one of the most commonly encountered sources of structural degradation
in mechanical systems. Detection of incipient fatigue damage is essential for averting
widespread crack growth that leads to catastrophic failures.

This chapter presents online in situ monitoring of fatigue damage using the ul-
trasonic sensing technique that is sensitive to small microstructural changes, robust
to measurement noise, and also suitable for real-time applications. A recently re-
ported information-theoretic method of data-driven pattern recognition, called Sym-
bolic Dynamic Filtering (SDF ), has been used for real-time analysis of ultrasonic
data, where the time series data in the fast scale of process dynamics are analyzed at
discrete epochs in the slow scale of fatigue damage evolution. SDF includes pre-
processing of ultrasonic data using wavelet transform, which is well suited for time-
frequency analysis of non-stationary signals and enables noise attenuation in raw data.
The wavelet-transformed data is partitioned using the maximum entropy principle to
generate symbol sequences, such that the regions of data space with more information
are partitioned finer and those with sparse information are partitioned coarser. Sub-
sequently, statistical patterns of evolving damage are identified from these sequences
by construction of a (probabilistic) finite-state machine that captures the dynamical
system behavior by information compression.

A computer-controlled fatigue test apparatus, equipped with ultrasonic sensors and
an optical microscope, has been used to experimentally validate the concept of ultra-
sonic based real-time monitoring of fatigue damage in polycrystalline alloys. The task
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of fatigue damage monitoring is formulated as: (i) forward problem of pattern recogni-
tion for (offline) characterization of the statistical behavior of fatigue damage evolution
and (ii) inverse problem of pattern identification for (online) estimation of the remain-
ing useful life based on the real time ultrasonic data and the statistical information
generated offline.

1. Introduction

Gradually evolving changes in the structural parameters of a mechanical system over its ser-
vice life may generate uncertainties in both transient and stationary behavior. This problem
is often addressed by overly conservative estimates of the design parameters due to lack of
available information. Consequently, the engineering design of mechanical systems suffers
from enforcement of large safety factors and results in manufacture of cumbersome and un-
necessarily expensive machinery. The alternative is to have expensive and time-consuming
inspections. In the current state-of-the-art maintenance actions are based on fixed usage
intervals. On-line sensing of damage would allow re-evaluation and extension of service
life and inherent protection against unforeseen early failures to reduce the frequency of in-
spections and increase the mean time between major maintenance actions on serviceable
structures.

Prediction of structural damage and quantification of structural integrity are critical for
safe and reliable operation of human-engineered complex systems. Fatigue damage is one
of the most commonly encountered sources of structural degradation during both nominal
and off-nominal operations of such systems [1]. Detection of fatigue damage at an early
stage is essential because the accumulated damage could potentially cause catastrophic fail-
ures in the system, leading to loss of expensive equipment and human life [1]. Therefore, it
is necessary to develop diagnosis and prognosis capabilities for reliable and safe operation
of the system and for enhanced availability of its service life. In the current state-of-the-
art, direct measurements of fatigue damage at an early stage (e.g., crack initiation) are not
feasible due to lack of appropriate sensing devices and analytical models. This chapter at-
tempts to address this inadequacy by taking advantage of the sensitivity of the ultrasonic
impedance on small changes that occur inside the material during the early stages of fatigue
damage [2]. Since a vast majority of structural components that are prone to fatigue damage
are made of ductile alloys, this chapter dwells on fatigue damage sensing and prediction for
such materials.

Sole reliance on model-based analysis for structural damage monitoring is infeasible
because of the difficulty in achieving requisite accuracy in modeling of fatigue damage
evolution. Many model-based techniques have been reported in recent literature for struc-
tural health monitoring, remaining life estimation and prediction of damage precursors
[3][4][5][6][7][8]. Apparently, no existing model, solely based on the basic fundamental
principles of physics [9], can adequately capture the dynamical behavior of fatigue damage
at the grain level. In general, these models are critically dependent on the initial defects in
the materials, which may randomly form crack nucleation sites and identification of exact
initial and boundary conditions is not feasible. As such, these defects are difficult to identify
and model [10][11].

Small deviations in the distribution of initial defects may produce large variations in the
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evolution of fatigue damage for (apparently) identical specimens under the same loading
and environmental conditions [11]. Specifically in the short crack region the appearance of
many crack nucleation sites can be treated as random events. This random distribution of
micro-structural flaws produce a wide uncertainty in the crack initiation phase [1][11]. For
example, inclusions, casting defects and machining marks originating during fabrication
may cause stress augmentation at certain locations. These surface and sub-surface defects
that are largely unavoidable constitute integral parts of the material microstructure of the
operating machinery. In addition, fluctuations in usage patterns (e.g., random overloads)
and environmental conditions (e.g., temperature and humidity) may adversely affect the
performance and service life of mechanical systems leading to unanticipated failures. As
such, evolution of fatigue damage is considered as a stochastic phenomenon [1][11][12]. A
stochastic measure of fatigue crack growth is proposed in recent literature [13].

The stochastic phenomenon of fatigue damage evolution makes the maintenance efforts
more conservative, difficult and expensive. With heavy usage and stringent safety require-
ments, as the machinery ages, the frequency of major maintenance increases and leads to
premature replacements of the critical components. However, in general, both safety and
economics suffer as no good compromise can be achieved without systematic analysis of
the situation. This problem motivates the research, since one of the most fundamental so-
lutions to this problem is on-line failure diagnosis as well as on-line prognosis that allows
remaining life prediction for the critical structural components of operating machinery, un-
der anticipated load profiles.

The above discussion evinces the need for online updating of information using sens-
ing devices (e.g., ultrasonics, acoustic emission and eddy currents) which are sensitive to
small microstructural changes and can provide useful and reliable estimates of the anoma-
lies at early stages of fatigue damage evolution [2]. This chapter presents real-time fatigue
damage monitoring using the ultrasonic sensing technique to examine small microstruc-
tural changes in polycrystalline alloys during both fatigue crack initiation and propagation
phases. Consequently, the analysis of time series data from available sensors is essential for
monitoring the evolving fatigue damage in real time [14].

The theme of data-driven pattern recognition and anomaly detection, formulated in this
chapter, is built upon the concepts of Symbolic Dynamics [15], Finite State Automata [16],
Statistical Mechanics [17], and Information Theory as a means to qualitatively describe the
dynamical behavior in terms of symbol sequences [18][19][20][15]. The chapter presents
symbolic dynamic filtering (SDF ) [18][21][17][22][23] to analyze time series data of sen-
sors (e.g., ultrasonic) for detection and identification of gradually evolving fatigue damage.

To this end, a computer-controlled fatigue test apparatus, equipped with multiple sens-
ing devices (e.g., ultrasonics and optical microscope), has been used to experimentally val-
idate the concept of real-time fatigue damage monitoring. The sensor information is inte-
grated with a software module consisting of the SDF algorithm for real-time monitoring
of fatigue damage. Experiments have been conducted under different loading conditions on
specimens constructed from the ductile aluminium alloy 7075− T6.

This chapter is organized in eight sections and one appendix. Section 1. provides a brief
discussion of the problem statement of real-time fatigue damage monitoring using sensing
devices such as the ultrasonics. Section 2. provides the background of fatigue damage
sensing methods and motivation of the current research. Section 3. presents the details of
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experimental apparatus used for validating the concept of real-time fatigue damage mon-
itoring. Section 4. formulates the problem of fatigue damage monitoring in the setting of
two-time-scales and briefly describes the procedure of a recently reported data-driven pat-
tern recognition tool, called symbolic dynamic filtering (SDF ). Section 5. provides an
overview of the forward and the inverse problems of anomaly detection in complex dynam-
ical systems. Section 6. presents the details of experimental procedure, SDF -based pattern
recognition and results of real-time fatigue damage detection using ultrasonic sensing tech-
nology. Section 7. presents the solution procedure and results derived from both the forward
and the inverse problems for real-time fatigue damage estimation. Section 8. summarizes
and concludes the chapter with recommendations for future research. Appendix Appendix
A. provides a brief overview of symbolic dynamic filtering (SDF ) including the concepts
of symbolic dynamic encoding, wavelet based partitioning, probabilistic finite state ma-
chine construction and pattern identification.

2. Fatigue Damage Sensing Techniques

Several techniques based on different sensing devices (e.g., ultrasonics, acoustic emis-
sion and eddy currents) have been proposed in recent literature for fatigue crack moni-
toring [24][25][26]. The capabilities of electrochemical sensors [27] and thermal imaging
techniques [28] have also been investigated for structural failure analysis. A review of dif-
ferent vibration based damage detection and identification methods is provided by Doebling
et. al [29]. This section presents a brief review of fatigue damage sensing methods as below.

2.1. Acoustic Emission

Acoustic emissions are the stress waves that are produced due to sudden redistribution of the
stress inside the material structure. Some of the possible causes of the changes in the inter-
nal structure of the material can be dislocation movement, crack initiation and growth, and
crack opening and closure. Since the primary sources of acoustic emissions are damage-
related, the detection and monitoring of these emissions are commonly used to predict and
estimate material failure. As such, acoustic emission technique is commonly used to moni-
tor defects and causes of failures in structural materials. This technique has been employed
and tested for fault diagnosis in numerous applications including polycrystalline alloys,
composite materials, and also in the study of mechanical behavior of ceramics and rocks.
The traditional analysis methods using acoustic emission technique include monitoring the
acoustic-emission counts, the peak levels, and the energy of the signal. These parameters
are used for correlation with the defect formation mechanisms and for providing a quanti-
fied estimate of faults.

Acoustic emission technique has been investigated by several researchers for early de-
tection of fatigue and fracture failures of materials [30][31][32][33][34][35][36]. Acoustic
emission technique has also been widely used for detection of faults or leakage in pressure
vessels, tanks, and piping systems and for monitoring the welding and corrosion progress
in materials. One of the advantages here is that acoustic emissions are sensitive to the activ-
ities occurring inside the material microstructure. Moreover, acoustic emission sensors are
compact and can be easily mounted on the surface of a specimen being examined for online
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testing and for continuous monitoring of evolving damage. The major drawback of acoustic
emission technique is that the acoustic emission signals are usually very weak and give poor
performance in noisy environments where signal-noise separation becomes a difficult task.

2.2. Eddy Currents

The other common sensing technique used for fault diagnosis in structural materials is the
eddy current technique that is based on the principal of electromagnetism. Eddy currents
are produced through a process called electromagnetic induction. When a source of alter-
nating current is supplied to a conducting material, such as a copper wire, a magnetic field
develops in and around the material. Eddy currents are induced electrical currents that are
produced in another electrical conductor that is brought into a close proximity of this mag-
netic field. The presence of a crack or detriment in the material affects the flow pattern of
the eddy current, which can be detected for prediction and estimation of the structural dam-
age [37][38][39]. The advantages of eddy current inspection technique include sensitivity
to small cracks and other defects, portability of sensor equipment, minimum part prepara-
tion, and non-contact evaluation. However, there are certain limitations of the eddy current
inspection technique such as the depth of penetration is limited, only conductive materials
can be inspected, and surface finish and roughness may interfere. Since eddy currents tend
to concentrate at the surface of a material, they can only be used to detect surface and near
surface defects.

