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Abstract Real-time condition monitoring of complex dynamical systems is of criti-
cal importance for predictive maintenance. This chapter focuses on data-driven tech-
niques of fault diagnostics with an emphasis on real-time detection of anomalous
behavior in combustion systems. It presents the applications of well-known statisti-
cal learning techniques such as D-Markov modeling and hidden Markov modeling
(HMM) as possible data-driven solutions for anomaly detection in combustion sys-
tems. From the perspective of real-time monitoring and diagnostics, such statistical
tools are applicable to stochastic dynamical systems in general. Both D-Markov
and HMM algorithms have been validated on experimental data from a laboratory
apparatus, which is an electrically heated Rijke tube.

1 Introduction

Anomaly in a dynamical system is defined as deviation of the system performance
from the expected or nominal behavior. Gradual evolution of anomalies is usually a
consequence of slow parametric or non-parametric changes within the system, which
often leads to degraded performance and eventually premature end of the service
life. Therefore, anomaly detection is considered to be essential for sustaining order
and normalcy in human-engineered complex systems.
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The tasks of anomaly detection and failure prediction in engineering systems can
be broadly classified into two categories: model-based and dynamic data-driven. In
the model-based category, observer-induced techniques are commonly used, where
certain residuals or diagnostic signals are generated for use in (possibly) optimal or
adaptive threshold functions to detect the presence of faults. Residuals are generated
by estimating the system’s measured variables and using a deterministic (e.g., [1])
or a stochastic (e.g., [2]) observer. These observers are often designed based on a
linear model or a (Jacobian) linearization of the nonlinear system model at selected
operating points. These linear or linearized models are constructed as reasonable
approximations of local behavior of the complex system when operating under the
nominal condition; however, in case of evolving anomalies, the effects of system
nonlinearities may gradually become too large to be ignored or approximated. Fur-
thermore, it may be very difficult to model an anomalous system behavior, because
such anomalies (e.g., those due to incipient faults) are usually unknown and may
be too complex to model by solely relying on the fundamental laws of physics. Fur-
thermore, a fault might be entering the system in a more complex manner than as
an additive disturbance. These issues have motivated the study of anomaly detection
in dynamical systems using a dynamic data-driven approach, where the dependence
on a physics-based system model is de-emphasized; however, the knowledge of a
physics-based model, if available, may supplement the information generated from
the measured time-series data. In this context, an application example is presented
in this chapter.

The application addresses occurrence of thermoacoustic instabilities (TAI) in
combustion systems, which are caused by spontaneous excitation of one or more
natural modes of acoustic waves [3]. TAI are typically manifested by large-amplitude
self-sustained chaotic pressure oscillations in the combustion chamber [4], which
may lead to damage in mechanical structures if the pressure oscillations match one
of the the natural frequencies of the system. The time scales of TAI are on the order
of milliseconds, which must be mitigated by fast actuation of the control signals.
This mandates accurate detection of instabilities from short-length sensor data.
While traditional techniques for growth-ratemeasurement are reported in combustion
literature [5, 6], they are only suitable for online data-intensive computations and the
lengthy observation sequences are likely to cause large delays relative to the time
scale of TAI.

This chapter focuses on formulation and validation of a decision-making algo-
rithm for sensor-based automation (e.g., real-time monitoring and active control of
dynamical systems). These algorithms have been built upon the theory of hidden
Markov modeling (HMM) to extract features and classify patterns of the process be-
havior from short-length sensor time series. The underlying concept of the proposed
HMM-based algorithms is validated on an ensemble of experimental data from a
laboratory apparatus. The performance in each case is evaluated by comparison with
that of symbolic time series analysis (STSA) [7, 8, 9, 10]. The results show consistent
improvements for the proposed HMM-based method under varying configurations.
From these perspectives, themajor contributions of this chapter are delineated below.
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1. Development of HMM-based algorithms for feature extraction and pattern classi-
fication from short-length time series to facilitate real-time monitoring and active
control of dynamical systems.

2. Experimental validation of the anomaly detection algorithms in thermoacoustic
instabilities in combustors.

The rest of the chapter is organized as follows. Section 2 presents a brief decrip-
tion of the experimental apparatus. Section 3 provides an introduction to the theory
of hidden Markov modeling (HMM) and its usage for symbolization of time series.
Section 4 presents the technical approach of the reported work based on developing
HMM algorithms for feature extraction and pattern classification. Section 5 develops
a modification of traditional STSA methods for detecting anomalies in a dynami-
cal system. Section 6 presents HMM-based methodologies for early detection of
anomalous regimes for monitoring and control of TAI. Section 7 summarizes and
concludes the chapter along with recommendations for future research.

2 Experimental Apparatus

The data used in this article has been generated from a 1.5 m long electrically heated
horizontal Rijke tube with an external cross-section of 4"×4" with a wall thickness
of 0.25". A Parker P32E series air filter-regulator eliminates pressure fluctuations
and impurities. The flow rate is controlled using a 0 - 1000 SLPM Alicat Mass Flow
controller. The heating element is a square weave 40×40 nichromewiremesh, placed
at quarter length in the upstream end of the tube. The heating element is powered by
a programmable power supply from TDK Lambda. As a safety measure to prevent
accidental physical contact with the hot downstream end of the tube, the latter is
insulated. The pressure data is procured by a series of 8 acoustic sensors placed
inline and flushed with the inner wall of the tube. The sensor data is sampled at a rate
of 8192 Hz and the data acquisition process is automated through NI Labview 2016
in conjunction with DAQ devices from National Instruments. The acquired data is
filtered using a high-pass filter of cutoff frequency 40 Hz in order to eliminate low-
frequency components due to noise and acoustics in the ambient. More details about
the experimental setup and data acquisition can be found in the work by Mondal et
al [11].

