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Abstract Dynamic data-driven application systems (DDDAS) operate on a sens-
ing infrastructure for multi-modal measurement, communications, and computa-
tion, through which they perceive and control the evolution of physical dynamic
processes. Sensors of different modalities are subject to contextually variable per-
formance under varying operational conditions. Unsupervised learning algorithms
have been recently developed to extract the operational context set from multi-modal
sensor data. This context set represents the set of all natural or man-made factors,
which along with the state of the system, completely condition the measurements
from sensors observing the system. The desirable property of conditional indepen-
dence of observations given the state-context pair enables tractable fusion of dis-
parate information sources. In this chapter, we address a crucial problem associated
with unsupervised context learning of reducing the cardinality of the context set.
Since, the machine-derived context set can have a large number of elements, we
propose one graph-theoretic approach and one subset selection approach for the
controlled reduction of contexts to obtain a context set of lower cardinality. We also
derive an upper bound on the error introduced by the compression. These proposed
approaches are validated with data collected in field experiments with unattended
ground sensors for border-crossing target classification.
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1 Introduction

Dynamic data-driven application systems (DDDAS) rely on information from a
multitude of sensors to assess the state of any observed system [1]. This system
can not only observe and control states of a physical system, but also adapt the sens-
ing system to obtain better understanding of the system. It is well known that the
measurements from the (possibly) multi-modal sources of information are affected
not only by the state, but also by the operational conditions around the system [2].
These natural or man-made factors are known as context in literature [3, 4, 5, 6].
For example, soil moisture, soil porosity, and ground temperature are contexts for
seismic sensors, whereas wind speed and air temperature are those for acoustic sen-
sors. Physics-based analytical models try to capture some of the contextual effects in
great detail, but they need accurate estimates of several time-varying environmental
parameters. On the other hand, there have been efforts to develop data-driven models
for unsupervised discovery of contexts from sensor data. The complexity and accu-
racy of context-aware DDDAS in state estimation and measurement system adap-
tation is directly affected by the size of the context set obtained from data-driven
or physics-based techniques. This chapter will focus on unsupervised data-driven
learning of context with a specific emphasis on techniques to compress the set of
contexts and also to understand the effect of this compression. The compression en-
ables to ensure real-time implementation of DDDAS without significantly affecting
the performance, such as accuracy of the system.

Recently, in [5] the notion of context was mathematically formalized to enable
machines to learn from data and then use context in decision-making. However
in [3], context was defined as a parameter which along with user-defined state set
of the system completely conditions the measurements. Unlike several existing con-
textual reasoning frameworks, where context is usually associated with a specific
modality, proposing context as the enabler of conditional independence unifies the
notion of context across all modalities in the system. Bayesian fusion uses the likeli-
hood of a new measurement given all previous measurements from other sensors to
correctly obtain the posterior density. This process becomes intractable for systems
which have more than a couple of sensors. Thus, context enables tractable fusion of
multi-modal sensors without relying on the possibly incorrect assumption of con-
ditional independence given only the system state (Naı̈ve Bayes assumption). Un-
supervised learning of context using clustering as well as density-estimation based
approaches have been reported in literature. These approaches either focused on
single sensor systems, such as ground penetrating radars in [4] or video sensors
in [7], or it is just assumed that the machine-derived context would provide condi-
tional independence in measurements given the state-context pair [5]. However, the
non-parametric density-estimation approach for context learning in [3] guarantees
that given any user-defined state and machine-defined context pair, the conditional
independence property holds true.

The size of context set directly affects the memory required and computation
time of the context-aware decision-making approaches for sensor selection [8],
tracking [9], multi-modal fusion [6], and pattern recognition [5]. In wireless sen-
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sor network applications, such as border surveillance, where power, memory, and
execution time are severely constrained, we need to be able to restrict the size of
context sets to enable tractable execution of context-aware approaches on resource-
constrained platforms. Thus, in this work, we explore different approaches for con-
text set compression. The context learning approach in [3] relies on a convex opti-
mization formulation using the concept of kernel-based density estimation [10, 11].
Thus, adding any explicit sparsity constraint makes the problem non-convex and
hard to solve. Moreover, enforcing strict sparsity constraint on the solution can
severely affect the performance of the solution as model order and accuracy are
known to be competing objectives [12] and one might have to repeat the non-convex
optimization several times before obtaining a solution with acceptable error. This
motivates the need for augmenting the original convex optimization formulation
with a separate compression step in which the additional maximum error incurred
is directly controlled.