2.3. Ultrasonics

Another common method for fault diagnosis in structural materials is using the ultrasonic
sensing technique. The ultrasonic flaw detector functions by emitting high frequency ultra-
sonic pulses that travel through the specimen and return back through the receiver transduc-
ers. As with the propagation of any wave, it is possible that discontinuities in the propaga-
tion media will cause additive and destructive interference. Since material characteristics
(e.g., voids, dislocations and short cracks) influence the ultrasonic impedance, a small fault
in the specimen is likely to change the signature of the signal at the receiver end. Therefore,
the signal can be used to capture some of the minute details and small changes during the
early stages of fatigue damage, which may not be possible to detect by an optical micro-
scope [2]. Ultrasonic sensing methodology has been effectively utilized for microstructural
analysis in polycrystalline alloys to examine the fatigue phenomenon [40][41]. Impedance
of the ultrasonic signals has been shown to be sensitive to small microstructural changes
occurring during the early stages of fatigue damage [2][42][43][44]. Moreover, ultrasonic
sensing is applicable to real-time applications and the sensing probes can be easily installed
on the specimen. Ultrasonic sensing technique is also robust to noisy environments since
the externally excited waves are of very high frequency and they do not interfere with
small disturbances. As such, the research in this chapter is based on ultrasonic sensing
technique to examine small microstructural changes during early stages of fatigue damage
evolution [44][45][46].
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3. Fatigue Damage Test Apparatus

This section presents the description of an experimental apparatus that is designed to study
the growth of fatigue damage in mechanical systems [47]. The main content of this sec-
tion include the description of the fatigue damage testing apparatus that is equipped with
different sensing devices for process control and real-time monitoring of fatigue damage.

The primary objective of the fatigue test apparatus is to demonstrate online sensing and
prediction of fatigue damage. As such, the requirements of the apparatus are:

• Capability to operate under cyclic loading with multiple sources of input excitation

• Provision of a failure site such that the damage accumulation takes place within a
reasonable period of time in the laboratory environment with negligible damage to
other components of the test apparatus

• Capability of real-time data acquisition from appropriate sensing devices

• Accommodation of online data analysis tools for monitoring the evolution of fatigue
damage in real time.

The experimental apparatus, shown in Figure 1, is a special-purpose uniaxial fatigue
testing machine that operates on the hydraulic power supplied by a hydraulic pump de-
vice, which moves under load control at speeds up to 12.5 Hz; a detailed description of
the apparatus and its design specifications are reported in [47]. The test apparatus is also
connected to three computers dedicated for the tasks of data acquisition and control. The
test specimens are subjected to tensile-tensile cyclic loading by a hydraulic cylinder under
the regulation of computer-controlled electro-hydraulic servo-valves.

The feedback signals that are generated from the load cell and the extensometer are pro-
cessed by signal conditioners that include standard amplifiers and signal processing units.
These signals are passed to the controller that governs the hydraulic servo-valve for op-
eration under specified load and position limits. The image data of the specimen surface
from the optical microscope and the sensor data from the ultrasonic transducers are passed
to the data analysis and damage estimation subsystem. The information from the optical
microscope is analyzed to determine the fatigue crack length on the specimen surface. Data
sets from the ultrasonic sensors are analyzed using symbolic dynamic filtering (SDF ) al-
gorithm for fatigue damage estimation even before the optical microscope detects a surface
crack.

A brief description of the associated computer hardware, process instrumentation and
the control module of the fatigue test apparatus is provided below.

• Subsystem for Closed Loop Servo-Hydraulic Unit and Controller: The instrumenta-
tion and control of the computer-controlled uniaxial fatigue test apparatus includes
a load cell, an extensometer, an actuator, the hydraulic system, and the controller.
The servo-hydraulic unit can excite the system with either random loads or random
strains at variable amplitudes. The control module is installed on a computer which
is dedicated to machine operation. The controller operates the machine according to
a schedule file that contains the specifications of the loading profile and the number
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Figure 1. Fatigue Damage Test Apparatus.

of load cycles for each type of test in the profile. The real time data from the exten-
someter and the load cell are supplied to the controller for operation under specified
position and load limits.

• Subsystem for data acquisition, signal processing, and engineering analysis: In ad-
dition to the computer for controlling the load frame, a second computer is used for
real-time image data collection from the microscope to monitor the growth of surface
cracks. The instrumentation for the ultrasonic flaw detection scheme is connected to
a third computer. The real time ultrasonic data collected on this computer is trans-
ferred at regular intervals to a fourth computer on which the data analysis algorithm
is installed. The algorithm based on symbolic dynamic filtering (SDF ) generates
the information about fatigue damage in terms of anomaly measures at different time
epochs and the corresponding plots are displayed on the screen in real time. These
laboratory computers are interconnected by a local dedicated network for data acqui-
sition, data communications, and control. An Ethernet network and an RS − 232
serial data line connect the computers.

The main elements of the hydraulic pump system are a 3-phase induction motor driven
pump, the oil supply manifold, and the cylinder. The purpose of the supply manifold is
to properly sequence the system pressure and to accommodate the accumulators. The ac-
cumulators maintain the system pressure when the instantaneous demand from the servo
valve/cylinder is higher than the flow rate available from the pump. A small solenoid valve
is used under most shutdown conditions to bleed the accumulator pressure slowly. This
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Figure 2. Cracked specimens: a) Left image- specimen with a center notch and b) Right
image- specimen with a side notch.

prevents a high-pressure spike from causing the return filters to fail. The hydraulic cylinder
has a 6 inch (∼ 152 mm) bore and a 2.5 inch (∼ 64 mm) stroke length, and is double ended
(i.e., the rod extends through seals at both ends of the cylinder).

The software effectively has two threads of operation, the main program and the con-
troller program. A detailed description of the software and the associated hardware is pro-
vided in [47]. The software programs for control and data acquisition are written in C++
programming language and are installed in the real-time Linux operating environment. The
main program is the user space that enforces the test sequence. The controller is installed
in the kernel space which is an Interrupt Service Routine (ISR) that generates the Direct
Memory Access (DMA) completion interrupt signals. The analog-to-digital (A/D) board
is initialized to take 20 readings per frame, which represents 10 readings each for 2 chan-
nels. These channels are connected to the load cell output and Linear Variable Differential
Transformer (LV DT ) output of cylinder position.

The DMA controller on the personal computer motherboard is programmed to read 20
single 16 bit words and store them sequentially in a given memory location for each transfer.
It is also programmed to reload the initial address for the next transfer after each transfer of
20 readings is complete. When a reading is taken, the result is put into a First-in-First-out
(FIFO) on the A/D board and a DMA request is issued. The DMA controller on the
motherboard retrieves the data and stores it in system ram (in sequence). When the 20th
reading is stored, the DMA controller asserts a signal that is looped back to an interrupt
line by the A/D board. At this point, control is given to the Controller ISR. The controller
sends 5 packets of data: a packet to transmit maximum load reading; a packet to transmit
the minimum load reading; a packet to trigger an ultrasonic reading at low load, a packet to
trigger video at high load and a packet to trigger ultrasonic readings at high load.

The test apparatus is equipped with four different sensing devices including:

a) A travelling optical microscope for monitoring surface cracks during fatigue damage
evolution;

b) An Ultrasonic flaw detector for detection of microstructural damage during early
stages of fatigue damage;

c) An Extensometer (LVDT) for position measurements; and
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d) A Load cell for load measurements.

3.1. Geometry of the Test Specimens

The specimens used in the experimental apparatus are typical hourglass shaped flat plates
that have a machined notch for a stress riser to guarantee crack propagation at the notch
end. Specimens used in this study are made of 7075-T6 aluminium alloy. In this chap-
ter, different specimens with either a center notch or a side notch geometry are used for
fatigue experiments. These specimens with local stress concentration regions are designed
to break in a reasonably short period of time to enhance the speed of the experiments. The
geometries of the two different specimens are presented below:

• Specimens with center notch geometry: Figure 2 shows a typical center notched speci-
men (left image) used for testing in the fatigue damage test apparatus. This specimen
has a notch at the center that is made to increase the stress concentration factor to
ensure crack initiation and propagation at the notch ends. The specimens of this con-
figuration are 3 mm thick and 50 mm wide, and have a slot of 1.58 mm × 4.5 mm at
the center.

• Specimens with side notch geometry: Figure 2 also shows a typical compact specimen
(right image) with a notch on one side. The specimens of this configuration are 3 mm
thick and 50 mm wide with a slot on one side of 1.58 mm diameter and 4.57 mm
length.

The test specimens are subjected to sinusoidal loading under tension-tension mode (i.e.,
with a constant positive offset) at a frequency of 12.5 Hz. The direct component (DC) off-
set is provided in the load cycling to ensure that the specimen is always under tension.
Since inclusions and flaws are randomly distributed across the material small cracks appear
at these defects and propagate and join at the machined surface of the notch even before mi-
croscopically visual cracks appear on the surface. Table 1 provides the material properties
of 7075-T6 aluminium specimens.

3.2. Sensors for Damage Detection

The fatigue damage testing apparatus is equipped with a variety of damage sensors [47].
Two types of sensors that have been primarily used for damage detection are: a) the travel-
ling optical microscope and b) the ultrasonic flaw detector.

3.2.1. Travelling Optical Microscope

The travelling optical microscope, shown as part of the test apparatus in Figure 1, provides
direct measurements of the visible part of a crack. The primary instrument for measuring
crack length is a Questar QM100 Step Zoom Long distance microscope. This microscope
is mounted on a 3-axis stepper motor driven precision stage. The resolution of the optical
microscope is about 2 microns at a working distance of 10 to 35 cm.

The microscope can also be focused at different magnifications. The images are taken
at a magnification of 75x. The long distance between the microscope and the specimen
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Table 1. Properties of 7075-T6 specimens

Physical Property Value

Tensile Strength, Ultimate 570 MPa

Tensile Strength, Yield 505 MPa

Modulus of Elasticity 72 GPa

Fatigue Strength 160 MPa

Poisson’s Ratio 0.33

Shear Modulus 26.9 GPa

Shear Strength 330 MPa

is a key feature, because it allows mounting of sensor probes without interference from
the microscope optics. The microscope is used as the lens for a digital 8-bit monochrome
progressive scan (non-interlaced) video camera that is capable of asynchronous operation
(i.e., is not limited to a constant frame rate like a normal video camera).

Since the crack tip moves out of the field of view of the microscope during the test,
the motorized stage is used to move the microscope in coordination with the progress of
the crack. The growth of surface crack is monitored continuously by the microscope which
takes the images of the specimen surface at regular intervals. In order to take pictures, the
controller slows down the machine to less than 5 Hz to obtain a better resolution of the
images. In the experiments with a center notch geometry, the microscope shifts from left to
right side of the central notch and vice versa after every 200 cycles to track crack growth
on both sides of the notch. The data acquisition software also allows for manual operation
and image capture at the desired moment.

Figures 3 shows typical images of a broken specimen. The semi-circular region visible
in Figure 3 is the notch. Two different stages of fatigue crack growth are shown: a) first
appearance of a crack on the surface of the specimen and b) almost broken specimen with
a very large crack growth. One observation from these figures indicates that the profile of
crack growth is not always a straight line. The crack tip tends to propagate in the direction
where there is the least resistance to crack growth.

The crack length can be measured by moving the microscope with the help of a user
friendly software interface such that a cursor superimposed on the microscope image is over
the crack tip. The traveled distance is denoted as the crack length measured from the notch
end. The operator records the initial position of the notch edge(s). As the crack propagates,
the operator periodically moves the microscope until the cursor is over the crack tip, saves
a microscope image, and saves the motion stage position, i.e. crack tip position. The saved
images are displayed in a separate window and it is possible to review the images during
the test. The position of the crack tip is saved so that the motion controller can be used
to quickly return to the crack tip location from anywhere in the range of motion of the
stage. The position of all three stages is recorded so that the proper focus and elevation are
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Figure 3. Images of a specimen as captured by the optical microscope indicating the first
appearance of a surface crack (left image) and a fully developed large crack (right image).

maintained.
The major weakness of the optical method is that the crack must be visible on the side

of the specimen that is being observed, or for convenience, the front. One unfortunate
circumstance is that a crack initiates on the back side of the specimen, and propagates
through the specimen’s entire thickness. Furthermore, the microscope is unsuitable for
most field applications.