Knowing the stability map of the system provides an operator with the prior idea
of which operating conditions lead to stable and unstable operations respectively.
Figure 2 depicts the stability map of the system at different operating conditions.
The operating conditions for the different experiments are different values of airflow
rate (Q) and primary heater power input (Ein). The current article is focused on
the online detection of instabilities in the transient growth phase of thermoacoustic
oscillations. Thermoacoustic instabilities are understood to be an outcome of the
subcritical Hopf bifurcations [12] due to which the system transits from a stable
operation to an unstable limit cycle behavior. This transient growth period is a rich
source of information for developing online detection algorithms. Early detection of
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Fig. 1: Experimental setup : Electrically heated Rijke tube (reproduced with permis-
sion from Mondal et al. [11])

imminent instabilities from the transient period can provide adequate lead time for
the control system to take appropriate actions in order to revert the system to a stable
mode of operation. For this purpose, in order to acquire the acoustic data through
the transient phase, Ein has been increased in such a fashion that the system passes
through the Hopf point, in way similar to the one followed by Rigas et al. [6]:

1. For every run, the air flow-rate (Q) has been set at a constant value. Different
runs have been performed with flow-rates ranging from 130 LPM to 250 LPM at
intervals of 20 LPM.

2. First the system has been heated to a steady state with a primary heater power
input (Ein) of ≈200 W.

3. Then the power input has been abruptly increased to a higher value that showed
limit cycle behavior.

4. Pressure data has been procured using the acoustic sensors for 30 seconds of
operation at a sampling rate of 8192 Hz.

Based on the initial mean temperature of the tube the steady state limit cycle
amplitude can vary, since the natural frequency increases with an increase in the
velocity of sound. This is depicted in Figure 3.When a lower initial mean temperature
of around 27oCwasmaintained, a lower frequencymode of instability (∼114Hz)was
observed to be excited for a range of flow rates marked with ’×’ in unshaded boxes
in Figure 2. The shaded boxes indicate the conditions when the higher frequency
unstable mode (∼131 Hz) and its harmonics were excited with a higher initial mean
temperature of about 75oC. The cases for which the system remains stable aremarked
as ’◦’.
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Fig. 2: Stability Map of the system as a function of Q and Ein. Emboldened box
margins indicate operating conditions for which the pressure signature is depicted
in Figure 3 (reproduced with permission from Mondal et al. [11]).

3 Mathematical Background

This section provides the background information on Hidden Markov modeling
(HMM) [13] and symbolic time series analysis (STSA) [7, 10] for anomaly detection
in dynamical systems1 [14].

3.1 Hidden Markov Modeling

HiddenMarkovmodeling (HMM) has found its applications in diverse fields [13, 11].
While the theory of HMM is presented in detail in [15], the key concepts are very
succinctly outlined below for the sake of completeness.

Consider a time series X = {x1, x2, . . . , xT }, xn ∈ RN . In HMM framework, X is
considered as a realization of a hiddenMarkov chain Z = {z1, z2, . . . , zT }, where zt is
one of the finitely many states Q , {q1, . . . , qM } at time t. In this setting, the HMM
is a triple λ = {A, B, π}, where A = [ai j] ∈ RM×M with ai j = p(zt+1 = qj |zt = qi);
B = [bj(x)] with bj(x) = p(x |z = qj); and π = [πi] ∈ R1×M with πi = p(z1 = qi)
at the initial time t = 1. It is noted that each row of A and the row vector π are
probability mass functions (i.e., all elements of π are non-negative and sum to 1 and
each row in A has non-negative elements and sums to 1), while each element of B is
a state-conditional probability density function defined for any observation x.

Given an observed data string X of length T , there are MT possible hidden state
paths (of length T) that could generate X; let Z be the set of all such hidden state

1 An anomaly is a deviation of the behavior of a physical process from its nominal (i.e., healthy)
condition; it often evolves as a result of gradual degradation in the system characteristics (e.g.,
structural durability). Early detection of anomalies is essential for enhancing the systemperformance
as well as for mitigation of potential catastrophic failures.
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Fig. 3: Representative plots of fluctuating pressure amplitudes (left) and their respec-
tive power spectral densities (right) at different operating conditions. (a)Ein=1400
W, Q=162 LPM. (b) Ein=600 W, Q=112 LPM. (c) Ein=1400 W, Q=228
LPM.(reproduced with permission from Mondal et al. [11])

paths. To compute the joint likelihood of X given an HMM λ, it is necessary to
marginalize over all these hidden state paths:

p(X |λ) =
∑
Z∈Z

p(X, Z |λ) (1)

To mitigate this computational complexity, the forward variable α is introduced as:

αn(i) , p(x1 x2 . . . xn, zn = qi |λ) (2)

This variable is recursively computed by using the forward procedure [13], and the
observation likelihood p(X |λ) is evaluated as:

p(X |λ) =
M∑
i=1

αT (i) (3)
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The Baum-Welch algorithm [13] is a standard (expectation maximization) tool
for training HMMs; it finds a triple λ∗ = {A, B, π} that locally maximizes the total
observation likelihood:

λ∗ = arg max
λ
{p(X |λ)} = arg max

λ

∑
Z∈Z

p(X, Z |λ) (4)

Also, the most probable hidden state path for a given data string X is computed
as:

Z∗(X) = arg max
Z∈Z

[p(Z |X, λ∗)] (5)

by using the (dynamic programming-based) Viterbi algorithm [15]. Both Eqs. (3)
and (5) are used here to define anomaly detection algorithms.

3.2 Symbolic Time Series Analysis

The authors now provide the background for symbolic time-series analysis (STSA)
and the construction of probabilistic finite state automata (PFSA) [16, 17]. The time
series of the measured signal is partitioned (or quantized) and then symbolized as
a symbol string. In this process, the signal space is partitioned into a finite number
of cells, where the number of cells is identically equal to the cardinality |Σ | of the
(symbol) alphabet Σ and a symbol from the alphabet Σ is assigned to each (signal)
value corresponding to the cell to which it belongs [18, 19]; details are reported
in [17]. Thus, a symbol is associated with that data point when the value of a data
point at a given instant of time is located within a particular cell. The following
definitions, which are available in standard literature (e.g., [16, 17]), are recalled
here for completeness of the chapter.