This chapter will first review some important aspects of the original optimization
problem in Section 2. The main objective of the chapter is to introduce two distinct
techniques to compress the set of contexts and quantify the effect of this compres-
sion on the accuracy of the density estimate. The first proposed technique uses the
classical graph-theoretic problem of maximal clique enumeration [13] for compres-
sion of context sets by using a depth-first search strategy [14]. The second technique
presents a subset-selection approach and establishes a relation of the compression
ratio with the upper bound on the additional error incurred by compression on the
density estimate. These techniques are explained in Section 3. The techniques de-
veloped in this work are validated using data collected in field experiments from a
border surveillance testbed with two geophones to classify whether a human target
is walking or running. Finally in Section 5, the concluding remarks are presented.

2 Learning Context from Data

Data-driven modeling of context has been only recently explored in the field of ma-
chine learning to enhance the process of information fusion. Unsupervised learning
methods using k-means and modularity-based clustering have been reported for ob-
taining modality-specific context sets [5]. Density estimation has also been used for
learning context from data. A parametric approach for context learning to obtain
Gaussian mixture models was presented in [4], whereas a nonparametric approach
using kernel-based regression was proposed in [3]. In this section, we first present
a definition of context, which mathematically formalizes this widely-used notion of
context, and then we review some existing methods to derive context sets from data.

Definition 2.1. (Context and Context Set [3]) Suppose that the measurements Y1
and Y2 take values in Y1 and Y2, respectively. Suppose that the state X takes values
from a finite set X . Then, a nonempty finite set C (X) is called the context set and
each element c ∈ C (X) of the set is called a context, if the measurements Y1 and Y2
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are mutually independent conditioned on the state-context pair (x,c) for all x ∈X
and for all c ∈ C (X).

According to this definition, the following relation holds:

p(Y1,Y2 | X ,c) = p1(Y1 | X ,c)p2(Y2 | X ,c) for all c ∈ C (X). (1)

Here, the left-hand side of (1) denotes the conditional density of (Y1,Y2) given (X ,c),
and the right-hand side gives the product of conditional densities of Y1 and Y2 given
(X ,c). The Definition 2.1 enables to obtain a single context set from multi-modal
sensor data, when the measurement space Y1 and Y2 corresponds to heterogeneous
sensors. In order to generate a context set C (x) for each x ∈X , so that (1) holds,
kernel-based density estimation [10] was used in [3]. This context learning process
is outlined ahead in this section.

The problem of obtaining all contexts, which satisfy the relation in (1), is non-
trivial and the concept to pose it as a nonparametric mixture modeling problem was
first proposed in [3]. In view of Definition 2.1, the measurement likelihood function
is of the form

p(Y1,Y2 | X) = ∑
c∈C (X)

πc(X)p(Y1,Y2 | X ,c)

= ∑
c∈C (X)

πc(X)p1(Y1 | X ,c)p2(Y2 | X ,c), (2)

where πc(X) is the prior probability that, conditioned on the state X , the true context
is c. In order to estimate this likelihood model, the conditional density was repre-
sented as the following mixture model

p(Y1,Y2 | X) = ∑
c∈C (X)

πc(X)K1
(
s(c)1 (X),Y1

)
K2
(
s(c)2 (X),Y2

)
, (3)

where the prior probability πc(X) denotes the weight of the component correspond-
ing to context c in the context set C (X) and the component is represented by the
product of kernel functions Ki : Yi×Yi → R for i = 1,2. Also, s(c)i (X) ∈ Yi is a
support vector [10] obtained by solving the kernel regression problem using train-
ing data consisting of the triples (Y1,Y2,X). Thus, the problem of learning context
set was reduced to that of identifying support vectors of a regression problem. The
details of this technique are available in [3]. The context set identified by regression
has error bounded above by an insensitivity parameter, which is chosen by the user.
Although, one can use this error margin parameter to indirectly influence the size of
context set, there is no explicit relationship for the set cardinality with the chosen
error margin. Thus, the main contribution of the chapter is explained in the next
section, which enables controlled compression of context sets.
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(a) Maximal clique enumeration (b) Subset selection

Fig. 1: Concept of context set compression

Algorithm 1: Context Set Compression by Maximal Clique Enumeration
Input: Observation densities p(Y | X ,L) and threshold ε .
Output: Context set C (X).