3.2.2. Ultrasonic Flaw Detector

As a ductile alloy structure is commonly subjected to fatigue failure, a large portion of its
service life is spent in crack initiation and in the presence of very small cracks. The ob-
jective of this research is to acquire knowledge of the damage evolution during the major
part of service life at the crack initiation stage, and not simply at the crack propagation
stage when the life is largely expended. There are very few methods for detection of mi-
crostructural flaws and extremely small cracks in ductile materials. There are fewer still
that are suitable for installations outside of the laboratory in actual field operations. Ultra-
sonic flaw detection meets the requirements of real time damage sensing on structures in
service. Ultrasonic flaw detectors are commonly used in the aerospace and nuclear power
industries to detect flaws in structures, and have been used by many researchers for crack
length measurements in laboratory environment [48].

The ultrasonic flaw detector functions by emitting high frequency ultrasonic pulses that
travel through the specimen and return back through the receiver transducers. A piezoelec-
tric transducer is used to inject ultrasonic waves in the specimen and an array of receiver
transducers is placed on the other side of notch to measure the transmitted signal, as seen
in Figure 4. A Matec TB1000 Gated Amplifier PC add-in card drives a piezoelectric trans-
ducer with a sine wave with amplitude of 300V. To be more explicit, the excitation signal
consists of short bursts of a sine wave of constant amplitude interrupted by relatively long
periods of inactivity at 0V. The wedges, used for the transducers in the tests, have a high
enough slope angle that the signal takes multiple paths through the test article and reach the
pickup transducers.

In the experiments for central notched specimens, an array of 2 receiver transducers is
placed below the notch to detect faults on both left and right side of the notch. In case
of the compact specimens, a single receiver transducer is placed under the notch to detect
fatigue damage at the notch tip. The ultrasonic waves are generated as 10MHz sine wave
signals. The ultrasonic system is synchronized with the load cycling such that the waves are
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Figure 4. Ultrasonic flaw detection scheme.

emitted during a very short portion at the peak of every load cycle (∼12.5Hz). Ultrasonic
measurements are taken at stress levels that exceeded the crack opening stress. The crack
is open when the specimen is under maximum stress at the peak of a load cycle and this
causes maximum attenuation of the ultrasonic waves. Note that if the crack closure occurs
at low loads, then an alternative method would be needed to detect anomalies.

The sender and receiver ultrasonic transducers are placed on two positions, above and
below the central notch, so as to send the signal through the region of crack propagation
and receive it on the other side, as seen in Figure 4. As with the propagation of any wave,
it is possible that discontinuities in the propagation media will cause additive and destruc-
tive interference. Since material characteristics (e.g., voids, dislocations and short cracks)
influence the ultrasonic impedance, a small fault in the specimen is likely to change the sig-
nature of the signal at the receiver end. Therefore, the signal can be used to capture some
of the minute details and small changes during the early stages of fatigue damage, which
may not be possible to detect by an optical microscope [2].

Prior to the appearance of a crack on the surface of the specimen as detected by the
optical microscope, deformations (e.g., dislocations and short cracks) inside the specimen
cause detectable attenuation and/or distortion of the ultrasonic waves [42]. Recent literature
has also shown nonlinear modelling approaches of the ultrasonic wave interference with the
material micro-structures [49] [50]. An elaborate description of the properties of ultrasonic
waves in solid media is provided by Rose [51].

It is observed that cracks always start at the stress-concentrated region near the notch but
the exact site of crack nucleation can be treated as a random event. Formation of very small
cracks is difficult to detect and model due to large material irregularities. The ultrasonic
technique is easy to install at a potential damage site and is capable of detecting incipient
fatigue damage before the onset of widespread fatigue crack propagation. In contrast, an
optical microscope is only capable of detecting cracks when they appear on the front sur-
face of the specimen. The ultrasonic instrument is more effective than optical microscopy
in measuring the condition of the specimen, since the microscope can only capture the con-
dition on one face of the specimen and the ultrasonic measurements are affected throughout
the cross section of the crack. This is particularly the case when the crack is small, because
then the 2-D geometry of the crack is not well represented by a measurement on the surface.
The study in this chapter is based on analyzing the ultrasonic data for monitoring fatigue
damage during both crack initiation and crack propagation stages.
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Figure 5. Crack surface showing the macro stages of crack growth [47].

3.3. Progression of Fatigue Damage

This section discusses the progression of crack growth as observed in the specimens de-
signed for this study [47]. Although it may seem formulistic for practitioners in fracture
mechanics, six stages of crack growth are considered in this research. The first stage is
crack initiation. The second stage is two-dimensional (2D) crack growth under plane strain.
The third stage is the propagation of a through crack under plane strain. The fourth stage of
fatigue growth is a transition from plane strain to plane stress crack growth. The fifth stage
of fatigue growth is pure plane stress crack growth. The final stage is rupture, where there
is so little residual strength left that the remaining ligament may fail in only a few stress
cycles. Figure 5 shows the crack surface of a specimen with different macro stages of crack
growth.

The crack initiation stage occurs prior to the formation of a well defined crack and
involves mechanisms at a microstructural level. Optical microscopy does not adequately
resolve the features of this stage of crack formation, most of which are too small and are
not clearly observable on the surface of the specimen. Thus, there is no way to correlate the
progression of crack initiation with measurements from other instruments. The other prob-
lem is a lack of usable models. Strain-Life is commonly used to model initiation. Strain-life
models essentially allocate the observed period of initiation in a fixed pattern. However,
initiation is highly uncertain and therefore the models should have a stochastic structure.
Thus, however good an analytical model is, it may not be adequate to predict the crack ini-
tiation behavior of any given specimen. Since inclusion and flaws are randomly distributed
throughout the material, small cracks that form at these defects propagate and join on the
machined surface of the notch for a considerable number of cycles before even microscop-
ically small cracks appear on the surface. Figure 6 shows the origin of several small cracks
at the edge of the notch as indicated by blue regions. The image is taken by a surface in-
terferometer from ZY GO that provides noncontact three-dimensional quantitative surface
topography measurement of the specimen. Using ZYGO’s technology of phase-shifting in-
terferometry, the interferometer measures a wide range of surfaces and provides precise 3D
profiling and is ideally suited for high resolution measurements on various smooth surfaces.

The 2D stage of crack growth is important for a number of reasons as it is a large source
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Figure 6. Three dimensional surface profile of a broken specimen. The notch edge is
indicated in the figure. The image is taken by a surface interferometer from ZYGO. The
colors shown in the legend indicate different depth levels on the surface. As seen in the
figure, there are probably three different regions where small cracks developed near the
notch.

of variability in the life of a structure. It is possible that 2D cracks have approximately
equal length through the thickness and along the width of the specimen. Thus, it might be
possible that the 2D stage will last until the surface crack length is equal to the thickness of
the specimen. There are three major scenarios for the 2D crack progression on a given side
of the notch. The first scenario is that a corner crack forms on both corners of the notch
at approximately the same time. These cracks grow independently in roughly semicircular
shape until they join in the middle. The relatively small ligament left between the cracks
cracks very quickly forming a through crack. This is ideal because the visible portion of
the crack on either surface of the specimen is a very good measure of the progress of crack
growth for the entire test.

A somewhat less observed scenario is that a penny shaped crack forms in the center of
the notch and grow outwards to the edge of the specimen. This phenomenon may result in
fairly large crack growth in the center of the specimen before it propagates outward to the
surface. However, it is very likely that surface cracks form and join the interior crack before
an interior crack propagates to the surface. The most problematic scenario is that a corner
crack forms on one surface and propagates through to the other side of the specimen. This
results in a crack that is longer on one surface than the other for most part of the test.

In any given test, a mixture of these scenarios will undoubtedly occur. Once one side of
the notch has cracked through from one surface to another the third stage of crack growth
is started. In center notch specimens, it is extremely unlikely that the crack on one side of
the notch will form a through crack at the same time as the other side of the notch. When
the cracking of both sides of the notch has formed a through crack, the total crack length
has been observed to grow as a center cracked specimen. For a large majority of specimens
when the second through crack is formed, it grows much more quickly than the other side.
Assuming reasonable stress levels, the bulk of the specimen is in a state of plane strain
through the stage where a through center-crack has formed for a considerable portion of the
propagation afterwards.
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Figure 7. Pictorial view of the two time scales: 1) slow time scale where anomalies evolve
and 2) fast time scale where data acquisition is done.

The material at the surfaces of the specimen is always in plane stress since it is not
constrained in the through-thickness direction. For this stage of crack growth, any plasticity
in the bulk of the material is constant through the thickness of the specimen as the material
is constrained by the material around it. As the localized stress becomes high enough, the
stress state of the specimen undergoes a transition from plane strain to plane stress. This
is evidenced by the formation of angled area on the surface of the specimen. As this stage
progresses, the angled areas grow larger, and the area in the center of the specimen that is
still in plane strain gets smaller and eventually disappears. This transition is observable on
the surface, since the crack grows in a reasonable facsimile to a straight line when it is in
plane strain.

Observing the specimen after it has failed all the way through, it can be seen that the
plane strain area in the center of the transition from plane strain to plane stress remains
in plane with the crack that formed fully in plane strain. Thus, when the transition from
plane strain to plane stress occurs, the crack on the surface starts to move up or down on
the surface of the specimen. The final stage of crack growth is rupture, which is a failure of
the remaining ligaments in a few cycles.

4. Problem Formulation

This section presents the problem formulation for pattern recognition and anomaly detec-
tion based on symbolic dynamic filtering (SDF ) in complex dynamical systems. The un-
derlying concepts and essential features of SDF [21][17] are presented in the appendix.

4.1. Concept of Two Time Scales for Damage Monitoring

Fatigue damage detection is formulated as a two-time-scale problem as explained below.

• The fast time scale is related to the response time of process dynamics. Over the
span of a given time series data sequence, the behavioral statistics of the system
are assumed to remain invariant, i.e., the process is assumed to have statistically
stationary dynamics at the fast time scale. In other words, statistical variations in the
internal dynamics of the system are assumed to be negligible on the fast time scale.
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• The slow time scale is related to the time span over which the process may exhibit
non-stationary dynamics due to (possible) evolution of anomalies. Thus, an observ-
able non-stationary behavior can be associated with anomalies evolving at a slow
time scale.

A pictorial view of the two time scales is presented in Figure 7. In general, a long time
span in the fast time scale is a tiny (i.e., several orders of magnitude smaller) interval in the
slow time scale. For example, fatigue damage evolves on a slow time scale, possibly in the
order of months or years, in machinery structures that are operated in the fast time scale
approximately in the order of seconds or minutes. Hence, the behavior pattern of fatigue
damage is essentially invariant on the fast time scale. Nevertheless, the notion of fast and
slow time scales is dependent on the specific application, loading conditions and operating
environment. As such, from the perspective of fatigue damage monitoring, the sensor data
acquisition is done on the fast time scale at different slow time epochs separated by uniform
or non-uniform intervals on the slow time scale.

4.2. Methodology

The problem of fatigue damage monitoring is formulated to achieve the following objec-
tives:

• Information-based identification of damage progression patterns - The possible
sources of information can include time series data of appropriate sensors (e.g., ul-
trasonic) mounted on critical components of the system;

• Real-time execution - The analytical tools must be computationally efficient and have
the capability of real-time execution on commercially available inexpensive plat-
forms;

• Capability of small change detection - The pattern recognition methodology for
anomaly detection must be sensitive to small changes and have the capability of pro-
viding early warnings of incipient faults. The methodology must also be capable
of estimating fault precursors to formulate a decision and control policy for damage
mitigation and life extension;

• Robustness to measurement noise and disturbances - The pattern recognition tool
must be robust to noise and disturbances and must have low probability of false
alarms.