Definition 1 A finite state automaton (FSA) G, having a deterministic algebraic
structure, is a triple (Σ,Q, δ) where:

• Σ is a (nonempty) finite alphabet, i.e., its cardinality |Σ | is a positive integer.
• Q is a (nonempty) finite set of states, i.e., its cardinality |Q | is a positive integer..
• δ : Q × Σ→ Q is a state transition map.

Definition 2 A symbol block, also called a word, is a finite-length string of symbols
belonging to the alphabet Σ, where the length of a word w , s1s2 · · · s` with si ∈ Σ
is |w | = `, and the length of the empty word ε is |ε | = 0. The parameters of FSA are
extended as:

• The set of all words, constructed from symbols in Σ and including the empty
word ε , is denoted as Σ?.

• The set of all words, whose suffix (respectively, prefix) is the word w, is denoted
as Σ?w (respectively, wΣ?).
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• The set of all words of (finite) length `, where ` is a positive integer, is denoted
as Σ` .

Remark 1 A symbol string (or word) is generated from a (finite-length) time series
by symbolization.

Definition 3 A probabilistic finite state automaton (PFSA) K is a pair (G, π), where:

• The deterministic FSA G is called the underlying FSA of the PFSA K .
• The probability map π : Q × Σ → [0, 1] is called the morph function (also

known as symbol generation probability function) that satisfies the condition:∑
σ∈Σ π(q, σ) = 1 for all q ∈ Q.

• The
(
|Q | × |Σ |

)
morph matrix Π, which is converted into the (|Q | |Σ | × 1) morph

vector ν to serve as an extracted feature in the sequel, is generated by the morph
function π.

Equivalently, a PFSA is a quadruple K = (Σ,Q, δ, π).

For anomaly detection using STSA, a time series X of sensor data is first converted
into a symbol string. Then, PFSAs are constructed from the symbol strings, which
in turn generate low-dimensional feature vectors [9] that are used for detection of
anomalous patterns. The procedure is executed in the following steps.

1. Select a block of a time series, called the nominal block, for which the system is
in a healthy condition.

2. Construct a partition for the nominal block and convert it into a symbol string to
construct the nominal PFSA model. The features of PFSA model is computed by
frequency counting [10]. This yeilds the nominal feature vectors.

3. Select a new block of the time series up to the current time t and convert it into
a symbol string. This yields a new PFSA with a new (quasi-)stationary feature
vector o matrix of the system at time t.

4. Compute the anomaly at time t as the divergence between the nominal feature
(Fnom) and current feature vectors (Ft ):

µ(t) = d(Fnom, Ft ) (6)

where d(•, •) is an appropriately chosen distance norm (such as the Kullback-Leibler
divergence [20]).

4 HMM-based Algorithm for Feature Extraction and Pattern
Classification

This section presents novel anomaly detection methods, proposed by [14], used in
this work for early detection of TAI onset in combustion systems. The first one
amounts to a novel type of STSA technique, in which the time series is converted to
a symbol sequence with the maximum posterior probability by using the dynamic
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programming method. In the second method, an HMM is first trained using Baum-
Welch algorithm, and the likelihood of the observed time series conditioned on
the trained HMM is used as anomaly measure. More details are explained in the
following subsections.

4.1 An HMM-Based Partitioning Method for STSA

While most of the partitioning methods in STSA are state space partition, as ex-
plained in Subsection 3.2, a novel partitioning method was proposed by [14] that
symbolizes the time series in an optimal fashion without partitioning the state space.
In particular, the time series X is considered as a realization of a stochastic pro-
cess that is represented by an HMM, λ, with the alphabet Σ of hidden states, and
the HMM parameters are estimated by using the expectation maximization (Baum-
Welch) method. Then, out of |Σ |T possible symbol strings, the algorithm identifies
the one with maximum posterior probability, i.e.,

S∗ = arg max
S

P(S |X, λ) (7)

This is efficiently done by using the dynamic programming method (Viterbi algo-
rithm). This string is optimal in the sense of minimizing the string error rate in the
HMM framework [15]. The string is also expected to extract more information from
X about the underlying dynamical system and to have more power to capture sequen-
tial patterns in X than MEP and K-means. Unlike standard state space partitions, the
proposed partitioning jointly symbolizes the entire time series, with st at each time
t providing some information about the entire time series.

The proposed partitioning has been used to develop an STSA technique for
anomaly detection. This method is denoted as HMMD , as an abbreviation for HMM
D-Markovmachine, whose pseudocode is given in Algorithm 1, where the parameter
τ is a user-specified threshold, set to achieve a specified false positive rate (FPR)2.

4.2 A Likelihood-Based HMMMethod for Anomaly Detection

As we will experimentally demonstrate in the next subection, the HMMD method
outperforms other STSA methods. However, HMMD makes use of the most prob-

2 The Receiver Operating Characteristic (ROC) curves have been used in the current chapter for
assessing the detection performance by varying the parameter τ from −∞ to ∞ [21], where each
point in the ROC curve corresponds to a specific value of τ. Therefore, the threshold can be
determined from the ROC curve by specifying a maximum allowable FPR, which may depend on
the application. If the cost of a positive false alarm is low, the maximum FPR could be increased.
On the other hand, for applications where the cost for a positive false alarm is high, a small value
for the maximum FPR should be selected.
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Algorithm 1 HMM D-Markov (HMMD) Method
INPUT: Threshold τ and a data block xt:t+L .
OUTPUT: The decision on whether the system is nominal or anomalous.

1: Initiate the algorithm using a nominal block of data x∗t0:t0+L to find the nominal
model:

λ∗ = arg max
λ
{p(x∗t0:t0+L |λ)}

2: Use Viterbi algorithm to find the hidden state path:

z∗t0:t0+L = arg max
zt0:t0+L

{p(zt0:t0+L |x
∗
t0:t0+L, λ

∗)}

3: Using D-Markov machine, construct a PFSA based on z∗t0:t0+L as the symbol
string to obtain the nominal pattern (i.e., steady state probability vector) P∗.

4: Apply Steps 2 & 3, with x∗t0:t0+L replaced by xt:t+L , to find the pattern (i.e., state
probability vector) Pt .

