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Abstract Modeling of temporal patterns to infer generative models from measure-
ment data is critical for dynamic data-driven application systems (DDDAS). Markov
models are often used to capture temporal patterns in sequential data for statisti-
cal learning applications. This chapter presents a methodology for reduced-order
Markov modeling of time-series data based has been used on spectral properties of
stochastic matrix and clustering of directed graphs. Instead of the common Hidden
Markov model (HMM)-inspired techniques, a symbolic dynamics-based approach
to infer an approximate generative Markov model for the data. The time-series data
is first symbolized by partitioning of the discrete-valued signal in continuous do-
main. The size of temporal memory of the discretized symbol sequence is then es-
timated using spectral properties of the stochastic matrix created from the symbol
sequence for a first-order Markov model of the symbol sequence. Then, a graph-
ical method is used to cluster the states of the corresponding high-order Markov
model to infer a reduced-size Markov model with a non-deterministic algebraic
structure. A Bayesian inference rule captures the parameters of the reduced-size
Markov model from the original model. The proposed idea is illustrated by creat-
ing Markov models for pressure time-series data from a swirl stabilized combustor
where some controlled protocols are used to induce instability. Results demonstrate
complexity modeling of the underlying Markov model as the system operating con-
dition changes from stable to unstable which is useful in combustion applications
such as detection and control of thermo-acoustic instabilities.
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1 Motivation and Introduction

The underlying theory of symbolic time-series analysis (STSA) [1, 2] has led to
the development of signal representation tools in the paradigm of dynamic data-
driven application systems (DDDAS) [3, 4], where time series of sensor signals
are partitioned to obtain respective symbol strings. In general, STSA is a nonlin-
ear technique for representation of temporal patterns in sequential data, where the
underlying continuous attributes are projected onto a symbolic space. This step is
followed by identification of concise probabilistic patterns for compression of the
discretized information. Within this framework, finite-memory Markov models have
been shown to be a reasonable finite-memory approximation (or representation) of
systems with fading memory (e.g., engineering systems that exhibit stable orbits or
mixing) [5, 6].

Once the continuous data are discretized, the memory estimate for the discretized
sequence is used for compression as a finite-memory Markov process, which is
represented by a state transition matrix. The transition matrix is estimated by a
maximum likelihood estimator (MLE) under the assumption of infinite data and
uniform priors for all elements of the transition matrix. In contrast to the proba-
bilistic finite state automaton (PFSA)-based approach to infer a Markov model for
time-series data presented in [5–7], an alternative method has been proposed in this
chapter, where the constraints of the deterministic algebraic structure of finite-state
automata are relaxed to allow non-deterministic transitions for the PFSA inferred
from the time-series data. This task has been performed by making a trade-off for
lower complexity of the generated model (possibly) at the expense of resolution loss.
The proposed concept is validated for model inferencing using time-series data from
a swirl-stabilized combustor and identify the different stages of the complex insta-
bility phenomenon from a completely data-driven perspective. We also point-out to
the the changes in the model structure and their physical interpretations based on
the data from the process.

Hidden Markov Modeling (HMM) is the most-widely used statistical learning
tool for modeling time-series data [8] where the data is modeled as a Markov
process with unobserved states. The learning task is to infer the states and the
corresponding parameters of the Markov chain. In contrast to HMM, some other
non-linear techniques have also been proposed for Markov modeling of time-series
data where the states of the Markov chain are some collection of words of differ-
ent lengths which can be obtained from the time-series data up on projecting the
data to a discrete space with finite cardinality [5–7, 9, 10]. The common concept
in all these techniques, based on Markov modeling of discrete sequences, is that
the Markov chain is induced by probabilistic version of a deterministic FSA [5].
While the PFSA-based inference provides a consistent, deterministic graph struc-
ture for learning, the deterministic algebraic structure is generally redundant and
can often lead to large number of states in the induced Markov model. Merging
the states of the PFSA for dimensionality reduction is often inconsistent due to the
algebraic constraints [6]. Some other approaches for state aggregation in Markov
chains could be found in [11–14]. However, these papers present aggregation of
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states in a Markov chains; construction of the Markov chain from data is never
considered. It is important that these two problems (i.e., state merging and Markov
chain construction) be studied together for analysis of dynamic data-driven appli-
cation systems (DDDAS) [3, 4]. Moreover, the optimal model selection is inspired
by wrapper-based techniques where he system searches for the best one in all the
above techniques as the similarity is measured between the Markov chains of dif-
ferent dimensions obtained by merging certain parts of the state-space.