Once the appropriate sensor selection is done, the next task is development of analytical
tools for analysis of time series data [14]. Various signal processing applications deal with
data analysis and attempts have been made to extract maximum useful information from
the ensemble of sensor data. The problem of feature extraction from time series data for
damage monitoring has been recently addressed by many researchers [52] [53] [54]. The
tools of statistical pattern recognition, auto-regressive model analysis, and wavelet analysis
were applied to classify faults by different data patterns. However, the critical issue of early
detection of gradually evolving faults in a real time setting were not addressed. Moreover,
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Figure 8. Conceptual view of symbolic dynamic filtering.

no quantifying measure was provided for damage accumulation and growth rate based on
statistical information.

Recently, some techniques of nonlinear dynamics have also been applied for damage
monitoring [55] [56] [57], which are primarily based on the concepts of attractor-based
cross-prediction error between the measured signal and its predicted value. However, since
the dimensions of the phase space may grow unbounded for noisy data, this analysis could
be computationally expensive and infeasible for real-time applications. Furthermore, deal-
ing with high dimensions might lead to spurious results and dimension reduction may
lead to loss of vital information. To alleviate these difficulties, this chapter has adopted
a novel method of wavelet-based partitioning [21] [58]. Based on this partitioning, the
pertinent information is extracted from time series data sets in the form of probability dis-
tributions. Slight deviations in these distributions from that under the nominal condition
is captured to identify the damage pattern. This chapter presents symbolic dynamic fil-
tering (SDF ) [21][17][22][23] to analyze time series data of sensors (e.g., ultrasonic) for
detection of precursors leading to crack initiation and eventual widespread fatigue.

The core concept of SDF is based on appropriate phase-space partitioning of the dy-
namical system to yield an alphabet to obtain symbol sequences from time series data [59].
The time series data of appropriate sensors (e.g., ultrasonic) are processed and subse-
quently converted from the domain of real numbers into the domain of (discrete) sym-
bols [15][18][17]. The resulting symbol sequence is a transform of the original time series
sequence such that the loss of information is minimized in the sense of maximized entropy.
The chapter has adopted wavelet-based partitioning approach for symbol sequence gener-
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ation [21] [58]. Wavelet based partitioning approach is robust and is particularly effective
with noisy data [58].

Subsequently, tools of Computational Mechanics [21][17][60][61] are used to identify
statistical patterns in these symbolic sequences through construction of a (probabilistic)
finite-state machine [21][16]. Transition probability matrices of the finite state machines,
obtained from the symbol sequences, capture the pattern of the system behavior by means
of information compression. For anomaly detection, it suffices that a detectable change in
the pattern represents a deviation of the nominal pattern from an anomalous one. The state
probability vectors, which are derived from the respective state transition matrices under
the nominal and an anomalous condition, yield a statistical pattern of the anomaly. The
concept of SDF is illustrated in Figure 8.

Symbolic dynamic filtering (SDF ) for anomaly detection is an information-theoretic
pattern recognition tool that is built upon a fixed-structure, fixed-order Markov chain, called
the D-Markov machine [21][17]. Recent literature [44] [62] has reported experimental val-
idation of SDF -based pattern recognition by comparison with other existing techniques
such as Principal Component Analysis (PCA) and Artificial Neural Networks (ANN );
SDF has been shown to yield superior performance in terms of early detection of anoma-
lies, robustness to noise [58], and real-time execution in different applications such as elec-
tronic circuits [62], mechanical vibration systems [63], and fatigue damage in polycrys-
talline alloys [44].

4.3. Procedure for Anomaly Detection

The SDF -based anomaly detection requires the following steps:

• Time series data acquisition on the fast time scale from appropriate sensors - Col-
lection of data sets is done at different slow time epochs. As stated in the previous
subsection, the choice of time scales is dependent on the application and requires
an approximate a priori knowledge about the time period of evolution of anomalies
(e.g., fatigue crack growth).

• Transformation of time series data from the continuous domain to the symbolic do-
main - This is done by partitioning the data (e.g., ultrasonic) into finitely many dis-
crete regions to generate symbol sequences at different slow time epochs [15][18].
The chapter has presented a wavelet-based partitioning scheme for symbol sequence
generation.

• Construction of a finite state machine - The machine is constructed from the symbol
sequence generated at the nominal condition

• Calculation of the pattern vectors at different slow time epochs - The elements of
these pattern vectors consist of the visiting frequencies of the finite state machine
states

• Identification of behavioral changes- Fatigue damage detection is based on the infor-
mation derived from the evolution of the pattern vector at different slow time epochs
with respect to the one at the nominal condition
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5. Forward and Inverse Problems

Fatigue damage monitoring is formulated as a solution of two interrelated problems [21]:
(i) forward problem of Pattern Recognition for (offline) characterization of the anomalous
behavior, relative to the nominal behavior and (ii) inverse problem of Pattern identification
for (online) estimation of parametric or non-parametric changes based on the knowledge
assimilated in the forward problem and the observed time series data of quasi-stationary
process response.

The forward problem consists of prediction of outcomes, given a priori knowledge of
the underlying model parameters. In absence of an existing model this problem requires
generation of behavioral patterns of the system evolution through off-line analysis of an en-
semble of the observed time series data. The objective of the inverse problem is to infer the
anomalies and to provide the estimates of the remaining useful life from the observed time
series data in real time based on the information generated during the forward problem.
Inverse problems arise in different engineering disciplines such as geophysics, structural
health monitoring, weather forecasting, and astronomy. Inverse problems often become
ill-posed and challenging due to the following reasons: (a) high dimensionality of the pa-
rameter space under investigation and (b) in absence of a unique solution where change
in multiple parameters can lead to the same observations. That is, it may not always be
possible to identify a unique anomaly pattern based on the observed behavior of the dy-
namical system. Nevertheless, the feasible range of parameter variation estimates can be
narrowed down from the intersection of the information generated from inverse images of
the responses under several stimuli.

In presence of sources of uncertainties, any parameter inference strategy requires esti-
mation of parameter values and also the associated confidence intervals, or the error bounds,
to the estimated values. As such, inverse problems are usually solved using the Bayesian
methods that allow observation based inference of parameters and provide a probabilistic
description of the uncertainty of inferred quantities. A good discussion of inverse problems
is presented by Tarantola [64].

The algorithms of SDF can be implemented to solve both these problems. In context of
fatigue damage monitoring, the tasks and solution steps of these two problems as followed
in this chapter are discussed below.

5.1. Forward Problem

The primary objective of the forward problem is identification of changes in the behavioral
patterns of system dynamics due to evolving anomalies on the slow time scale. Specifically,
the forward problem aims at detecting the deviations in the statistical patterns in the time
series data, generated at different time epochs in the slow time scale, from the nominal
behavior pattern. The solution procedure of the forward problem requires the following
steps:

F1. Collection of time series data sets (at fast time scale) from the available sensor(s) at
different slow time epochs;

F2. Analysis of these data sets using the SDF method as discussed in earlier sections to
generate pattern vectors defined by the probability distributions at the corresponding
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slow time epochs. The profile of anomaly measure (see Appendix A.1.) is then
obtained from the evolution of this pattern vector from the nominal condition;

F3. Generation of a family of such profiles from multiple experiments performed under
identical conditions to construct a statistical pattern of damage growth. Such a family
represents the uncertainty in the evolution of fatigue damage due to its stochastic
nature. The uncertainty arises from the random distribution of microstructural flaws
in the body of the component leading to a stochastic behavior [11].

5.2. Inverse Problem

The objective of the inverse problem is to infer the anomalies and to provide estimates of
system parameters from the observed time series data and system response in real time.
The decisions are based on the information derived in the forward problem. For eg., in
the context of fatigue damage, identical structures operated under identical loading and
environmental conditions show different trends in the evolution of fatigue due to surface and
sub-surface material uncertainties. Therefore, as a precursor to the solution of the inverse
problem, generation of an ensemble of data sets is required during the forward problem for
multiple fatigue tests conducted under identical operating conditions. Damage estimates
can be obtained at any particular instant in a real-time experiment with certain confidence
intervals using the information derived from the ensemble of data sets of damage evolution
generated in the forward problem [21]. The solution procedure of the inverse problem
requires the following steps:

I1. Collection of time series data sets (in the fast time scale) from the available sensor(s)
at different slow time epochs up till the current time epoch in a real-time experiment
as in step F1 of the forward problem;

I2. Analysis of these data sets using the SDF method to generate pattern vectors defined
by probability distributions at the corresponding slow time epochs. The value of
anomaly measure at the current time epoch is then calculated from the evolution of
this pattern vector from the nominal condition (see Appendix A.1.). The procedure
is similar to the step F2 of the forward problem. As such, the information available at
any particular instant in a real-time experiment is the value of the anomaly measure
calculated at that particular instant;

I3. Detection, identification and estimation of an anomaly (if any) based on the computed
anomaly measure and the statistical information derived in step F3 of the forward
problem.

A schematic of the overall framework for the fatigue damage monitoring problem in me-
chanical systems is shown in Figure 9. As shown in Figure 9, the forward problem section
involves the generation of ultrasonic data sets from fatigue experiments which are analyzed
using the SDF method to produce a profile of the anomaly measure (see Appendix) that
represents the evolution of fatigue damage. Following the same procedure, several exper-
iments are conducted under identical conditions to generate a family of anomaly measure
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Figure 9. Framework of SDF based fatigue damage detection in mechanical systems.

profiles. Such a family represents the stochastic behavior of the fatigue damage evolution
on a slow time scale (see Section 7.1.).

This family of anomaly measure profiles is analyzed in the inverse problem section to
generate the requisite statistical information (see Section 7.2.). The information available
in real time is the value of the anomaly measure obtained from the analysis of ultrasonic
data at any particular time epoch. This information is entered in the inverse problem section
that provides the estimates of the expended life fraction. The estimates can only be obtained
within certain bounds at a particular confidence level. The online statistical information of
the damage status is significant because it can facilitate early scheduling for the maintenance
or repair of critical components or to prepare an advance itinerary of the damaged parts.
The information can also be used to design control policies for damage mitigation and life
extension.

6. Real-time Fatigue Damage Detection

The fatigue tests were conducted using center notched specimens, made of the Aluminum
alloy 7075-T6, at a constant amplitude sinusoidal load for a low-cycle fatigue, where the
maximum and minimum loads were kept constant at 87MPa and 4.85MPa. A significant
amount of internal damage occurs before the crack appears on the surface of the specimen
when it is observed by the microscope [65]. However, it is also possible that the crack
appears on the other surface of specimen or on the surface of the notch.

This surface or sub-surface damage caused by multiple small cracks and microstructural
damage affects the ultrasonic waves when they pass through the region where these faults
have developed. This phenomenon causes signal distortion and attenuation at the receiver
end. The crack propagation stage starts when this internal damage eventually develops into
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a single large crack. Subsequently, the crack growth rate increases rapidly and when the
crack is sufficiently large, complete attenuation of the transmitted ultrasonic signal occurs,
as seen at the receiver end. This sudden sharp change in the rate of progression of fatigue
damage is clearly visible after the crack appears on the surface. The rapid change in the
statistical patterns of the ultrasonic data also indicate the onset of crack propagation. Af-
ter the crack appears on the surface, fatigue damage growth can be easily monitored by
the microscope but the ultrasonics provide early warnings even during the crack initiation
phase.