1 for all x ∈X do
2 Compute weight matrix W(x);
3 Gx,ε = ConstructGraph(W(x),ε);
4 M = MCE(Gx,ε );
5 C (x) = Minterms(M ).

3 Cardinality Reduction of Context Sets

This section will explain the two proposed techniques for cardinality reduction of
context sets using the maximal clique enumeration algorithm from graph theory
and a simple subset selection approach. These techniques assume that the density
estimation step for unsupervised context learning has already been solved and the
resulting density estimate is used in both of these techniques.

3.1 Graph-Theoretic Compression

In graph theory, a clique is a complete subgraph and it is maximal, if it is not con-
tained in a bigger clique. Maximal clique enumeration (MCE) is a classical problem
in graph theory, which was addressed in detail in [13, 14] using depth-first search
strategy. We use this concept to identify all machine-derived contexts whose effect
on sensor measurements is almost identical. The context set is used as the vertex
set of a weighted graph and the edge weights denote the pairwise distance between
contextual observation densities. The MCE-based context set compression approach
is explained in detail ahead in this section.
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Let l1, l2, . . . , l|L (x)| denote the distinct machine-derived contexts for the state
x∈X before compression and let c denote an element of the compressed context set
C (x) for the state x ∈X . The algorithm defines a weight matrix W(x) = [wi j(x)] ∈
R|L (x)|×|L (x)| by

wi j(x) = d
(

p(Y | X = x,L = li), p(Y | X = x,L = l j)
)

for x ∈ X and i, j = 1, . . . , |L (x)|, where Y = (Y1,Y2, . . . ,YN) is the concate-
nated measurement from all sensors. Here, denoted by d(·, ·) is a distance function
on the space of observation densities, such as symmetric Kullback-Leibler diver-
gence [15] or the Bhattacharyya distance [16]. For a chosen positive real number ε ,
let Gx,ε denote the ε-context graph for state x ∈X , which is defined by the tuple
(L (x),E (x,ε)), where the vertex set L (x) represents the set of all machine-derived
contexts corresponding to the state x ∈X and the edge set is given as

E (x,ε) = {(li, l j) ∈L (x)2 : wi j(x)≤ ε, i, j = 1, . . . , |L (x)|}

for each x∈X . This graph Gx,ε is constructed in the ConstructGraph function.
The edge set E (x,ε) represents all pairs of context whose measurement densities are
at most distance ε away from each other. This graph Gx,ε is then processed by the
Maximal Clique Enumeration function, which implements the depth-first
search strategy given in [14], to obtain the set of all maximal cliques denoted by
M . Each maximal clique is a subset of the context set consisting of contexts which
are all mutually at most distance ε away from each other. The maximal cliques will
form a set cover of the set L (x) (i.e., union of maximal cliques equals the complete
set), but they can end up being overlapping, thus, denoting each clique as a context
can lead to the loss of the desired conditional independence property. Moreover,
it is known that for an n-vertex graph, the maximum number of maximal cliques
is given by 3n/3 [17], thus, the resulting context set might become exponentially
larger. Hence, the function Minterms(M ) uses the method in [18] to evaluate
all minterms of M (i.e., nonempty set differences and intersections formed by the
members of M ) to obtain a mutually exclusive and exhaustive collection C (x) of
cliques that partition the set L (x); for example, Minterms({{1,2,3,5},{2,4}})
gives {{1,3,5},{2},{4}}. These steps are given in the Algorithm 1, which lead to
the construction of the compressed context set denoted by C (X).