This chapter presents a Markov modeling technique for time-series data where
the size of temporal memory of the symbolic data is estimated by using the spectral
properties of a PFSA whose states are words of length one [15, 16]. Next the states
are merged and the deterministic algebraic properties associated with PFSA are re-
moved, where the states of the Markov chain is now some collection of words from
its alphabet of length estimated in the last step. The parameters of the reduced-order
Markov model are estimated using a Bayesian inference technique from the param-
eters associated with the higher-order Markov model. The final model obtained is a
generative model for the data; however, some information is lost as parts of the de-
terministic structure of a finite state automaton (FSA) are removed. This approach is
used to construct Markov models for pressure data obtained from a combustion in-
stability [17–19] phenomenon, which is a highly non-linear thermo-acoustic process
and very hard to model completely using first principles of physics. This chapter
addresses data-driven modeling for real-time detection of changes in the underlying
process. Specifically these data-driven models can assist prediction and control of
combustion instabilities and thus, allow for more reliable and efficient operation of
modern-day combustors such as those used in aircraft gas turbine engines.

2 Background and Mathematical Preliminaries

Symbolic analysis of time-series data is a recent approach where continuous sensor
data are converted to symbol sequences via partitioning of the continuous domain [5,
20]. The dynamics of the symbols sequences are then modeled as a Probabilistic
Finite State Automata (PFSA), which is defined as follows:

Definition 1 (PFSA). A Probabilistic Finite State Automata (PFSA) is a tuple G =
(Q,A ,δ ,MMM) where

• Q is a finite set of states of the automata;
• A is a finite alphabet set of symbols a ∈A ;
• δ : Q×A →Q is the state transition function;
• MMM : Q×A → [0,1] is the |Q|× |A | emission matrix. The matrix MMM = [mi j] is

row stochastic such that mi j is the probability of generating symbol a j from state
qi.

For symbolic analysis of time-series data, a class of PFSAs called the D-Markov
machine have been proposed [5] as a sub-optimal but computationally efficient ap-
proach to encode the dynamics of symbol sequences as a finite state machine. For
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most stable and controlled engineering systems that tend to forget their initial con-
ditions, a finite length memory assumption is reasonable. The states of this PFSA
are words over A of length D (or less); and state transitions are described by a
sliding block code of memory D and anticipation length of one [21]. The dynam-
ics of this PFSA can both be described by the |Q| × |Q| state transition matrix
ΠΠΠ or the |Q| × 1 state visit probability vector ppp. The alphabet size or the level of
coarse-graining of the continuous domain is driven by the resolution level required
to capture the dynamics of the system – domain knowledge or data-driven partition-
ing techniques [22] can be used for this purpose. Estimating the depth of historical
influences, on the other hand, requires estimation of the decay-rate of the memory
of a dynamical system.

For systems with fading memory it is expected that the predictive influence of a
symbol progressively diminishes further into the future. Formally depth is defined
as follows:

Definition 2 (Depth). Let s = s1 . . .sksk+1sk+2 . . . be the observed symbol sequence
where each s j ∈A ∀ j ∈N. Then, the depth of the process generating s is defined as
the length D such that:

Pr(sk|sk−1, . . . ,s1) = Pr(sk|sk−1, . . . ,sk−D) (1)

An accurate estimation of depth for the symbolic dynamical process is required for
the precise modeling of the underlying dynamics of the discrete sequence. Next an
information-theoretic metric is introduced, which is used for merging the states of
the Markov model later in next section.

Definition 3 (Kullback-Leibler Divergence). The Kullback-Leibler (K-L) diver-
gence of a discrete probability distribution P from another distribution P̃ is defined
as follows.

DKL(P‖P̃) = ∑
x∈X

pX (x) log
(

pX (x)
p̃X (x)

)
It is noted that K-L divergence is not symmetric; however, it can be converted to a
symmetric distance as follows: d(P, P̃) = DKL(P‖P̃)+DKL(P̃‖P). This is defined as
the K-L distance between the distributions P and P̃.

This distance is used to determine the structure in the set of the states of the PFSA-
based Markov model whose states are words, over the alphabet of the PFSA, of
length equal to the depth estimated for the discretized sequence.