6.1. Experimental Procedure

The ultrasonic sensing device is triggered at a frequency of 5 MHz at each peak of the
(∼12.5 Hz) sinusoidal load. The slow time epochs were chosen to be 3000 load cycles
(i.e., ∼240 sec) apart. At the onset of each slow time epoch, the ultrasonic data points were
collected on the fast time scale of ∼8 sec, which produced a string of 10,000 data points. It
is assumed that during this fast time scale, no major changes occurred in the fatigue crack
behavior. The nominal condition at the slow time epoch t0 was chosen to be 5.0 kilocycles
to ensure that the electro-hydraulic system of the test apparatus had come to a steady state
and that no significant damage occurred till that point. The anomalies at subsequent slow-
time epochs, t1, t2, ....tk..., were then calculated with respect to the nominal condition at
t0.

6.2. Data Analysis using Symbolic Dynamic Filtering (SDF )

Following the SDF procedure for anomaly detection, the alphabet size for partitioning was
chosen to be |Σ| = 8 and window length of D = 1, while the mother wavelet chosen to
be ‘gaus2’ [66]. (Absolute values of the wavelet scale series data were used to generate
the partition because of the symmetry of the data sets about their mean.) The wavelet
basis, ‘gaus2’, provides better results than the wavelet bases of the Daubechies family [67]
because the ‘gaus2’ wavelet base closely matches the shape of the ultrasonic signals [58].
This combination of parameters was capable of capturing the anomalies earlier than the
optical microscope. Increasing the value of |Σ| further did not improve the results and
increasing the value of D created a large number of states of the finite state machine, many
of them having very small or zero probabilities, and required larger number of data points
at each time epoch to stabilize the state probability vectors. State probability vector p0

was obtained at the nominal condition of time epoch t0 and the state probability vectors
p1, p2, . . . pk.... were obtained at other slow-time epochs t1, t2, . . . tk..... It is emphasized
that the anomaly measure is relative to the nominal condition which is fixed in advance and
should not be confused with the actual damage at an absolute level.

6.3. Results and Discussion

The six triplets of plates in Figure 10 show two-dimensional images of a specimen sur-
face, ultrasonic data and histograms of probability distribution of automaton states at six
different time epochs, approximately 5, 30, 40, 45, 60 and 78 kilocycles, exhibiting gradual
evolution of fatigue damage [68]. In each triplet of plates from (a) to (f) in Figure 10, the
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top plate exhibits the surface image of the test specimen as seen by the optical microscope.
As exhibited on the top plates, the crack originated and developed on the right side of the
notch at the center. Histograms in the bottom plates of six plate triplets in Figure 10 show
the evolution of the state probability vector corresponding to fatigue damage growth on
the test specimen at different slow time epochs, signifying how the probability distribution
gradually changes from uniform distribution (i.e., minimal information) to delta distribu-
tion (i.e., maximum information). The middle plates show the ultrasonic time series data
collected at corresponding slow time epochs. As seen in Figure 10, the visual inspection of
the ultrasonic data does not reveal much information during early stages of fatigue damage
but the statistical changes are captured in the corresponding histograms.

The top plate in plate triplet (a) of Figure 10 shows the image at the nominal condition
(∼5 kilocycles) when the anomaly measure is taken to be zero, which is considered as the
reference point with the available information on potential damage being minimal. This is
reflected in the uniform distribution (i.e., maximum entropy) as seen from the histogram at
the bottom plate of plate pair (a). Both the top plates in plate triplets (b) and (c) at ∼30
and ∼40 kilocycles, respectively, do not yet have any indication of surface crack although
the corresponding bottom plates do exhibit deviations from the uniform probability distri-
bution. This is an evidence that the analytical measurements, based on ultrasonic sensor
data, produce damage information during crack initiation, which is not available from the
corresponding optical images.

The top plate in plate triplet (d) of Figure 10 at ∼45 kilocycles exhibits the first no-
ticeable appearance of a ∼300 micron crack on the specimen surface, which may be con-
sidered as the boundary of the crack initiation and propagation phases. This small surface
crack indicates that a significant portion of the crack or multiple small cracks might have
already developed underneath the surface before they started spreading on the surface. The
histogram of probability distribution in the corresponding bottom plate shows further de-
viation from the uniform distribution at ∼5 kilocycles. The top plate in plate triplet (e) of
Figure 10 at ∼60 kilocycles exhibits a fully developed crack in its propagation phase. The
corresponding bottom plate shows the histogram of the probability distribution that is sig-
nificantly different from those in earlier cycles in plate triplets (a) to (d), indicating further
gain in the information on crack damage. In this case, the middle plate also shows signifi-
cant drop in the amplitude of ultrasonic signals due to development of a large crack. The top
plate in plate triplet (f) of Figure 10 at ∼78 kilocycles exhibits the image of a completely
broken specimen. The corresponding bottom plate shows delta distribution indicating com-
plete information on crack damage. The middle plate shows a complete attenuation of the
ultrasonic signals.

The normalized anomaly measure curve in Figure 11 shows a possible bifurcation where
the slope of the anomaly measure changes dramatically indicating the onset of crack prop-
agation phase. First appearance of a fatigue crack on the surface of the specimen was
detected by the optical microscope at approximately 45 kilocycles, which is marked by the
dashed vertical line in Figure 11. The slope of the anomaly measure represents the anomaly
growth rate while the magnitude indicates the changes that have occurred relative to the
nominal condition. An abrupt change in the slope (i.e., a sharp change in the curvature) of
anomaly measure profile provides a clear insight into a forthcoming failure. The critical in-
formation lies in the region to the left of the vertical line where no crack was visible on the
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Figure 10. Pictorial view of the evolving fatigue crack damage, corresponding ultrasonic
data and histograms of probability distribution [68].

surface. The slope of anomaly measure curve showed a clear trend of growth of anomaly
right after ∼15 kilocycles. This was the region where multiple small cracks were possibly
formed inside the specimen, which caused small changes in the ultrasonic signal profile. Fa-
tigue damage detection using SDF of ultrasonic data has been successfully implemented
in real time [44].
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Figure 11. Fatigue damage detection.

6.4. Real-time Implementation

Fatigue damage detection vis symbolic dynamic filtering (SDF ) has been successfully im-
plemented in real time. The nominal condition is chosen after the start of the experiment at
time epoch t0, when the system attains a steady state and is considered to be in the healthy
condition with zero anomaly measure. The function module for SDF is triggered at this
point. The D-Markov machine states are fixed in advance using a priori determined values
of the parameters: alphabet size |Σ| and window length D. The tasks of wavelet space
partitioning and D-Markov machine construction are performed based on the time series
data at the slow-time epoch t0 (nominal condition).

The state probability vector p0 at time epoch t0 is stored for computation of anomaly
measures at subsequent slow time epochs, t1, t2, ..., tk, .., which are chosen to be separated
by uniform intervals of time in these experiments. The ultrasonic data acquisition soft-
ware has a subroutine that writes the time series data of ultrasonic signals into text files
at time epochs t0, t1, ..., tk, ... These text files are then transferred to the function module
for anomaly detection such that the STSA-based algorithm can read the data from the text
files to calculate the anomaly measure at the specified time epochs. The algorithm is com-
putationally very fast (i.e., several orders of magnitude faster relative to slow-time-scale
damage monitoring) and the results can be easily plotted on the screen such that the evolu-
tion of anomaly measure is exhibited in real time. The plot is updated with the most recent
value of anomaly measure at each (slow-time) epoch. Thus, the SDF algorithm allows
on-line health monitoring and is capable of issuing warnings of incipient failures well in
advance.

7. Real-time Estimation of Remaining Useful Life

The analytical tool for fatigue damage estimation is based on an ensemble of stochastic
data of ultrasonic signals that is generated from a set of identical experiments [46]. The
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stochastic data represents the behavioral pattern of fatigue damage evolution. A statistical
analysis procedure of this stochastic data is developed to obtain the estimates of the fraction
of used fatigue life that in turn can provide the estimate of the remaining useful life in real
time. A set of experiments have been conducted and the results are provided for application
and validation of the proposed statistical approach.

As discussed in Section 5., the fatigue damage monitoring problem including damage
detection and estimation of remaining useful life, is partitioned into two sub-problems: 1)
the forward (or analysis) problem and 2) the inverse (or synthesis) problem. The previous
section presented the results of real-time fatigue damage detection that only requires detec-
tion of any deviation in the statistical patterns of ultrasonic data from the nominal condition.
However, for real-time estimation of the remaining useful life a complete solution of both
the forward and the inverse problems is required. This section presents the results of real-
time fatigue life estimation.

7.1. Solution of the Forward Problem

This subsection presents a detailed description of the solution procedure of the forward
problem. As discussed earlier, the primary objective of the forward problem is to identify
the behavioral pattern of damage evolution in a complex dynamical system involving the
uncertainties (if any) which can be both parametric or non-parametric in nature.

7.1.1. Sources of Uncertainties

In case of fatigue damage, the sources of uncertainties include:

a) material inhomogeneities such as voids or inclusions,

b) surface defects including finishing marks that usually develop from the machining
process, nonuniform polishing and other deformities,

c) sub-surface defects originating due to random distribution of microstructural flaws
like dislocations and grain boundaries,

d) Variations in the critical dimensions of the components resulting from the non-zero
tolerances of the cutting tools used in the fabrication process,

e) small fluctuations in the environmental conditions such as humidity and temperature,

f) small fluctuations in the operating conditions due to noisy environment and finite
precision of the mechanical system.

In the presence of above uncertainties, a complete solution of anomaly detection prob-
lem cannot be obtained in the deterministic setting because the profile of anomaly pro-
gression would not be identical for similarly manufactured components. In that case, the
problem can be represented in the stochastic setting, where a family of anomaly progression
profiles are generated from multiple experiments conducted under identical conditions [69].
As such, the requirement of the forward problem is to generate a pattern that consists of a
family of anomaly progression profiles. Each member of this family represents the anomaly
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measure profile of a particular sample. This profile is generated from a fatigue test that is
conducted to observe the entire service life of the specimen from the healthy condition to
the eventual failure.

7.1.2. Experimental Procedure

The fatigue tests were conducted on 7075-T6 aluminum specimens at 12.5 Hz frequency.
In this case the compact specimens were used. The specimen were subjected to a sinusoidal
load cycling where the maximum and minimum loads are 89.3MPa and 4.85MPa at the
nominal condition. Ultrasonic waves with a frequency of 10 MHz are triggered at the
peak of each sinusoidal load cycle where the stress is maximum and the crack is open
causing maximum attenuation of the ultrasonic waves. Since the ultrasonic frequency is
much higher than the load cycling frequency, data collection is performed for a very short
interval in the time scale of load cycling. The slow time epochs have been chosen to be
1000 load cycles (i.e., ∼80 sec) apart. At the onset of each slow time epoch, the ultrasonic
data points are collected on the fast time scale of 50 cycles (i.e., ∼4 sec), which produced
a string of N = 15, 000 data points. It is assumed that during the fast time scale of 50
cycles, the system remains in a stationary condition and no major changes occur in the
fatigue damage behavior. These sets of time series data points collected at different slow
time epochs are analyzed using the SDF method (see Appendix) to calculate the anomaly
measures at those slow time epochs.