5: Compute the anomaly statistic µ(t) ← d(Pt, P∗)
6: if µ(t) > τ then
7: declare the system as anomalous
8: else
9: declare the system as nominal
10: end if

able hidden state path only and ignores all other possible paths. This is a common
drawback in STSA which uses a hard symbol assignment to convert the time series
into a symbol string, rejecting all other possible symbol strings. Some of these re-
jected symbol stringsmay involve useful information about the underlying dynamical
system, which is not captured by the selected symbol string.

Alternatively, another HMM-based detection algorithm was proposed in [14],
which retains all possible hidden state paths. In particular, an HMM null model λ∗
is trained by using data from the nominal condition and, for each subsequent block
xt:t+L , the anomaly measure is given by the negative log-likelihood:

µ(t) , − log[p(xt:t+L |λ∗)] (8)

where Eq. (8) is obtained by summing over all hidden state paths, as given in Eq. (1).
In the sequel, this method is called HMML as an abbreviation for HMM Likelihood.
A pseudocode of HMML is presented in Algorithm 2. The intuition behind Eq.
(8) is as follows. Since the HMM is trained using observations generated in the
nominal regime, the likelihood of the time series measurements (after occurrence of
an anomaly) conditioned on the nominal HMM should decrease. Based on a properly
chosen threshold, one can decide whether change has occurred within the block or
not using such likelihoods.
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Algorithm 2 HMM Likelihood (HMML) Method
INPUT: Threshold τ and a data block xt:t+L .
OUTPUT: Decision on whether the system is nominal or anomalous.

1: Initiate the algorithm using a nominal block of data x∗t0:t0+L to find the nominal
HMM:

λ∗ = arg max
λ
{p(x∗t0:t0+L |λ)}

2: µ(t) ← − log[p(xt:t+L |λ∗)]
3: if µ(t) > τ then
4: declare the system as anomalous
5: else
6: declare the system as nominal
7: end if

Remark 2 The method HMML effectively considers all possible hidden state paths
if the Forward algorithm is used [15]. As demonstrated experimentally in Section
4.3, this method is considered richer than HMMD in the sense that the information
associated with all possible symbol strings is retained and utilized to extract relevant
features from the time series X .

4.3 Application to Online Detection of TAI in Combustion Systems

This section demonstrates the performance of Algorithms 1 and 2 for early detection
of transience onset to unstable combustion based on experiments performed on
Rijke tube [14]. Details on apparatus description and the how the experiments are
conducted are given in Section 6. Fifteen (15) experiments have been conducted
on the Rijke tube apparatus, where the process starts with the nominal or stable
behavior, and gradually becomes anomalous (or unstable). A time series of pressure
oscillations has been collected over 30 sec for each experiment, sampled at 8192
Hz, and filtered to attenuate the effects of low-frequency environmental acoustics;
typical profiles of the pressure time series are presented in Figure 4. Further details
regarding the apparatus and stability maps at different operating conditions can be
found in Section 6.

The performance of HMMD is evaluated by comparison with other STSA tech-
niques that use MEP [22, 23] and K-means [20, 24] for partitioning [14]. Then the
performance of HMML is compared with that of the best STSA method3. In each
experiment, the entire time series of sensor data is segmented into small disjoint
blocks. Based on the ground truth, each block in the experiment is labeled as:

3 The procedure in Algorithm 1 is followed in MEP and K-means-based algorithms with the
symbolization step being replaced by MEP or K-means [14].
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Fig. 4: Unsteady pressure signals showing the transience from stable (nominal) to
unstable limit cycle (anomalous) behavior. (a) Ein abruptly increased to 1800Wwith
Q = 210 LPM (b) Ein abruptly increased to 2000WwithQ = 250 LPM.(reproduced
with permission from Mondal et al. [11])

Class 0 if it belongs to the nominal state;
Class 1 if it belongs to an anomalous state.

For each algorithm, an area under the curve (AUC) of the respective receiver operat-
ing characteristic (ROC) [21] is obtained by summing results over all experiments,
which reflects the respective (anomaly detection) performance. For HMM methods,
hidden state set of cardinality 2 (i.e., Q = {q1, q2}) and Gaussian mixtures for the
state-conditional density function bj(x) = p(x |z = qj) have been used. The number
of mixture components is found based on the Bayesian Information Criterion (BIC)
[20]. The detection methods have been tested for quantification of the extent of insta-
bility in the setting of transient growth of acoustic oscillations by using short-length
blocks of time series.
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Table 1: Execution time (msec) for TAI Detection (L = 50)

K-means MEP HMMD HMML

D Mean Std Mean Std Mean Std Mean Std

2 3.3 0.095 1.700 0.037 4.600 0.8755 2.200 0.325

3 4.80 0.101 3.250 0.073 6.1715 0.507 2.200 0.325

4 8.15 0.137 6.659 0.029 9.4160 0.544 2.200 0.325

Figure 5 shows4 the area under the curve (AUC) performance and the ROC curves
of these methods using Markov depth D = 2, alphabet size |Σ | = 2 and data block
length L = 200. As seen in this figure, HMMD shows an improvement in the AUC
performance over K-means and MEP, with HMML showing a better performance
compared to HMMD , scoring an excellent AUC = 0.99229. The same methods
are tested again after reduction of the data block length to L = 50, which can be
considered as very short. The corresponding ROC curves are presented in Figures
6, 7, and 8 for D = 2, 3, and 4, respectively. Table 1 shows the mean and standard
deviation of the execution time (for both learning and inference) of these methods
over the 15 experiments conducted for D = 2, 3, and 4 with L = 50. It is seen in
Figures 6, 7, and 8 and Table 1 that HMML (which does not depend on the parameter
D) is generally faster5 and has a much better performance compared to the other
methods6 for all of these values of D, with AUC=0.9805. Furthermore, it is seen in
Figures 6, 7, and 8 that the performance of HMML is significantly superior to that of
HMMD , which has the best detection performance amongst STSA techniques. This
is consistent with what has been explained earlier in Subsection 4.2, because HMML

considers all hidden state paths of the learned HMM in contrast to HMMD , which
considers only the most likely hidden state path by discarding all other possible paths
of the learned HMM.