3 Proposed Approach

This section presents the details of the proposed approach for inferring a Markov
model from the time-series data. As discussed earlier, the first step is the discretiza-
tion of the time-series data to generate a discrete symbol sequence. It is possible
to optimize the symbolization of time-series using an optimization criterion and the



Markov Modeling of Time-Series 5

details are available in literature (e.g., see [17]). The data are discretized using the
unbiased principle of entropy maximization of the discrete sequence using Max-
imum Entropy Partitioning (MEP) [23]. The proposed approach consists of three
critical steps and is also shown in Figure 1 for pedagogical purposes.

• Estimate the approximate size of temporal memory (or order) of the symbol se-
quence.

• Cluster the states of the high-order Markov model.
• Estimate the parameters of the reduced-order Markov model (i.e., the Transition

matrix).

Discretize the time-series data
and create 1st -order Markov model

Estimate memory of the discrete process using spectral analysis

Cluster states of the Markov model corresponding
to the estimated memory using hierarchical clustering

Estimate parameters of the reduced model

Fig. 1: Flowchart for the proposed reduced-order modeling

Memory of the discrete sequence is estimated using a recently introduced method
based on the spectral analysis of the 1st order Markov model induced by a PFSA [15,
16]. The key ideas behind the three steps are explained next.

3.1 Estimation of Reduced-Order Markov model

Depth D of a symbol sequence has been redefined in [15] as the number of time
steps after which probability of current symbol is independent of any past symbol
i.e.:

Pr(sk|sk−n) = Pr(sk) ∀n > D (2)

Note that dependence in the proposed definition (eq. 2) is evaluated on individual
past symbols using Pr(sk|sk−n) as opposed to the assessing dependence on words
of length D using Pr(sk|sk−1, . . . ,sk−D). It is shown that if the observed process is



6 Jha, Virani and Ray

forward causal then observing any additional intermediate symbols sk−1, . . . ,sk−n+1
cannot induce a dependence between sk and sk−n if it did not exist on individual
level.

Let ΠΠΠ = [π
(1)
i j ] be the one-step transition probability matrix of the PFSA G con-

structed from this symbol sequence i.e.

ΠΠΠ = Pr(sk|sk−1) (3)

Then using the distance of the transition matrix after steps from the stationary point,
depth can be defined as a length D such that

|trace(ΠΠΠ n)− trace(ΠΠΠ ∞)| ≤
J

∑
j=2

∣∣λ j
∣∣n < ε ∀n > D (4)

J is number of non-zero eigenvalues of ΠΠΠ . Thus, the depth D of the symbol se-
quence is estimated for a choice of ε by estimating the stochastic matrix for the
one-step PFSA. Next, another pass of data is done through the module to es-
timate the PFSA parameters whose states are words over A of length D, i.e.,
ΠΠΠ = Pr(sk|sk−1, . . . ,sk−D).

The states of the reduced-order Markov model are then estimated by partitioning
the set of words over A of length D estimated in the last step. This is done by
using an agglomerative hierarchical clustering approach. The advantage of using
the hierarchical clustering approach is that it helps visualize the structure of the
set of the original states using an appropriate metric. Agglomerative hierarchical
clustering is a bottom-up clustering approach [24] that generates a sparse network
(e.g., a binary tree) of the state set Q (where |Q| = |A |D) by successive addition
of edges between the elements of Q. Initially, each of the states q1,q2, . . . ,qn is
in its own cluster C1,C2, . . . ,Cn where Ci ∈ C , which is the set of all clusters for
the hierarchical cluster tree. The distance between any two states, qi and q j, in Q
is measured by using the K-L distance between the symbol emission probabilities
conditioned on these states, i.e.,

d(qi,q j) = DKL(Pr(A |qi)‖Pr(A |q j))+DKL(Pr(A |q j)‖Pr(A |qi)) (5)

In terms of the distance measured by Eq. (5), the pair of clusters that are nearest
to each other are merged and this step is repeated till only one cluster is left. The
tree structure displays the order of splits in the state set of the higher-order Markov
model and is used to aggregate the states close to each other. The set of states clus-
tered together could be obtained based on the number of final states required in the
final Markov model.

Remark 1 (Stopping Criterion for Merging). The stopping criterion for the algo-
rithm could be reached based on the modeling objective. In the absence of any
defined end objective, the criterion for stopping the algorithm could be found us-
ing approaches like Minimum description length (MDL) for signal representation.
If stopping criterion corresponds to another end objective (e.g., class separability),
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then a Bayesian inference rule could be used to arrive at a consistent cardinality of
clusters in Q. However, in this chapter, the algorithm is terminated by fixing the
desired number of states a priori. For a detailed discussion, interested readers are
referred to [17].