7.1.3. Data Analysis using Symbolic Dynamic Filtering (SDF )

The nominal condition at the slow time epoch t0 is chosen to be ∼ 0.5 kilocycles to ensure
that the electro-hydraulic system of the test apparatus had come to a steady state and it
is assumed that no significant damage occurred till that point. This nominal condition is
chosen as a benchmark where the anomaly measure is chosen to be zero. The anomalies at
subsequent slow time epochs, t1, t2, ...tk.., are then calculated using SDF to yield a profile
of anomaly measure representing the progression of fatigue damage on the slow time scale.
The data collection is stopped at a time epoch tf considered as the final failure point where
the ultrasonic energy is attenuated to 2% of the nominal condition. The energy of the signal
is defined as:

E =
N∑

i=1

|s(i)|2

where |s(i)| is the magnitude of the ith data point of the ultrasonic signal. Once the failure
point is reached the specimen is already under crack propagation stage and a sufficiently
large crack has developed such that it is no longer useful and is considered as broken.
Following the above procedure, a family of profiles is generated for multiple experiments
conducted under identical experimental conditions.

For the SDF procedure, the alphabet size for partitioning has been chosen to be |Σ| = 8
and window length of D = 1, while the wavelet basis is chosen to be ‘gaus2’ [66]. The
algorithm is readily implemented in real-time and is computationally very fast in the sense
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that the code execution time is several orders of magnitude smaller than the interval between
two adjacent slow time epochs.

7.1.4. Generation of Statistical Patterns

Similar to the procedure described above, ultrasonic time series data are generated under
both nominal and anomalous conditions at different slow time epochs for multiple experi-
ments conducted on identically manufactured specimens under identical experimental con-
ditions. SDF based analysis of the data from each of these experiments produce a profile of
anomaly measure thereby generating an ensemble of anomaly measure profiles for multiple
experiments. This family of profiles represents a stochastic pattern of the progression of
fatigue damage under identical experimental conditions. To this effect, ` = 40 experiments
have been conducted and the profiles of anomaly measures are shown in Figure 12. The
family of the anomaly measure profiles of these experiments is plotted versus a normalized
variable, expended life fraction, τe =

(
t−t0
tf−t0

)
, where t is the actual number of cycles, t0

is the nominal condition chosen to be ∼ 0.5 kilocycles for each experiment and tf is the
final time of failure for each experiment as described in the previous section. [Note: The
expended life fraction τe is normalized between 0 and 1.]
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Figure 12. Statistical behavior of fatigue damage represented by a family of anomaly mea-
sure profiles generated by 40 identical experiments [46].

For each individual experiment, the state probability vector p0 is generated at the nom-
inal condition t0 by partitioning the wavelet domain using the maximum entropy princi-
ple [58]. As a consequence, p0 has uniform distribution, i.e. each element has equal prob-
ability. In contrast, for the completely broken stage of the specimen, the entire probability
distribution is concentrated in only one element of the state probability vector, i.e. delta
distribution, which indicates a very large attenuation of the ultrasonic signal [44]. There-
fore, as the fatigue crack damage evolves, the uniform distribution (i.e., maximum entropy)
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under nominal condition degenerates toward the delta distribution (i.e., zero entropy) for
the broken specimen. Since, p0 has uniform distribution for all experiments, the statistical
property is identical for all experiments at the nominal condition.

As seen in Figure 12, each profile has a smaller slope of the anomaly measure dur-
ing the initial period of fatigue damage, i.e., the crack initiation region. Anomaly measure
gradually increases during this period where small microstructural damage occurs in the
specimen. During the end stage of this period small micro cracks eventually develop into
a single large crack leading to a transition from the crack initiation stage to the crack prop-
agation stage (approx from τe = 0.5 to τe = 0.7). This phenomenon is observed by a
sharp change in the slope of the anomaly measure profile of each sample. Once the crack
propagation stage starts the fatigue damage occurs rapidly eventually leading to the final
failure.

7.2. Solution of the Inverse Problem

The objective of the inverse problem is identification of anomalies and estimation of the
fault parameters based on the family of curves generated in the forward problem [46]. It
is essential to detect the evolving fatigue damage and to estimate the remaining useful life
during the operating period of the mechanical system, so that appropriate remedial action(s)
can be taken before the onset of widespread fatigue propagation leading to complete failure.
Therefore, estimation of fatigue damage is crucial for scheduled maintenance.

7.2.1. Generation of the Pattern Matrix

In an online experiment, time series data sets (at fast time scale) of the ultrasonic sensors are
generated at different slow time epochs up till the current time epoch. These data sets are
analyzed using SDF method as discussed in Appendix Appendix A. to generate the prob-
ability distributions at the corresponding slow time epochs. The value of anomaly measure
at the current time epoch is then calculated from the evolution of this probability vector
from the nominal healthy condition. As such, the information available at any particular in-
stant in a real time experiment is the value of anomaly measure calculated at that particular
instant. Based on this derived value of the anomaly measure the exact determination of the
expended life fraction (τe) is not possible due to the variations observed in the statistical
family as seen in Figure 12. Therefore, due to uncertainty in determining its exact value at
a particular value of anomaly measure, τe can be treated as a random variable [65].

The range of anomaly measure (i.e. the ordinate in Figure 12) is partitioned into h =
100 uniformly spaced levels. A pattern matrix T of dimension `×h is then derived from the
anomaly measure profiles shown in Figure 12. The elements of T are derived such that each
column of T corresponds to the values of τe measured for ` samples at the corresponding
anomaly measure. As such, the elements of each column of T describe a distribution of the
random variable τe.

7.2.2. Estimation of the Expended Life Fraction

In order to estimate the value of τe by statistical means, a two-parameter lognormal distri-
bution [13] [70] is hypothesized for each column of T . Lognormal distribution is obtained
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Figure 13. Plots of confidence interval bounds are shown at three different confidence levels
of 95%, 85% and 75%. Profiles of anomaly measure are also shown for three new validation
test specimens [46].

for each column of T over the mean and the variance of τe. The goodness of fit is examined
by both χ2 and Kolmogorov−Smirnov tests [71]. The number of bins were taken to be
r = 8 for the data set of each column of T . With f = r − 2 − 1 = 5 degrees of freedom,
the χ2-test shows that, for each of the h data sets, the hypothesis of the two-parameter log-
normal distribution passed the 20% significance level [71] which suffices the conventional
standard of 5% significance level. Also, for each of the h data sets, the hypothesis passed
the 20% significance level of the Kolmogorov−Smirnov test which again suffices the con-
ventional standard of 5% significance level. A good discussion of these statistical tests is
provided in reference [71].

Once the lognormal distributions are obtained, the confidence intervals bounds at dif-
ferent confidence levels can be computed from the properties of the distribution using el-
ementary statistics [71] [72]. Confidence level signifies the probability that the estimated
parameter will lie within the corresponding confidence interval. As an example, for a con-
fidence level of 95%, the probability that the actual parameter will lie between the specified
confidence interval is 95%. Figure 13 provides the plots of confidence interval bounds at
three different confidence levels of 95%, 85% and 75%. As an illustration in Figure 13,
the confidence interval bounds at 95% confidence level are shown for an arbitrary value of
anomaly measure equal to 0.225 (lower bound=0.6610 and upper bound=0.8464). The es-
timate τ̂e of the expended life fraction τe can be obtained at the point of highest probability,
i.e. the mean of the distribution. The other useful parameter is the remaining life fraction
whose estimate τ̂r is obtained at any instant as: τ̂r = 1 − τ̂e. The information on the re-
maining life estimate in a real-time experiment is useful for development of life extending
control and resilient control strategies for prevention of widespread structural damage and
catastrophic failures.
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7.2.3. Experimental Validation and Results

The proposed methodology is validated by fatigue experiments on three new test specimens.
The profiles of anomaly measure are computed using the SDF method for these three
test specimens. Figure 13 also shows the profiles of the three test samples along with the
plots of confidence interval bounds derived from the statistical ensemble. The estimates
of the mean τ̂e of the expended life fraction with the standard deviation σ̂ are obtained at
(arbitrary) different values of the anomaly measure using the procedure described in the
previous section. The results are interpolated for values of the anomaly measure that lie in
between the two columns of the pattern matrix T . Confidence interval bounds are obtained
at three different confidence levels of 95%, 85% and 75%.

Figure 13 shows that the uncertainty in the fatigue damage is higher in the crack initia-
tion phase as indicated by the width of confidence intervals for any particular value of the
anomaly measure. Subsequently, upon onset of the crack propagation phase, the confidence
intervals are significantly more tight than those in the crack initiation phase. This obser-
vation is explained by the fact that the uncertainty in the crack initiation phase depends on
the random distribution of flaws in the specimen [69]. During this crack initiation phase,
small cracks originate from the microstructural damage (eg. dislocations, voids and inclu-
sions) at multiple sites in the entire body of the material structure causing a high uncertainty
in fatigue damage behavior. These multiple small cracks eventually develop into a single
large crack leading to the onset of crack propagation phase. Therefore, the uncertainty
in the crack initiation phase relates to the inhomogeneity in the material and non-uniform
distribution of the initial conditions in the specimen causing stress augmentation at certain
locations which directly affects the formation of small cracks.

As such, the information that is derived during the crack initiation phase can act as
an early warning of the onset of widespread fatigue in the crack propagation phase. The
information from Figure 13 (including the estimate of τe and different confidence inter-
vals) can be utilized for real-time monitoring of the fatigue damage and for development of
probabilistic robust control strategies for damage mitigation and prevention of catastrophic
failures.

8. Summary, Conclusions and Recommendations for Future
Work

8.1. Summary and Conclusions

The main contribution of this chapter is real-time monitoring of fatigue damage in polycrys-
talline alloys that are commonly used in mechanical structures. The chapter has demon-
strated the capabilities of ultrasonic sensing technique for detection of small microstruc-
tural changes during early stages of fatigue damage. The chapter has adopted sensor based
anomaly detection methodology because of the difficulty in achieving requisite accuracy in
developing structural models of failure mechanisms at the microstructural level based on
the fundamentals of physics. As such, an alternative approach is presented which relies on
information based real time sensing of fatigue damage in mechanical systems.

This chapter presents a recently reported information-theoretic technique, called Sym-
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bolic Dynamic Filtering (SDF), for real-time analysis of ultrasonic data. The underlying
concept of SDF is built upon the principles of Symbolic Dynamics, Information Theory, and
Statistical Signal Processing, where time series data from selected sensor(s) (e.g., ultrason-
ics) in the fast time scale of the process dynamics are analyzed at discrete epochs in the
slow time scale of fatigue damage evolution. SDF includes pre-processing of ultrasonic
data using the wavelet analysis, which is well suited for time-frequency analysis of non-
stationary signals and enables noise attenuation from raw data. The wavelet-transformed
data is partitioned using the maximum entropy principle to generate symbol sequences,
such that the regions of data space with more information are partitioned finer and those
with sparse information are partitioned coarser. Subsequently, robust statistical patterns of
evolving damage are identified from these sequences by construction of a (probabilistic)
finite-state machine that captures the dynamical system behavior by means of information
compression.

Furthermore, the problem of fatigue damage monitoring is constructed into two sub-
problems: (i) Forward problem of Pattern Recognition for characterization of the anomalous
behavior, relative to the nominal behavior; and (ii) Inverse problem of Pattern Identification
for estimation of parametric or non-parametric changes based on the knowledge assimi-
lated in the forward problem and the observed time series data of quasi-stationary sensor
measurements.

In this regard, this chapter has presented a statistical approach for estimation of the
remaining useful life. To this effect, a stochastic data base of ultrasonic measurements
has been generated from several experiments conducted under identical loading conditions.
This data base has been analyzed to derive the behavioral pattern of fatigue damage under
identical loading conditions which is subsequently used to provide the estimates of used life
fraction in a fatigue experiment.