5 PFSA-based Algorithm for Feature Extraction and Pattern
Classification

In this section, the authors initially present a probabilistic finite state automaton
(PFSA) approach for online feature extraction from a time-series and the subse-
quent pattern classification and decision making. In this section, the advantages and
disadvantages of PFSA over HMM are also discussed.

4 The codes for implementing the HMM and STSA-based algorithms and the com-
bustion dataset used in this chapter are available at https://github.com/nfjasim/
HMM-codes-for-anomaly-detection.
5 The algorithms in this chapter were executed on a DELL PRECISION T3400, with an Intel(R)
Core(TM)2 Quad CPU Q9550 at 2.83 GHz, with 8 GB RAM, and running under Windows 7.
6 Increasing the depth D too much will degrade the STSA techniques’ performance due to the
generated large number of PFSA states for which there is not enough data points (only 50 points in
this case) for training. Some of these states may not be even visited with this small number of data
points [14].

https://github.com/nfjasim/HMM-codes-for-anomaly-detection
https://github.com/nfjasim/HMM-codes-for-anomaly-detection
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Fig. 5: ROC curves for detection of TAI onset, with |Σ | = 2, D = 2, and L = 200.
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Fig. 6: ROC curves for detection of TAI onset, with |Σ | = 2, D = 2, and L = 50.

5.1 Reconstruction of time-series from symbolized sequence

As mentioned in Subsection 3.2 using a PFSA involves symbolizing a segment of
the time-series using a partitioning method (such as MEP or Uniform as mentioned
in Subsection 3.2), and then generating a feature from the generated symbol string,
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Fig. 7: ROC curves for detection of TAI onset, with |Σ | = 2, D = 3, and L = 50.
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Fig. 8: ROC curves for detection of TAI onset, with |Σ | = 2, D = 4, and L = 50.

such as the morph matrix. The naive way to generate the PFSA is using a fre-
quency counting technique for computing the occurrence of each state and the state
transition. Selecting appropriate partitioning techniques, depths and alphabet sizes
greatly controls how well the PFSA captures the essential dynamics and nature of
the signals. A good measure of how well the partitioning method is performing is
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the reconstruction error. As the symbol string is supposed to be a representation of
the data, it is important to be able to reconstruct the original time series from the
symbol string given the following data:

• The symbol string
• The mean value of the time series corresponding to that state (computed by taking

the mean of the actual time-series values that are denoted by that state)

The L2 (Euclidian) norm difference between the reconstructed time-series and
the original time series is used as a measure of the reconstruction; normalizing
the time-series makes it easier to compare the norm differences. The normalized
reconstruction errors for 3 different partitioning methods, namely uniform, MEP and
K-Means are tabulated in Tab. 2, with the lowest error (best reconstruction) values
marked in bold font. In this analysis, the data is symbolized in a windowed fashion
and the partition boundaries are recomputed for every window after normalization
of the data segment. Recomputing the partitions for each segment greatly enhances
the accuracy of the PFSA as compared to those methods described in the previous
section. This increases computational time but by a negligible amount since the
entire formulation is algebraic and computation is very simple.

This analysis has been done over 2 sets of 40 time-series obtained from the
in-house Rijke tube experimental setup from 2 different pressure sensor locations,
one having high signal-to-noise ratio (SNR) and the other with significantly more
noise (i.e. low SNR). These signals are either initially stable and then become
unstable or vice-versa. For each, different alphabet sizes (|Σ |) have been considered
for demonstration purposes, while depth (D) has been maintained as D = 1 for
brevity with only 2 cases having D = 2, 3. The reported values are the averaged
values across all of the 40 time-series.

Table 2: Reconstruction Error for STSA

Low SNR Sensor High SNR Sensor
|Σ | D Sampling Data Uniform MEP K-Means Uniform MEP K-Means

Frequency Length Error Error Error Error Error Error
(×10−3) (×10−3) (×10−3) (×10−3) (×10−3) (×10−3)

2 1 100 Hz 82 points 0.1366 0.1439 0.1358 0.1564 0.1683 0.1560
4 1 100 Hz 82 points 0.0667 0.0773 0.0658 0.0763 0.0837 0.0748
6 1 100 Hz 82 points 0.0443 0.0504 0.0442 0.0503 0.0574 0.0499
2 1 50 Hz 164 points 0.1384 0.1404 0.1374 0.1580 0.1610 0.1576
4 1 50 Hz 164 points 0.0687 0.0722 0.0671 0.0776 0.0840 0.0755
6 1 50 Hz 164 points 0.0467 0.0503 0.0462 0.0518 0.0572 0.0510
6 2 50 Hz 164 points 0.0406 0.0427 0.0400 0.0436 0.0470 0.0425
6 2 100 Hz 82 points 0.0375 0.0411 0.0381 0.0417 0.0461 0.0406

The K-means partitioning method proves to be the most accurate across nearly all
combinations of alphabet size, depth and sensor. Also, in the given range, increasing
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alphabet size significantly improves performance as does increasing the depth from
1 to 2. However, increasing either of these too much causes degradation as described
in the previous section.

5.2 Online Anomaly Detection

In this subsection, 3methods of online anomaly detection using STSAbasedmethods
are described and results presented. These methods are:

• Norm difference method
• Entropy method
• ×-entropy method

Norm difference method: Using the generated symbol sequence, PFSAs can
be generated for each window. Using the features related to the PFSA, such as the
morph matrix, we can try capture the dynamics of the system. Using this feature,
classification can be done by first training a morph matrix for the nominal state by
taking themean of all themorphmatrices generated from thewindows corresponding
to the nominal state in the training set (the ground truth). During testing, a distance
function checks the distance of the morph matrix generated from the unknown data
segment. If the distance is above a threshold, the generated morph matrix is said to
be ’too distant’ from that corresponding to the nominal state and is said to be in an
anomalous state.