Each element c ∈ C (X) of the context set is a collection of the machine-defined
contexts l ∈L (X). The corresponding contextual observation density and prior dis-
tribution need to be derived for the compressed context set. We will first assign
values to p(c | X , l) as follows:

p(c | X , l) =

{
1, if l ∈ c
0, otherwise.

(4)

This conditional density is well-defined as C (X) is a partition of L (X) and it will
assume the value of 1 for only one c∈C (X). Now, we can compute the prior density
using (4) as follows:
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p(c|X) = ∑
l∈L (X)

p(c | X , l)p(l | X) = ∑
l∈c

p(l | X), (5)

where p(l|X) is the state-dependent prior probability of the machine-defined context
which is known. The observation density can be shown to be given accurately by
the mixture model

p(Y | X ,c) = ∑
li∈c

p(li | X)

p(c | X)
p(Y | X , li). (6)

The overall model complexity stays the same as the number of mixture components
still remain the same. In order to reduce the model complexity, we define the obser-
vation density p(Y | X ,c) = p(Y | X , l∗), where, l∗ is an element in c. Theorem 3.1
derives an approach to choose l∗ and provides the bound for the error induced by
this process.

Theorem 3.1 (Bound for error introduced in compression by clique enumeration).
If the distance function d used in Algorithm 1 is symmetric Kullback-Leibler di-
vergence (sKL), then for any fixed threshold ε > 0, the error induced by defin-
ing p(Y | X ,c) = p(Y | X , l∗) for some l∗ ∈ c is upper-bounded by the value

ε

(
1− p(l∗|X)

p(c|X)

)
, which is strictly less than ε . This error bound is minimized for

l∗ = argmaxl∈c p(l | X).

Proof. At first, a known result from literature will be shown and then, we will use it
to prove the theorem. Let p0 denote a mixture model with component densities f 0

i
and weights π0

i for i ∈ {1, . . . ,n0}, and similarly p1 denotes another mixture model
with n1 components. The convexity upper bound on KL-divergence [15] is given by

KL(p0 ‖ p1)≤
n0

∑
i=1

n1

∑
j=1

π
0
i π

1
j KL( f 0

i ‖ f 1
j )

=⇒ d(p0, p1)≤
n0

∑
i=1

n1

∑
j=1

π
0
i π

1
j d( f 0

i , f 1
j ), (7)

since, d(p0, p1) = sKL(p0, p1) = KL(p0 ‖ p1)+KL(p1 ‖ p0). Let us consider p0 to
be the density from (6) with π0

i = p(li|X)
p(c|X) , f 0

i = p(Y | X , li), and n0 = |c|, and assign

p1 = p(Y |X , l∗), i.e., π1
j = 1, if l j = l∗, π1

j = 0, otherwise. Using (7) and substituting
for the mixture models, we get

d(p0, p1)≤
|c|

∑
li=1

π
0
i d(p(Y | X , li), p(Y | X , l∗)) = ∑

li∈c\{l∗}
π

0
i d(p(Y | X , li), p(Y | X , l∗))

using that l∗ belongs to c and the positive definiteness property of the distance func-
tion. Since we know that ε is the distance threshold and clique c consists only of
elements l, whose observations densities are at most ε away from each other, we
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obtain d(p0, p1) ≤ ∑li∈c\{l∗}π0
i ε . Substituting the values for π0

i and using (5)), we
will obtain the desired result as follows:

d(p0, p1)≤ ε ∑
li∈c\{l∗}

p(li | X)

p(c | X)
= ε

(
1− p(l∗ | X)

p(c | X)

)
. (8)

Since l∗ belongs to c, we have p(l∗|X) ≤ p(c|X). Thus, we verify that d(p0, p1) is
indeed less than ε and the error bound is minimized for l∗ = argmaxl∈c p(l | X). ut

This result shows us that, if we choose acceptable level of error (ε), then we can
use it as the graph threshold in the function ConstructGraph of Algorithm 1.
The two limitations of this approach are that: (i) the compression level is not known
a priori, and (ii) the computations have to be redone if we decide to change the value
of ε . In order to alleviate these two issues, we will look at another approach called
subset selection.