The codes of SDF are executable in real time and have been demonstrated in the lab-
oratory environment for on-line monitoring of fatigue damage, based on the analysis of
ultrasonic sensor signals, before any surface cracks are visible through the optical micro-
scope in a special-purpose fatigue testing apparatus. In this research, the experiments have
been conducted on the specimens fabricated from the aluminum alloy 7075-T6.

8.2. Recommendations for Future Work

The reported work is a step toward building a reliable instrumentation system for early
detection of fatigue damage in polycrystalline alloys; further theoretical and experimental
research is necessary before its usage in industry. While there are many research issues
that need to be addressed, the following topics are being currently pursued and are recom-
mended for future research:

1. Investigation of other sensing techniques- The research work reported in this chapter
is based on an ultrasonic sensing technique. Future research would require inves-
tigation of the potential capabilities of other sensing techniques, such as acoustic
emission, and eddy currents for early detection of fatigue damage and their real time
implementation;

2. Development of stochastic measures of fatigue crack growth in compact specimens-
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Future work requires development of stochastic models of fatigue crack damage un-
der different loading conditions. Furthermore, the stochastic data bases crack growth
can be used for studying complex phenomenon such as fractal behavior of fatigue
damage evolution;

3. Investigation of fatigue damage sensing under different loading conditions- The re-
sults in this chapter are primary based on constant-amplitude low cycle loading con-
ditions. Future work requires validation of the SDF technique for early detection
of fatigue damage under different conditions, such as high-cycle loading, variable-
amplitude loading, and spectral loading;

4. Study of microstructural changes- The work reported in this chapter is based on a dy-
namical data-driven approach that relies on ultrasonic sensing due to lack of accurate
physics-based models during early stages of fatigue damage. Future work would re-
quire investigation of small microstructural changes during fatigue damage evolution.
Analytical models of microstructural changes need to be formulated using advanced
experimental devices such as the atomic force microscope and the scanning electron
microscope;

5. Investigation of surface deformities- Future work requires to study the surface defor-
mities occurring during the early stages of fatigue damage using the surface interfer-
ometer;

6. Development of real time life extending control policies- The information extracted
from time series data using the SDF method can be used for development of control
strategies for real time life extension and damage mitigation.

Appendix A. Symbolic Dynamic Filtering Concept

This section presents a brief summary of the underlying concepts and essential features of
a recently reported data-driven pattern identification tool called symbolic dynamic filter-
ing (SDF ) [21]. The concept of SDF is built upon the principles of several disciplines
including Symbolic Dynamics [15, 20], Statistical Pattern Recognition [73], Statistical Me-
chanics [17], Information Theory [74] and Probabilistic Finite State Machines [16].

While the details are reported in recent publications [21, 22, 58, 17], the essential con-
cepts of space partitioning, symbol sequence generation, construction of a finite-state ma-
chine from the generated symbol sequence and pattern recognition are consolidated here
and succinctly described for self-sufficiency, completeness and clarity of the chapter.

Appendix A.1. Symbolic Dynamic Encoding

The continuously-varying finite-dimensional model of a dynamical system is usually for-
mulated in the setting of an initial value problem as:

dx(t)
dt

= f(x(t), θ(ts)); x(0) = x0, (A.1)
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where t ∈ [0,∞) denotes the (fast-scale) time; x ∈ Rn is the state vector in the phase
space; and θ ∈ R` is the (possibly anomalous) parameter vector varying in (slow-scale)
time ts. The gradual change in the parameter vector θ ∈ R` due to possible evolution of
anomalies can alter the system dynamics and hence change the state trajectory.

Let Ω ⊂ Rn be a compact (i.e., closed and bounded) region, within which the trajectory
of the dynamical system, governed by Eq. (A.1), is circumscribed as illustrated in Fig. 8.
The region Ω is partitioned as {Φ0, · · · , Φ|Σ|−1} consisting of |Σ| mutually exclusive (i.e.,

Φj ∩ Φk = ∅ ∀j 6= k), and exhaustive (i.e.,
⋃|Σ|−1

j=0 Φj = Ω) cells, where Σ is the symbol
alphabet that labels the partition cells. A trajectory of the dynamical system is described by
the discrete time series data as: {x0,x1,x2, · · · }, where each xi ∈ Ω. The trajectory passes
through or touches one of the cells of the partition; accordingly the corresponding symbol
is assigned to each point xi of the trajectory as defined by the mapping M : Ω → Σ.
Therefore, a sequence of symbols is generated from the trajectory starting from an initial
state x0 ∈ Ω, such that:

x0 ½ s0s1s2 . . . sj . . . (A.2)

where sk , M(xk) is the symbol generated at the (fast scale) instant k. The symbols
sk, k = 0, 1, . . . are identified by an index set I : Z→ {0, 1, 2, . . . |Σ|−1}, i.e., I(k) = ik
and sk = σik where σik∈ Σ. Equivalently, Eq. (A.2) is expressed as:

x0 ½ σi0σi1σi2 . . . σij . . . (A.3)

The mapping in Eq. (A.2) and Eq. (A.3) is called Symbolic Dynamics as it attributes
a legal (i.e., physically admissible) symbol sequence to the system dynamics starting from
an initial state. The partition is called a generating partition of the phase space Ω if every
legal (i.e., physically admissible) symbol sequence uniquely determines a specific initial
condition x0. In other words, every (semi-infinite) symbol sequence uniquely identifies one
continuous space orbit [19].

Symbolic dynamics may also be viewed as coarse graining of the phase space, which
is subjected to (possible) loss of information resulting from granular imprecision of parti-
tioning boxes. However, the essential robust features (e.g., periodicity and chaotic behavior
of an orbit) are expected to be preserved in the symbol sequences through an appropriate
partitioning of the phase space [18].

Figure 8 pictorially elucidates the concepts of partitioning a finite region of the phase
space and the mapping from the partitioned space into the symbol alphabet, where the
symbols are indicated by Greek letters (e.g., α, β, γ, δ, · · · ). This represents a spatial and
temporal discretization of the system dynamics defined by the trajectories. Figure 8 also
shows conversion of the symbol sequence into a finite-state machine and generation of the
state probability vectors at the current and the reference conditions. The states of the fi-
nite state machine and the histograms in Fig. 8 are indicated by numerics (i.e., 1, 2, 3 and
4). Although the theory of phase-space partitioning is well developed for one-dimensional
mappings [19], very few results are known for two and higher dimensional systems. Fur-
thermore, the state trajectory of the system variables may be unknown in case of systems
for which a model as in Eq. (A.1) is not known or is difficult to obtain. As such, as an
alternative, the time series data set of selected observable outputs can be used for symbolic
dynamic encoding as explained in the following subsection.
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Appendix A.2. Wavelet Space Partitioning

As described earlier, a crucial step in symbolic dynamic filtering (SDF ) is partitioning
of the phase space for symbol sequence generation [20]. Several partitioning techniques
have been reported in literature for symbol generation [14][59], primarily based on sym-
bolic false nearest neighbors (SFNN ). These techniques rely on partitioning the phase
space and may become cumbersome and extremely computation-intensive if the dimen-
sion of the phase space is large. Moreover, if the time series data is noise-corrupted, then
the symbolic false neighbors would rapidly grow in number and require a large symbol
alphabet to capture the pertinent information on the system dynamics. The wavelet trans-
form [67] largely alleviates these shortcomings and is particularly effective with noisy data
from high-dimensional dynamical systems [58]. As such, this chapter has used a wavelet-
based partitioning approach [21][58] for construction of symbol sequences from time series
data.

In wavelet-based partitioning approach, time series data are first converted to wavelet
domain, where wavelet coefficients are generated at different time shifts. The choice of the
wavelet basis function and wavelet scales depends on the time-frequency characteristics of
individual signals. Guidelines for selection of basis functions and scales are reported in
literature [58].

The wavelet space is partitioned with alphabet size |Σ| into segments of coefficients
on the ordinate separated by horizontal lines. The choice of |Σ| depends on specific ex-
periments, noise level and also the available computation power. A large alphabet may be
noise-sensitive while a small alphabet could miss the details of signal dynamics [58]. The
partitioning is done such that the regions with more information are partitioned finer and
those with sparse information are partitioned coarser. This is achieved by maximizing the
Shannon entropy [74], which is defined as:

S = −
|Σ|−1∑

i=0

pi log(pi) (A.4)

where pi is the probability of a data point to be in the ith partition segment. Uniform prob-
ability distribution, i.e., pi = 1

|Σ| for i = 0, 1, . . . , |Σ| − 1, is a consequence of maximum
entropy partitioning [58]. Each partition segment is labelled by a symbol from the alphabet
Σ and accordingly the symbol sequence is generated from the wavelet coefficients. The
structure of the partition is fixed at the nominal condition, which serves as the reference
frame for symbol sequence generation from time series data at anomalous condition(s).

Recently, an alternative method called Analytic Signal Space Partitioning (ASSP ) [75]
has been reported for symbolic time series analysis. The underlying concept of ASSP is
built upon Hilbert transform of the real-valued data sequence into corresponding complex-
valued analytic signal sequence that, in turn, is partitioned in the 2-dimensional plane.

Appendix A.3. Probabilistic Finite State Machine (PFSM )

Once the symbol sequence is obtained, the next step is the construction of a Probabilistic
Finite State Machine (PFSM ) and calculation of the respective state probability vector as



38 Shalabh Gupta and Asok Ray

depicted in the lower part of Fig. 8 by the histograms. The partitioning is performed at the
nominal condition that is chosen to be the healthy state having no anomalies.

A PFSM is then constructed at the nominal condition, where the states of the machine
are defined corresponding to a given alphabet set Σ and window length D. The alphabet
size |Σ| is the total number of partition segments while the window length D is the length
of consecutive symbol words [21], which are chosen as all possible words of length D from
the symbol sequence. Each state belongs to an equivalence class of symbol words of length
D, which is characterized by a word of length D at the leading edge. Therefore, the number
n of such equivalence classes (i.e., states) is less than or equal to the total permutations of
the alphabet symbols within words of length D. That is, n ≤ |Σ|D; some of the states
may be forbidden, i.e., these states have zero probability of occurrence. For example, if
Σ = {α, β}, i.e., |Σ| = 2 and if D = 2, then the number of states is n ≤ |Σ|D = 4; and the
possible states are words of length D = 2, i.e., αα, αβ, βα, and ββ.

The choice of |Σ| and D depends on specific applications and the noise level in the
time series data as well as on the available computation power and memory availability.
As stated earlier, a large alphabet may be noise-sensitive and a small alphabet could miss
the details of signal dynamics. Similarly, while a larger value of D is more sensitive to
signal distortion, it would create a much larger number of states requiring more computation
power and increased length of the data sets. Applications such as two-dimensional image
processing, may require larger values of the parameter D and hence possibly larger number
of states in the PFSM .

Using the symbol sequence generated from the time series data, the state machine is
constructed on the principle of sliding block codes [15]. The window of length D on a
symbol sequence is shifted to the right by one symbol, such that it retains the most recent
(D-1) symbols of the previous state and appends it with the new symbol at the extreme
right. The symbolic permutation in the current window gives rise to a new state. The
PFSM constructed in this fashion is called the D-Markov machine [21], because of its
Markov properties.

Definition 1.1 A symbolic stationary process is called D-Markov if the probability of the
next symbol depends only on the previous D symbols, i.e., P (sj |sj−1....sj−Dsj−D−1....) =
P (sj |sj−1....sj−D).

The finite state machine constructed above has D-Markov properties because the proba-
bility of occurrence of symbol σ ∈ Σ on a particular state depends only on the configuration
of that state, i.e., the previous D symbols. The states of the machine are marked with the
corresponding symbolic word permutation and the edges joining the states indicate the oc-
currence of a symbol σ. The occurrence of a symbol at a state may keep the machine in the
same state or move it to a new state.