Entropymethod: In thismethod, themorphmatrix does not need to be computed,
instead a frequency counting technique is used to compute the probability of each
state, yielding a probability vector p of length equal to that of the number of states
|Q|. The Shannon entropy of the data is then computed as H = Σ |Q |

i=1 p(i) × log(p(i)).
For the purpose of detection and classification we utilize the fact that the stable
(nominal) regime is more noisy than the ordered limit cycle type behavior seen in
the off-nominal conditions [25]. Thus, by definition, the entropy should have a higher
value during the stable regime and a drop in the same must be an indication of a
transition to the anomalous regime [26].
×-entropy method: Very similar to the above method, the ×-entropy or cross-

entropy method uses the probability vectors from not one but 2 synchronous sensors
of the same or different type. ×-entropy ’is a measure of the dynamical complexity
of the temporal co-dependence from one symbol sequence to another’ [26]. As in
combustion physics, a slight shift from stable combustion toward thermo-acoustic
instability can be captured by an abrupt increase in the computed value of D-
Markov entropy rate. The ×-entropy of 2 synchronous signals is computed as H =
Σ
|Q |

i=1 p(i) × log(q(i)), where q is the probability vector of the states for the second
sensor.

The following figures give the ROC curves for various trials using the PFSA
norm-difference method. The data used is the same as that used in the previous
subsection. Figures 9, 10 and 11 compare different combinations of depths (D),
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data-window lengths and partitioning methods for the same alphabet size of |Σ | = 6
which was found to consistently produce better results as seen in Tab. 2. The data
was split into a 80:20 train-test split for this analysis.
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Fig. 9: ROC curves for combustion instability detection using PFSA having |Σ | = 6,
D = 1, and L = 50 comparing various partitioning methods.
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Fig. 10: ROC curves for combustion instability detection using PFSA having |Σ | = 6,
D = 1, and L = 100 comparing various partitioning methods.

In Fig. 12 the ROC curve for the entropy method is presented for a depth of 2 for
various alphabet sizes, while Fig. 13 reports the same for the ×-entropy method. The
first set of curves uses the other data set used in the previous section consisting of
145 time-series, each starting out stable and then going unstable due to a change in
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Fig. 11: ROC curves for combustion instability detection using PFSA having |Σ | = 6,
D = 2, and L = 50 comparing various partitioning methods.

operating characteristics, while the one for the ×-entropy method uses the one with
the 40 time-series as this data-set has values from 2 spatially-separated synchronous
sensors. The uniform partitioning technique is used. The reason for choosing this
is that although it does not have the highest reconstruction accuracy, it falls a very
close to the K-means technique and gives better AUC values in the ROC curves as
compared to the K-means technique. We do not use the MEP partitioning method,
as by the nature of its construction, the MEP technique yields uniform probability
across all classes and the entropy information is lost.
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Fig. 12: ROCcurves for combustion instability detection usingEntropy basedmethod
having D = 1, and using uniform partitioning technique, comparing various alphabet
sizes.
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Fig. 13: ROC curves for combustion instability detection using ×-Entropy based
method having D = 1, and using uniform partitioning technique, comparing various
alphabet sizes.

Finally, in Fig. 14 a comparison is presented between the ROC curves computed
for various window lengths. The depth is taken as 1, with |Σ | = 6 using the uniform
partitioning technique.
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Fig. 14: ROC curves for combustion instability detection using PFSA having |Σ | =
6, D = 1, and using uniform partitioning technique, comparing various windows
lengths.
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5.3 Comparison between PFSA and HMMmethods

Also, as we can see, by comparing to results from the previous section, by choosing
the partitioning method, alphabet size and depth intelligently high accuracy can be
reached, similar to the HMM methods proposed. PFSA methods are typically much
faster due to the simplicity and purely algebraic nature of the model. HMMs gain
popularity when there are multiple regimes which are very similar to each other. For
a binary classification, or for a multi-class classification that are well-separated, a
PFSA based classification algorithm is preferable. For very small data windows, a
PFSA is usable only if all the states are reached in the frequency counting, which
can be achieved by having lower alphabet size or depths, but if the dynamics is too
complex, low values of |Σ | and D might not be sufficient and that’s when HMMs
may be more useful. The subsequent section focuses on the HMM methods as a
method with wider applicability, specially when the classification is ternary and the
transient regime is to be separately identified and classified.

6 HMM-based Early Detection of Thermoacoustic Instabilities in
the Transient Regime

Early detection of instabilities is a problem that is closely related to the development
of active control algorithms to augment the existing passive control systems already
present in most commercial combustors. Since instabilities develop in the order
of milliseconds, automated detection algorithms must be data efficient in order to
detect a divergence from the nominal operation within the transient period before the
system goes into the limit cycle operating mode. This is because once the limit cycle
instabilities set in, the system goes into a self-driven feedback loop after which it
might be too late to implement control actions. Hence, the focus in this work would
be the detection of TAI with short windows of time series samples. The dataset
used for this purpose comprises 145 pressure time series data samples of 30 seconds
duration, each of which starts from a stable operation and ends in a limit cycle
instability.

This dataset has been randomly divided into training and test set in the ratio 80:20.
The training data provides the prior information for learning 3 HMMs: λ1, λ2 and λ3.
This learning phase is offline, and is performed a-priori to the online detection phase.
The learnt models are representatives of the different types of data available from the
system, albeit they are based on the data that has been procured by prior modeling
and/or experiments. The domain knowledge of the presence of stable, transient and
the limit cycle modes of operation in the Rijke tube apparatus allows us to train λ1
corresponding to the stable regime of operation, λ2 corresponding to the transient
growth regime and λ3 corresponding to the limit cycle unstable regime. This step
accomplishes a generative modeling of the system on the basis of the domain knowl-
edge procured by the experiments. Although the experiments have been performed
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to encompass a wide range of operating conditions, it is practically unfeasible to
perform experiments that cater to all the different conditions of operations that an
actual combustor may be subject to. So with a sufficiently dense set of training data
procured from different regimes, HMMs can be used to encapsulate the trend in the
behavioral characteristics of the system in the different regimes. That is to say that
λ1, for example, serves as a representative model for all different "types" of stable
behavior in the system (since the process is stochastic, no two datasets from the same
regime are identical). Such a "context-based" learning makes sense in this respect
because the pressure signature of the system in the limit cycle mode of operation,
for example, is expected to have a deterministic nature, which is characteristically
different from the noisy or chaotic nature generally exhibited in the stable regime.
Learning ensemble models for each regime ensures that the modeling is robust to
issues like variations in operational conditions and differences in sensor noise levels
for even a single mode of operation. This indicates that the method is robust to
changes in specific nominal conditions, since the learnt models already take into
account a wide range of variations of the conditions based on the range of operation
of the experiments.