3.2 Compression by Subset Selection

In the subset selection approach, we directly choose the size of the desired com-
pressed context set (say k) and not the acceptable error. The proposed approach is
to select a set of k distinct contexts from the machine-derived context set L (X)
and assign those to a compressed context set Ck(X). Thus, we will end up with
Ck(X) ( L (X) for k < |L (X)|. This section explains the approach to select the
subset and derive a bound on the error introduced by subset selection.

Let us denote C̄k(X) as the relative complement of Ck(X) with respect to L (X),
given by C̄k(X) = L (X)\Ck(X). We consider that the set Ck(X) is constructed by
arbitrary selection of any k elements from the set L (X). Theorem 3.2 will derive a
bound for the error introduced by subset selection and then we provide a technique
to choose the subset in a systematic way.

Theorem 3.2 (Bound for error introduced in compression by subset selection). Let
pL (Y | X) be the density estimated using the machine-derived context set L (X) for
the state X, which is given as

pL (Y | X) = ∑
i∈L (X)

αiKX (Y,yi), (9)

where KX (·, ·) is a kernel function and αi is the context prior probability associated
with the context i∈L (X). If Ck(X) denotes a subset of machine-derived context set
L (X) consisting of k elements, such that ∑i∈Ck(X) αi > 0, then the density estimate
obtained using this subset is given as

pC (Y | X) = ∑
i∈Ck(X)

α̃iKX (Y,yi), (10)
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where α̃i =
αi

∑i∈Ck(X) αi
is the associated prior. The upper bound of the supremum

norm of error in density estimation due to subset selection is proportional to the
sum of context priors from the set C̄k(X), i.e., L (X)\Ck(X). In other words,

‖pC (Y | X)− pL (Y | X)‖∞ ≤ βX ∑
i∈C̄k(X)

αi (11)

where βX ∈ R satisfies 0≤ KX (·, ·)≤ βX < ∞.

Proof. Using (9) and (10), after some algebraic manipulations one can show that
the difference in estimates for any y ∈ Y is given as

pC (y | X)− pL (y | X) =
1

∑l∈Ck(X) αl

(
∑

i∈Ck(X)
∑

j∈C̄k(X)

αiα j
(
KX (y,yi)−KX (y,y j)

))
.

The supremum norm in this setting of continuous functions is given as

‖pC (Y | X)− pL (Y | X)‖∞ = sup
y∈Y

∣∣pC (y | X)− pL (y | X)
∣∣.

Using absolute homogeneity and triangle inequality property for the norm, we
obtain

‖pC (Y | X)− pL (Y | X)‖∞ ≤
1

∑l∈Ck(X) αl

(
∑

i∈Ck(X)
j∈C̄k(X)

αiα j sup
y∈Y

∣∣KX (y,yi)−KX (y,y j)
∣∣)

≤ 1
∑l∈Ck(X) αl

(
∑

i∈Ck(X)
∑

j∈C̄k(X)

αiα jβX

)
.

Since βX is the maximum value assumed by the nonnegative-valued kernels. Thus,
we obtain the desired result,

‖pC (Y | X)− pL (Y | X)‖∞ ≤ βX ∑
j∈C̄k(X)

α j.

ut

Remark 3.1 (Optimal k-subset). Since the error upper bound is directly propor-
tional to (1− ∑i∈Ck(X) αi), the k-subset with minimum error bound is one for
which ∑i∈Ck(X) αi is maximum. Thus, if the elements in the context set L (X) are
sorted in descending order of their priors p(li | X), i.e., αi, then the best subset
C ∗k (X) corresponds to the first k elements of this sorted sequence. The correspond-
ing error upper bound is βX (1−∑ j∈C ∗k (X) α j).

Remark 3.2 (Optimal choice of k). Without loss of generality, we can assume that
α1 ≥ α2 ≥ ·· · ≥ α|L (X)| represents the sorted sequence of context priors. If the er-
ror upper bound for a k-subset for any k ∈ {1,2, . . . , |L (X)|} is denoted by ek, then



10

ek = βX (1−∑
k
j=1 α j) using result in Remark 3.1. We can verify that, the sequence

{ek} is monotonically decreasing with e|L (X)| = 0. These values represent the accu-
racy of representation of the density. If in certain application we also have a model
complexity function g(k), then we can trade-off accuracy with complexity using a
criterion, such as Akaike Information Criterion [12], to find the optimal value of k,
which minimizes the chosen criterion.