Remark 2. The final Markov model is a finite depth approximation of the origi-
nal time-series data. However, compared to the PFSA-based D-Markov machines
in [5, 6], the current aggregated model has a non-deterministic algebraic structure,
i.e., the same symbol emissions from a state can lead to different states. While this
leads to some information loss as compared to the models in [5, 6], this facilitates
compression of the size of the model as per the application requirements. For exam-
ple, even though the optimal model might require a higher finite memory adding all
words corresponding to that length might not be necessary to preserve the statisti-
cal behavior or class separability. Furthermore, the aggregated model would allow
faster convergence rates for the symbol emission probabilities which can be cal-
culated using Glivenko-Cantelli theorem [25]. For a detailed discussion interested
readers are referred to [17].

3.2 Estimation of Parameters for the Reduced-Order Markov
model

The parameters of the Markov model obtained after clustering the states of the orig-
inal PFSA with |A |D states is obtained using a Bayesian inference technique using
the parameters estimated for the PFSA. In this proposed approach, the state tran-
sition matrix ΠΠΠ , the emission matrix MMM, and the state probability vector ppp of the
original PFSA model G are available, along with the deterministic assignment map
f : Q→ Q̃ of the state in Q (i.e., state set of original model) to one of the state in Q̃
(i.e., state set of the reduced order model). Since the reduced order model can rep-
resented by the tuple G̃ = (Q̃,Π̃ΠΠ), where Π̃ΠΠ = [π̃i j] is the state transition matrix, a
Bayesian inference technique is employed to infer the individual values of transition
probabilities π̃i j = Pr(q̃k+1 = j | q̃k = i) for all i, j ∈ Q̃.

Let Qk be the random variable denoting the state of PFSA model at some time
step k ∈ N and Sk denotes the symbol emitted from that state, this probabilistic
emission process is governed by the emission matrix MMM. The state of the reduced
order model is obtained from a deterministic mapping of the state of the PFSA
model, thus the state of this model is also a random variable, which is denoted by
Q̃k = f (Qk). The Bayesian network representing the dependencies between these
variables is shown in the recursive as well as unrolled form in the Figure 2. The
conditional density Pr(Q̃k = q̃ | Qk = q) can be evaluated by checking if state q
belongs to the state cluster q̃ and assigning the value of 1 if true, else assign it the
value of 0. Since it is known that Q̃ partitions the set Q, the conditional density is
well-defined. Thus, it can be written as
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Fig. 2: Graphical models representing dependencies between the random variables

Pr(Q̃k = q̃ | Qk = q) = Iq̃(q), (6)

where I is the indicator function with Iq̃(q) = 1, if element q belongs to the set q̃,
else it is 0. The derivation of the Markov model Pr(Q̃k+1 | Q̃k) using Pr(Qk+1 | Qk),
stationary probability vector ppp, and assignment map f is shown ahead.

Pr(Q̃k+1 | Q̃k) = ∑
q∈Q

Pr(Q̃k+1,Qk+1 = q | Q̃k) (7)

(Marginalization)

= ∑
q∈Q

Pr(Qk+1 = q | Q̃k)Pr(Q̃k+1 | Qk+1 = q) (8)

(Factorization using Figure 2)

= ∑
q∈Q

Pr(Qk+1 = q | Q̃k) IQ̃k+1
(q) (9)

(using (6))

= ∑
q∈Q̃k+1

Pr(Qk+1 = q | Q̃k). (10)

where Pr(Qk+1 | Q̃k) is obtained from Bayes’ rule as

Pr(Qk+1 | Q̃k) =
Pr(Q̃k | Qk+1)Pr(Qk+1)

∑q∈Q Pr(Q̃k | Qk+1 = q)Pr(Qk+1 = q)
. (11)

By following the steps to obtain (10),

Pr(Q̃k | Qk+1) = ∑
q∈Q̃k

Pr(Qk = q | Qk+1). (12)

where Pr(Qk | Qk+1) results from Bayes’ rule as
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Pr(Qk | Qk+1) =
Pr(Qk+1 | Qk)Pr(Qk)

∑q∈Q Pr(Qk+1 | Qk = q)Pr(Qk = q)
. (13)

It is noted that, for the distribution Pr(Qk) and Pr(Qk+1), a stationary probability
ppp is available. Using equations (10), (11), (12), and (13) together, one can easily
obtain the desired state transition matrix Π̃ΠΠ of the reduced order model. Once the
state cluster set Q̃ and state transition matrix Π̃ΠΠ are available, the reduced order
model is completely defined. The rest of the chapter will demonstrate the utility
of these models in a practical problem of modeling combustion instabilities from
time-series data.