The test data for instability detection purposes is chosen to be curtailed just before
the limit cycle instability sets in, and the performance of the classifier for instability
detection is based on successful online detection of the onset of the growth phase.
With the pre-trained models, given a window of time series data {y1, ...., yT }, we
calculate the following log-likelihood ratio (LLR):

Lk,1 = log
[
(p(y1:T )|λk)

(p(y1:T )|λ1)

]
= log(p(y1:T )|λk) − log(p(y1:T )|λ1) (9)

where k=2 or 3; and (p(y1:T )|λk) denotes the probability that the observed pressure
time series sequence is generated by model λk . This follows from the idea that as
the system deviates from a stable operating mode and passes through the bifurcation
point towards limit cycle instability, determinism in the form of periodicity sets in
the pressure signature, which can be quantified by a greater probability of being
generated from either λ2 or λ3 rather than λ1. This is reflected in the log-likelihood
ratio as defined in Equation 9 being positive.

We focus on short time-windows of time series data for this analysis, in order to
address the issues of real-time detection and control, where early detection of TAI
with short data-window could could provide appropriate lead-time for the actuators
to implement the control action. The process involved in the analysis is described as
follows:

1. First an appropriate window-size is chosen. In this work we have mostly focused
on window sizes that correspond to a time scale of ∼10-100 milliseconds.

2. Time series data in subsequent batches of the chosen window length is used to
calculate (p(y1:T )|λk), for k= 1, 2 and 3.

3. The log-likelihood ratio as defined by Equation 9 is chosen as the norm for
detecting instability onset. The ratio is calculated for each batch of data being
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analyzed and the online condition monitoring is performed based on the evolution
of the norm over batches of time series samples.
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Fig. 15: Evolution of [L2 − L1] with the pressure time series data(reproduced with
permission from Mondal et al. [11]).

Figures 15, 16 and 17 elucidate the process of online detection of TAI. Figure 15
shows the evolution of [L2 − L1] with the analysis being done on batches of a chosen
window length of 100 samples. It is clearly seen that there is a sharp rise in the LLR
as soon as the instability sets in. The discriminating property of LLR is demonstrated
by the fact that the order of magnitude in the change of [L2− L1] is almost 104. Thus,
LLR is very sensitive to the rate of growth in the time series data. More insights are
obtained by analyzing the variation of the three likelihoods with respect to λ1, λ2
and λ3 during Timeframes A and B as shown in Figure 15. Timeframe A spans from
around 1400-1600 time samples in Figure 15, which is a sample from the stable
phase of the data. This is reflected in Figure 16 by the highest relative likelihood
of the data corresponding to λ1 (indicated by the downfacing shaded triangles), as
compared with the likelihoods with respect to λ2 (shaded squares) and λ3 (circles).
The instability sets in around the 1700 s mark, hence Timeframe B spanning from
1600 - 1800 time samples contains the early phase of the transient period. As can
be seen in Figure 16, likelihood corresponding to model λ1 drops sharply during
the early transient period, a property that can be utilized for automated condition
monitoring of combustion systems for the onset of TAI.
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Fig. 16: Evolution of L1, L2 and L3 with the pressure samples in Timeframe A of
Figure 15 (reproduced with permission from Mondal et al. [11]).
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Fig. 17: Evolution of L1, L2 and L3 with the pressure samples in Timeframe B of
Figure 15(reproduced with permission from Mondal et al. [11]).

For analyzing the detection accuracy with respect to different window sizes,
we look into a Binary Hypothesis testing problem where our proposed framework
classifies each pressure time series window into either stable (Class A) or unstable
(Class B) based on the likelihood-ratio test:
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log
[
(p(y1:T )|λk=2 or 3)

(p(y1:T )|λ1)

]
β
≷
α
τ (10)

where τ is a threshold [27]. A commonly used criterion to choose an appropriate
threshold τ is by using the Receiver Operating Characteristic (ROC) curve. The ROC
curve is obtained by varying τ which provides a trade-off between the probability
of successful detection

(
pD , p[Decided Class = β|True Class = β]

)
and the

probability of false alarms
(
pF , p[Decided Class = β|True Class = α]

)
.

Fig. 18: ROC curves for different window-sizes(reproduced with permission from
Mondal et al. [11]).

Figure 18 shows a family of ROC curves for the proposed detection algo-
rithm using different window sizes of data, with the likelihood ratio chosen as

log
[
(p(y1:T ) |λ2)
(p(y1:T ) |λ1)

]
.Window sizes of 50, 100, 500 and 1000were chosen for this demon-

stration, which corresponds to time scales in the order of milliseconds considering
the sampling frequency of 8192 Hz. A commonly used method for comparing the
performance of different classifiers is by comparing the area under the ROC curve
(AUC) for each classifier [28]. Higher AUC is generally associated with a better
overall performance of a classifier. As depicted in Figure 18, the AUC increases
from 0.9541 to 0.9864 as the window size is increased from 50 to 1000, with pro-
gressively higher detection rates at specified false alarm rates. This can be accounted
to the fact that the classifier is expected to perform better with respect to classifying
larger lengths of observation sequences. The high classification accuracy even with
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about 6-60 milliseconds of data showcases a prospective application of the HMM
based algorithm for detecting instabilities in the early transient phase.

The information from the ROC curves (Figure 18) can be used to choose a
particular threshold τ corresponding to the trade-off between the detection rate
required by the user and the allowable false alarm in detection. This can be utilized
for regime detection, whereby the classifier has to decide which of the three pre-
trained regimes does a short data history belong to. We present the regime detection
accuracies in Table 3, where the threshold τ has been chosen using a ROC of a
classifier with [L3 − L1] as the log-likelihood ratio, with window size = 100. τ
has been chosen to correspond to about 92% detection rate with 10% allowable
false alarm from the ROC curve. The problem of regime detection is particularly
challenging in this respect because, with a very short history of data, amplitude-based
thresholding or frequency-based detection of instabilities might be inefficient.