Definition 1.2 Let Ξ be the set of all states of the finite state machine. Then, the probability
of occurrence of symbols that cause a transition from state ξj to state ξk under the mapping
δ : Ξ× Σ → Ξ is defined as:

πjk = P (σ ∈ Σ | δ(ξj , σ) → ξk) ;
∑

k

πjk = 1; (A.5)
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Thus, for a D-Markov machine, the irreducible stochastic matrix Π ≡ [πij ] describes
all transition probabilities between states such that it has at most |Σ|D+1 nonzero entries.
The definition above is equivalent to an alternative representation such that,

πjk ≡ P (ξk|ξj) =
P (ξj , ξk)

P (ξj)
=

P (σi0 · · ·σiD−1σiD)
P (σi0 · · ·σiD−1)

(A.6)

where the corresponding states are denoted by ξj ≡ σi0 · · ·σiD−1 and ξk ≡ σi1 · · ·σiD . This
phenomenon is a consequence of the PFSM construction based on the principle of sliding
block codes described above, where the occurrence of a new symbol causes a transition to
another state or possibly the same state.

For computation of the state transition probabilities from a given symbol sequence at a
particular slow time epoch, a D-block (i.e., a window of length D) is moved by counting
occurrences of symbol blocks σi0 · · ·σiD−1σiD and σi0 · · ·σiD−1 , which are respectively
denoted by N(σi0 · · ·σiD−1σiD) and N(σi0 · · ·σiD−1). Note that if N(σi0 · · ·σiD−1) = 0,
then the state σi0 · · ·σiD−1 ∈ Ξ has zero probability of occurrence. For N(σi0 · · ·σiD−1) 6=
0, the estimates of the transitions probabilities are then obtained by these frequency counts
as follows:

πjk ≈
N(σi0 · · ·σiD−1σiD)

N(σi0 · · ·σiD−1)
(A.7)

where the criterion for convergence of the estimated πjk, is given in [22] as a stopping rule
for frequency counting.

The symbol sequence generated from the time series data at the nominal condition, set
as a benchmark, is used to compute the state transition matrix Π using Eq. (A.7). The
left eigenvector p corresponding to the unique unit eigenvalue of the irreducible stochastic
matrix Π is the probability vector whose elements are the stationary probabilities of the
states belonging to Ξ [21][17]. The partitioning of time series data and the state machine
structure should be the same in both nominal and anomalous cases but the respective state
transition matrices could be different.

Appendix A.4. Pattern Identification Procedure

Behavioral pattern changes are quantified as deviations from the nominal behavior (i.e.,
the probability distribution at the nominal condition). The resulting anomalies (i.e., devia-
tions of the evolving patterns from the nominal pattern) are characterized by a scalar-valued
function, called Anomaly Measure ψ that is quasi-static in the fast time scale and is mono-
tonically non-decreasing in the slow time scale. The state probability vector at any time
instant corresponds to a singleton point on the unity-radius hypersphere. During fatigue
damage evolution, the tip of the probability vector moves along a path on the surface of this
hypersphere. The initial starting point of the path is the probability vector with uniform dis-
tribution obtained with maximum entropy partitioning (see Section Appendix A.2.). As the
damage progresses, the probability distribution changes; eventually when a very large crack
is formed, complete attenuation of the ultrasonic signal occurs and consequently the tip of
the probability vector reaches a point where all states have zero probabilities of occurrence
except one which has a probability one (i.e., a delta-distribution); this state corresponds to
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the partition region where all data points are clustered due to complete attenuation of the
signal.

In the context of fatigue damage, the anomaly measure is formulated on the following
assumptions.

• Assumption #1: The damage evolution is an irreversible process (i.e., with zero prob-
ability of self healing) and implies the following conditions.

ψk ≥ 0; ψk+` − ψk ≥ 0 ∀` ≥ 0 ∀k (A.8)

• Assumption #2: The damage accumulation between two time epochs is a path func-
tion, i.e., dependent on the path traversed to reach the target state from the initial
state.

In the context of fatigue damage in polycrystalline alloys at room temperature, the crack
length is traditionally defined by a straight line joining the starting point to the tip of the
crack but, in reality, the actual crack follows a complicated path (possibly fractal in ductile
materials). In fact, at the initial stages of fatigue damage, there can be multiple short cracks
oriented in different directions. Therefore, crack length alone does not provide complete
information on fatigue damage evolution. Since ultrasonic signals are highly sensitive to
small micro-structural changes, signal distortion is a good index of anomaly growth. The
tip of the probability vector, obtained through symbolic dynamic filtering (SDF ) method,
moves along a curved path on the surface of the unity-radius hypersphere between the ini-
tial point p0 (i.e., uniform distribution obtained under maximum entropy partitioning) and
the final point at very large crack formation pf (i.e., δ-distribution due to complete atten-
uation of the signal). The phenomenon such as piling up of dislocations, strain hardening
or reflections from multiple crack surfaces affect the ultrasonic signals in a variety of ways.
An increase of the ultrasonic amplitude is also observed during very early stages of fatigue
damage due to hardening of the material. On the other hand, ultrasonic signals attenuate
sharply at the crack propagation stage upon development of a large crack.

As such, distortion of ultrasonic signals at a single time epoch may not uniquely de-
termine the state of fatigue damage. The rationale is that two signals may exhibit similar
characteristics but, in terms of actual incurred damage, the states are entirely different. Con-
sequently, fatigue damage is a path function instead of being a state function. This assess-
ment is consistent with assumption #1 implying that the damage evolution is irreversible.
That is, at two different time epochs, the damage cannot be identical unless the net damage
increment is zero. Consequently, by assumption #2, the anomaly measure should follow
the traversed path of the probability vector, not the straight line joining the end points (i.e.,
the tips of the probability vectors).

The anomaly measure, based on the path between the nominal state to the completely
damaged state, can be different even for identical test samples and under the same load-
ing conditions because of the stochastic nature of fatigue phenomena. As such, analysis
of a stochastic data set collected under identical experimental conditions is essential for
identification of variations in different data sets. The following distance function is derived
between probability vectors at two time epochs:

d(pk,pl) ≡
√

(pk − pl)T (pk − pl) (A.9)
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The algorithm for computation of the anomaly measure ψ compensates for spurious
measurement and computation noise in terms of the sup norm which is defined as ‖ e ‖∞≡
max(|e1|, · · · , |em|) of the error in the probability vector (i.e., the maximum error in the
elements of the probability vector). The algorithm is presented below.

i) ψ0 = 0; δψ1 = 0; p̃ = p0; k = 1;

ii) if ||pk − p̃||∞ > ε then δψk = d(pk, p̃) and p̃ ← pk;

iii) ψk = ψk−1 + δψk;

iv) k ← k + 1; δψk = 0; go to step (ii).

The real positive parameter ε, is associated with the robustness of the measure against
measurement and computation noise and is identified by performing an experiment with a
sample with no notch. Since there is no notch there is practically no stress augmentation
and relatively no fatigue damage. As such, the parameter ε is estimated as:

ε ≈ max
l∈{1,..N}

(||pl+1 − pl||∞) (A.10)

from N consecutive observations with N À 1.
The algorithm works in the following fashion: the reference point p̃ is initialized to the

starting point p0 and anomaly measure ψ0 is set to 0. At any slow time epoch tk if the state
probability vector moves such that the distance travelled in any particular direction (i.e. the
sup norm || • ||∞) is greater than ε as specified in step (ii), then the anomaly measure is
incremented by δψk = d(pk, p̃) and the reference point is shifted to the current point pk.
The procedure is repeated at all slow time epochs. As such, the total path travelled by the tip
of probability vector represents the deviation from the nominal condition and the associated
damage.

Appendix A.5. Summary of SDF -based Pattern Recognition

The symbolic dynamic filtering (SDF ) method of statistical pattern recognition for
anomaly detection is summarized below.

• Acquisition of time series data from appropriate sensor(s) variables at a nominal con-
dition, when the system is assumed to be in the healthy state (i.e., zero anomaly
measure)

• Generation of the wavelet transform coefficients of the data obtained with an appro-
priate choice of the wavelet basis and scale [58]

• Maximum entropy partitioning in the wavelet domain at the nominal condition (see
Appendix A.2.) and generation of the corresponding symbol sequence

• Construction of the D-Markov machine and computation of the state probability vec-
tor p0 at the nominal condition
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• Generation of a time series data sequence at another (possibly) anomalous condition
and conversion to the wavelet domain to generate the respective symbolic sequence
based on the partitioning constructed at the nominal condition

• Computation of the corresponding state probability vector p using the finite state
machine constructed at the nominal condition

• Computation of scalar anomaly measure µ.

Capability of SDF has been demonstrated for anomaly detection at early stages of
gradually evolving anomalies by real-time experimental validation. In this regard, major
advantages of SDF are listed below:

i. Robustness to measurement noise and spurious signals [58]

ii. Adaptability to low-resolution sensing due to the coarse graining in space parti-
tions [21]

iii. Capability for small change detection because of sensitivity to signal distortion [44]
and

iv. Real-time execution on commercially available inexpensive platforms [62][44].

Appendix A.6. Stopping Rule for Determining Symbol Sequence Length

This appendix presents a stopping rule that is necessary to find a lower bound on the length
of symbol sequence required for parameter identification of the stochastic matrix Π. The
stopping rule [22] is based on the properties of irreducible stochastic matrices [76]. The
state transition matrix, constructed at the rth iteration (i.e., from a symbol sequence of
length r), is denoted as Π(r) that is an n × n irreducible stochastic matrix under station-
ary conditions. Similarly, the state probability vector p(r) ≡ [p1(r) p2(r) · · · pn(r)] is
obtained as

pi(r) =
ri∑n

j=1 ri
(A.11)

where ri is the number of D-blocks (i.e., symbol strings of length D) representing the ith

state such that
( ∑n

j=1 rj

)
+ D − 1 = r is the total length of the data sequence under sym-

bolization. The stopping rule makes use of the Perron-Frobenius Theorem [76] to establish
a relation between the vector p(r) and the matrix Π(r). Since the matrix Π(r) is stochastic
and irreducible, there exists a unique eigenvalue λ = 1 and the corresponding left eigen-
vector p(r) (normalized to unity in the sense of absolute sum). The left eigenvector p(r)
represents the state probability vector, provided that the matrix parameters have converged
after a sufficiently large number of iterations. That is, under the hypothetical arbitrarily
long sequences, the following condition is assumed to hold.

p(r + 1) = p(r)Π(r) ⇒ p(r) = p(r)Π(r) as r →∞ (A.12)
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Following Eq. (A.11), the absolute error between successive iterations is obtained such
that

‖ (p(r)− p(r + 1)) ‖∞=‖ p(r) (I−Π(r)) ‖∞≤ 1
r

(A.13)

where ‖ • ‖∞ is the max norm of the finite-dimensional vector •.
To calculate the stopping point rstop, a tolerance of η (0 < η ¿ 1) is specified for the

relative error such that:

‖ (p(r) − p(r + 1)) ‖∞
‖ (p(r)) ‖∞ ≤ η ∀ r ≥ rstop (A.14)

The objective is to obtain the least conservative estimate for rstop such that the dominant
elements of the probability vector have smaller relative errors than the remaining elements.
Since the minimum possible value of ‖ (p(r)) ‖∞ for all r is 1

n , where n is the dimension
of p(r), the least of most conservative values of the stopping point is obtained from Eqs.
(A.13) and (A.14) as:

rstop ≡ int

(
n

η

)
(A.15)

where int(•) is the integer part of the real number •.
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