The error bound derived in Theorem 3.2 is usually conservative, but this conser-
vative analysis leads to a simple expression for ek, which can readily be evaluated for
all k ∈ {1,2, . . . , |L (X)|}. Unlike the technique in Section 3.1, the subset selection
approach can give a relationship of subset size or compression ratio with maximum
error in estimation, which in turn can lead to choosing appropriate compression as
shown in Remark 3.2. However, the subset selection approach directly ignores the
contexts with low priors and does not use information of overlap/distance between
individual components, which might not be desirable for certain applications.

This section presented two techniques for compression of context sets along with
the main results of the upper bound of error due to approximation. The error bound
evaluated in first approach was in terms of statistical distance functions, whereas in
second case we derive a more intuitive bound in terms of the supremum norm. In
the next section, we will use these techniques for cardinality reduction of context
sets derived from multiple seismic sensor data for a target classification problem.

4 Experiments and Results

The procedure and results of experimental validation of the context set compres-
sion techniques are presented in this section. We conducted field experiments to
collect data from unattended ground sensors, such as seismic, acoustic, and passive
infrared sensors, for a border-crossing target detection and classification problem.
In this study, we use time-series data from two different seismic sensors which were
separated by 7 meters and the target is passing almost parallel to the line joining the
two sensors at various distances between 2 to 8 meters. The hypothesis set consists
of human target walking (x = 1) and human target running (x = 2) class and the goal
is to classify the activity of the target using data from both the seismic sensors, as
shown in Figure 2.

The dataset consists of 110 runs for walking and 118 runs for running. We par-
tition the sample into a training set and testing set consisting of 60% and 40% of
the data respectively. All results are generated for 10 different partitions of the sam-
ple and average results are available for the different steps. In the first step, low-
dimensional features are extracted from time-series data using symbolic dynamic
filtering (SDF) [19]. In SDF, we partition the measurement space into several re-
gions and assign a symbol to each region. The set of these symbols is known as the
alphabet. Bias is removed from the measurement time-series data to make it zero-
mean and it is also normalized to have unit variance to remove the effect of target
distance on signal amplitude. The resulting time-series data is then represented by a
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Fig. 2: Seismic sensor time series data for walking and running classes

symbol sequence and the statistics of evolution of this sequence is represented by a
D-Markov model [20]. In this analysis, we used alphabet size of 6 and depth D of 2,
resulting in a D-Markov model of 7 states after state-splitting and state-merging.
The left eigenvector of state transition matrix of the D-Markov model correspond-
ing to the eigenvalue of 1 is the stationary state probability vector, which is used
as a low-dimensional feature vector for each time-series data. The details on the
D-Markov model construction and feature extraction techniques are given in [20].

The second step is of unsupervised context learning which uses nonparametric
density estimation for obtaining machine-derived context sets from kernel-based
mixture models as shown in Section 2. The density estimation process is used for
computing the joint likelihood of obtaining a feature Y1 from seismic sensor 1 and
a feature Y2 from seismic sensor 2, given that the state is X . The kernels used in
the mixture modeling process are Gaussian with diagonal covariance matrix hav-
ing identical entries, i.e., Ki(y,yi) = (2πγ)−di/2exp(− (y−yi)

T(y−yi)
2γ2 ), where di is the

dimensionality of feature Yi for i = 1,2 and γ is the kernel shape parameter. Using
γ = 0.01, the resulting context sets for state 1 have cardinality (i.e., number of el-
ements in the set) has mean 14.80 and standard deviation 1.47, whereas for state
2, the cardinality has mean 20.60 and standard deviation 1.65. This analysis uses
maximum likelihood decision rule for classification that gives state estimate as
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(a) MCE for x = 1 (b) Subset selection for x = 1

(c) MCE for x = 2 (d) Subset selection for x = 2

Fig. 3: Mean and range of cardinality of the compressed context set

(a) MCE (b) Subset selection

Fig. 4: Mean and range of classification accuracy with compressed context sets

x̂ = argmax
x∈X

p(Y1,Y2 | x) = argmax
x∈X

∑
c∈C (x)

p(c|x)p(Y1,Y2 | x,c). (12)

For the machine-derived context set with γ = 0.01, the classification accuracy was
99.78% on average using the decision rule in (12).