Fig. 3: Schematic drawing of the test apparatus

4 Combustion Experiment Details

This section presents the experimental details for collecting data to analyze the
complex non-linear phenomena that occurs during the instability phenomena, in
a laboratory-scale combustor. A swirl-stabilized, lean-premixed, laboratory-scale
combustor was used to perform the experimental study. Figure 3 shows a schematic
drawing of the variable-length combustor. The combustor consists of an inlet sec-
tion, an injector, a combustion chamber, and an exhaust section. The combustor
chamber consists of an optically-accessible quartz section followed by a variable
length steel section.

Table 1: Operating conditions

Parameters Value
Equivalence Ratio 0.525, 0.55, 0.60, 0.65

Inlet Velocity 25-50 m/s in 5 m/s increments
Combustor Length 25-59 inch in 1 inch increments

High pressure air is delivered to the experiment from a compressor system after
passing through filters to remove any liquid or particles that might be present. The
air supply pressure is set to 180 psig using a dome pressure regulator. The air is pre-
heated to a maximum temperature of 250 ◦C by an 88kW electric heater. The fuel for
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this study is natural gas (approximately 95% methane). It is supplied to the system
at a pressure of 200 psig. The flow rates of the air and natural gas are measured by
thermal mass flow meters. The desired equivalence ratio and mean inlet velocity is
set by adjusting these flow rates with needle valves. For fully pre-mixed experiments
(FPM), the fuel is injected far upstream of a choke plate to prevent equivalence ratio
fluctuations. For technically pre-mixed experiments (TPM), fuel is injected in the
injector section near the swirler. It mixes with air over a short distance between the
swirler and the injector exit. Tests were conducted at a nominal combustor pressure
of 1 atm over a range of operating conditions, as listed in Table 1. Other details,
which are reported in [4], are skipped for brevity.

5 Results and Discussion

This section presents details of the analyses completed by using the pressure time-
series data to infer the underlying reduced-order Markov model. Time-series data is
first normalized by subtracting the mean and dividing by the standard deviation of
its elements; this step corresponds to bias removal and variance normalization. Data
from engineering systems is typically oversampled to ensure that the underlying
dynamics can be captured. Due to coarse-graining from the symbolization process,
an over-sampled time-series may mask the true nature of the system dynamics in
the symbolic domain (e.g., occurrence of self loops and irrelevant spurious transi-
tions in the Markov chain). Time-series is first down-sampled to find the next crucial
observation. The first minimum of auto-correlation function generated from the ob-
served time-series is obtained to find the uncorrelated samples in time. The data
sets are then down-sampled by this lag. To avoid discarding significant amount of
data due to downsampling, down-sampled data using different initial conditions is
concatenated. Further details of this preprocessing can be found in [15].

The continuous time-series data set is then partitioned using maximum entropy
partitioning (MEP), where the information rich regions of the data set are partitioned
finer and those with sparse information are partitioned coarser. In essence, each cell
in the partitioned data set contains approximately an equal number of data points
under MEP. A ternary alphabet with A = {0,1,2} has been used to symbolize the
continuous combustion instability data. As discussed in Section 4, sets of time-series
data from different phases have been analyzed, as the combustion process emerges
from stable through the transient to the unstable region.

Figure 4 demonstrates the observed changes in the behavior of the data as the
combustion operating condition changes from stable to unstable. As seen, there is
a change in the empirical distribution which changes from a unimodal-Gaussian to
a multi-modal Gaussian (bi-modal in Figure 4) as the operating condition changes
from stable to unstable. Selected 150 samples of pressure data from the stable and
unstable phases each are analyzed and compared.