Table 3: Classification Accuracy of the Three Regimes(reproduced with permission
from Mondal et al. [11])

Stable Regime Transient Regime Limit Cycle Regime
90% 91% 100%

This HMM-based algorithm can be naturally extended into problems like growth-
rate estimation from acoustic time series data in unstable systems. From an exper-
imental point of view, it is difficult to extract growth rate from dynamic data, as
discussed in the work by Moeck et al. [29]. An unstable combustion system gener-
ally exhibits a sudden jump from a stable operation regime to a limit cycle mode
through a bifurcation, thereby posing serious challenges for data-driven growth rate
extraction techniques to detect the growing trend in the data in that short period.
Recently, Rigas et al. [6, 30] and Jamieson et al. [30] have reported growth and de-
cay rate measurements using transient acoustic time series data from an electrically
heated Rijke tube, similar to the setup used in our current work. Their method is
based on extracting regions of linear growth and decay from the Hilbert envelope of
the time series signal, and measuring the growth rate by a linear fit in the identified
region. A comparison of the HMM-based algorithm with Hilbert envelope-based
growth rate extraction can be found in [11], whereby it has been shown that the
LLR-based growth rate estimation is significantly efficient in terms of computational
expense and data requirements.

From the application point of view, LLR-based regime detection is more versatile
as compared to the other data-driven methods reported in literature for prediction
of instabilities, e.g. Hurst exponent based characterization by Nair and Sujith [31],
minimum permutation entropy based analysis by Gotoda et al. [32] and ×D-Markov
entropy rate based thresholding by Sarkar et al. [33]. A comparison of time com-
plexities of the different data-driven methods can be found in [11]. In particular, a
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comparison with Hurst exponents as shown in Mondal et al. [11] indicated that the
computational time for LLR is comparable to the former when the data length is low.
But, Hurst exponents are typically used for characterizing instability using stationary
datasets, which might require more data to be statistically significant for computing
the different Hurst exponents. One major difference in the method proposed in this
chapter is that the HMM-based technique can be efficiently applied for transient
regimes of operations, whereas most of the other methods have stationarity assump-
tions in their applicability. Table 4 enlists the processing times of LLR calculation
for the different data lengths analyzed in this work, which shows the computational
efficiency of this method, making it potentially suitable for regime detection and
instability classification.

Table 4: Time Complexity of LLR calculation in the online phase(reproduced with
permission from Mondal et al. [11])

Number of samples (Fs = 8192 Hz) 50 100 500 1000
Data length (milliseconds) 6 12 60 120

Processing time (milliseconds) 4 6 12 23

7 Summary, Conclusions, and Future Research

This chapter has developed and validated a statisticalmodeling tool for early detection
of anomalous behavior leading to thermoacoustic instabilities (TAI) in combustion
systems. The underlying algorithms are built upon the concepts of symbolic time
series analysis (STSA) and hiddenMarkov modeling (HMM) to represent the typical
behavior of combustion systems at different operational regimes (e.g., steady-state,
transient, and unstable). The proposed method focuses on real-time applications
with measured short windows of pressure oscillations without compromising the
accuracy of TAI prediction and identification of the associated operational regimes.
The proposed method has been validated on experimental data from an electrically
heated Rijke tube apparatus for predicting the onset of thermoacoustic instabilities.

As shown in Section 4, HMM outperforms STSA for online anomaly detection of
TAI onset. In this case, the detection process is restricted to a low-delay tolerance,
in which an alphabet size of |Σ | = 2 has been employed in order to generate a
low-dimensional feature vector, given by the stationary state probability vector. This
requirement has been relaxed in Section 5, where an alphabet size of |Σ | = 6 has
been adopted, with the morph matrix being used as a feature vector. In this case,
detection performance is significantly improved at the expense of a minor increase
in the execution time. It is concluded that HMMs are more suited for identifying
classes that are very close to each other in terms of the signal texture. For example,
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the HMM outperforms STSA techniques for identification of transient regimes that
are similar in signal texture to the unsteady regime. For STSA to do this well, a larger
window size would be needed, which may not be feasible for online detection. If
the detection of the transient regime is of interest (as it is in this chapter), then the
HMM approach is preferable. On the other hand, if the major objective is to detect
an anomalous operation, then the STSA-based method is recommended. Anomaly
detection and regime identification are two important problems that need to be
addressed in any online monitoring and control system for mitigating TAI. Since
the training period of the STSA-based models are significantly cheaper than that
of HMM, they can be used efficiently for detecting anomalies in the system in
near real-time. The detected anomalous regimes can then be used as baselines for
learning different regime-specific HMMs in a slower time-scale. Since the testing
period of HMM is very fast, it can then be used online for regime classification, and
the information can be useful for implementation of the required control actions.
Moreover, it is worth noting that although the HMM-based detection algorithm has
been applied to Rijke tube acoustic instability data, the concept is equally applicable
for more complex combustion systems characteristic of turbulent combustors. Since
LLR is very sensitive to small variations in texture of the data, intermittent burst to
instabilities can be detected online, as they are expected to indicate a sharp drop in
the corresponding likelihood to a stable model with respect to an unstable model
as soon as the intermittency crops in. While there are many areas of theoretical
and experimental research to enhance the work reported in this chapter, the authors
suggest the following topics for future research:

1. Development of a unified detection framework by addressing other modes of
instabilities (e.g., lean blowouts).

2. Extension of the proposed methods for detection of instabilities in combustion
systems operating under different kinds of protocols.

3. Implementation of the proposed methods for (closed-loop) active control of the
laboratory-scale apparatus with actuators for controlling instabilities.

4. Extension of the probabilistic approach in the reported work to state estimation
for forecasting of future states to predict the temporal behavior.

5. Enhancement of computational efficiency of the proposed methods by using
inference-based learning of the probabilistic models.
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