In the third step, we use the two proposed context set cardinality reduction
techniques to obtain the compressed context sets. In the maximal clique enumer-
ation (MCE) technique, the contextual observation densities are multivariate Gaus-
sian distributions with mean µi(x) and identical covariance matrix Σ γ(x), which
is parametrized by the kernel shape parameter γ , thus p(Y | X = x,L = li) ∼
N (µi(x),Σ γ(x)). In order to construct the weight matrix, we use the closed form
expression of the Bhattacharyya distance for Gaussian densities [16], given as
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wi j(x) = d
(

p(Y | X = x,L = li), p(Y | X = x,L = l j)
)

=
1
8
(µi(x)−µ j(x))T

Σ γ(x)−1(µi(x)−µ j(x)) (13)

for i, j = 1,2, . . . , |L (x)|. The threshold parameter ε to be used in the
ConstructGraph function of the MCE approach is varied from 10−3 to 101 in
15 equal steps in the log scale. For the graph obtained from the ConstructGraph
function, we perform the maximal clique enumeration process and compute
minterms of the obtained set of cliques. Note that as threshold increases, the cardi-
nality of the compressed set shows a non-monotonic reducing trend in Figure 3a and
3c as number of cliques need not reduce monotonically with reduction of the edge
set of the graph. The Minterms procedure ensures by definition that the number of
cliques in the resulting set is upper-bounded by cardinality of the machine defined
context set, that is, |C (x)| ≤ |L (x)| for all x ∈X , thus, we will get some com-
pression. The classification performance summary using compressed context sets
using MCE is given in Figure 4a. The results show that for ε = 100.42 = 2.68, the
mean cardinality of context sets is |C (1)|= 7.8 and |C (2)|= 13.9, and the average
classification accuracy is same as the full context set. This result demonstrates that
cardinality reduction need not significantly affect the class performance. However,
reducing cardinality further by increasing ε leads to significant deterioration in per-
formance in this case. Cross-validation can be used to choose the appropriate value
for the threshold ε .

In the subset selection approach, the maximum size of the subset, denoted by k,
is varied from 2 to 16. If the original context set is smaller than the chosen set size,
we do not perform any other computation, else we choose the best k-subset using
Remark 3.1. Thus, Figure 3b and 3d shows a monotonic trend of context set size with
the chosen parameter k. The classification performance shows an increasing trend
with the size of context set. For k = 8, the performance is 99.56% and for k > 8, the
performance is as good as the original set. Thus, compression of context sets can be
achieved by subset selection techniques as well. A suitable context set size can be
chosen by using cross-validation, if classification accuracy is the selection criterion,
else one can use the method outlined in Remark 3.2 to choose context set size.

5 Conclusion

This chapter presents two different approaches to control the size of context sets
in an unsupervised learning setting. Learning approaches with density estimation
to obtain machine-defined context set from multi-modal sensor data is reviewed
in this chapter and the resulting density estimate is used in both the proposed ap-
proaches. One approach relies on the graph-theoretic concept of maximal clique
enumeration to identify contexts which affect the sensor data in a similar way and
it creates approximate equivalence classes of the machine-defined contexts. The up-
per bound of error introduced by this compression was identified. A subset selection
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approach is also presented in this chapter and the upper bound of error introduced
by subset selection is derived. In this approach, the prior probabilities over context
played an important role to obtain the best subset. We could derive a conservative
relation between the error upper bound and cardinality of the context set. These ap-
proaches were then used with seismic sensor data collected in field experiments for
walking-type classification of border crossing targets. The results validate that these
techniques are indeed useful for compression of context sets and one can maintain
similar classification performance with a much smaller context set. In future, an ag-
glomerative clustering approach that can provide an estimate of the error introduced
by compression will be explored to find a computationally inexpensive approach to
allow representation of data from all relevant regions in the measurement space.
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