First, the expected size of temporal memory is compared during the two phases.
There are changes in the Eigen value decomposition rate for the 1-step stochastic
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(a) Probability density function for the pressure time-series data
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(b) Spectral decomposition of the stochastic matrix for 1-step Markov model

Fig. 4: (a) shows the change in the empirical density calculated for the pressure time-
series data as the process deviates from the stable operating condition to unstable
operating condition; (b) shows the spectral decomposition of the 1-step stochastic
matrix for the data under stable and unstable operating conditions.

matrix calculated from the data during the stable and unstable behavior, irrespective
of the combustor length and inlet velocity. During stable conditions, the Eigen val-
ues very quickly go to zero as compared to the unstable operating condition. This
suggests that the size of temporal memory of the discretized data increases as the
system move to the unstable operating condition. This indicates that under the stable
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operating condition, the discretized data behaves as symbolic noise as the predictive
power of Markov models remain unaffected even if the order of the Markov model
is increased. On the other hand, the predictive power of the Markov models can
be increased by increasing the order of the Markov model during unstable oper-
ating condition, indicating more deterministic behavior. An ε = 0.05 is chosen to
estimate the depth of the Markov models for both the stable and unstable phases.
Correspondingly, the depth was calculated as 2 and 3 for the stable and unstable
conditions (see Figure 4).

The corresponding D(ε) is used to construct the Markov models next. First a
PFSA whose states are words over A of length D(ε) is created and the correspond-
ing maximum-likely parameters (MMM and ΠΠΠ ) are estimated. Then, the hierarchical
clustering algorithm using K-L distance is used to cluster and aggregate the states.
It is noted that individual models are created for every sample of data, i.e., every
sample is partitioned individually so that the symbols will have different meaning
for every sample. Consequently, each sample will have a different state-space when
viewed in the continuous domain. Thus, the mean behavior of the samples is not
shown during any operating regime as the state-space would be inconsistent (even
though the cardinality could be the same).

Figure 5 shows the hierarchical cluster tree that details the structure of the state-
space for the PFSA with depth D(ε) for a typical sample during stable and unstable
behavior. The cluster tree also suggests the symbolic noise behavior of the data
during the stable regime (the states are very close to each other based on the K-
L distance). However, clearly a coarse clustering of states in the model during the
unstable behavior would lead to significant information loss (as the states are statis-
tically different). However, to compare the two Markov models, the cardinality of
the final models are kept the same. The algorithm is terminated with 3 states in the
final Markov model during the stable as well as the unstable regime. The parameters
of the final Markov model are then estimated using the PFSA models of depth D(ε)
using the dynamic Bayesian network approach explained in Section 3.2.

Figure 6 presents some results to show the class separability and changes in the
Markov models as the states are aggregated. As the model is computed individu-
ally for every sample, comparing the stochastic matrices directly is not consistent.
Instead a measure is introduced to model the complexity of the Markov model for
every sample as follows: d = max

qi,q j∈Q
d(qi,q j) (where d is defined in equation (5)).

Essentially, the measure d represents the maximum divergence between the sym-
bol emission probabilities from the states of the Markov model created. Then, the
statistics of d obtained for the Markov models are compared during stable and un-
stable conditions. In Figure 6a, it could be seen that the measure d is clearly able to
separate the stable and unstable conditions with the original model.

Figure 6b shows the results with the final aggregated model with just 3 states. As
seen in Figure 6b, there is some information loss upon model reduction; however,
there is still good class separability. Another point to note is that while there is
significant change in the set with unstable operating condition, there isn’t much
change in the behavior of the measure during stable operating condition.
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Fig. 5: (a) shows hierarchical cluster tree for the states of the original Markov model
obtained during stable combustion process; (b) shows the same during unstable be-
havior.

6 Conclusions and Future Work

This chapter has presented a methodology for Markov modeling of time-series
data for dynamic data-driven application systems (DDDAS) [3,4]. The technicalap-
proach is based on the concepts of symbolic dynamics, where the memory size of
the discretized time-series data is estimated to infer the equivalence class of states
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based on KL distance. The proposed concepts have been tested on experimental
data from a swirl-stabilized combustor apparatus used to study unstable thermo-
acoustic phenomena during the combustion process. The proposed approach affords
the complexity of inferring the time-series data based on a Markov model. Use of
Bayesian methods to infer models with various end objectives (e.g., class separabil-
ity and clustering) is a topic of future research. Another important topic of future
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Fig. 6: (a) shows the class separability with the original bigger model; (b) shows
changes after state aggregation.
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work is consistency analysis of the spectral method for memory estimation of the
considered class of Markov models.
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