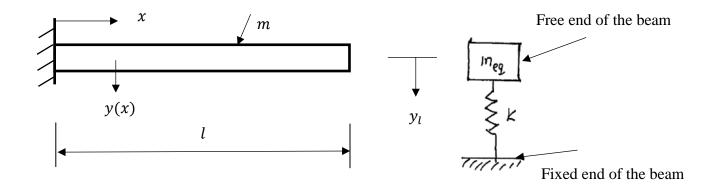

Name(s)

Homework 3 Due: In class, Friday 9/14


1. (10 pts) Examine the 1DOF system shown below. It may be reduced to a mass-spring model located at the location of m_1 as shown to the right of the system.

The equivalent mass, m_{eq} , of the model is given by:

a) $m_{eq} = m_1 + J_o + m_2$ b) $m_{eq} = m_1 + \frac{J_o}{a} + \frac{b}{a}m_2$ c) $m_{eq} = m_1 + \frac{J_o}{b} + \frac{a}{b}m_2$ d) $m_{eq} = m_1 + \frac{J_o}{a^2} + \frac{b^2}{a^2}m_2$ e) $m_{eq} = m_1 + \frac{J_o}{b^2} + \frac{a^2}{b^2}m_2$ 2. (10 pts) Consider a uniform-cross-section cantilever beam of mass m and length l shown below:

The shape of the beam deflection, y(x), under a static downward force at the free end may be expressed in terms of its deflection displacement at the free end, y_l , by the following equation:

$$y(x) = \frac{3lx^2 - x^3}{2l^3} y_l$$

The beam may be approximated by a mass-spring model shown to the right of the beam. The equivalent mass, m_{eq} , of the model is given by:

- a) $m_{eq} = 0.123m$ b) $m_{eq} = 0.236m$
- c) $m_{eq} = 0.344m$
- d) $m_{eq} = 0.457m$
- e) $m_{eq} = 0.529m$

3. (14 pts) Refer to the figure below of three torsional dampers on geared shafts. The gear on shaft 1 has n_1 teeth, the gear on shaft 2 has n_2 teeth, and the gear on shaft 3 has n_3 teeth. Let $\omega_1, \omega_2, \omega_3$ be the angular velocities of the three shafts and J_1, J_2, J_3 be the moments of inertia of the three rotating bodies. The system may be modeled as one inertia and one torsional damper (J_{eq} and C_{eq}) located at the third shaft (ie. shaft with n_3 and c_{t_3}).

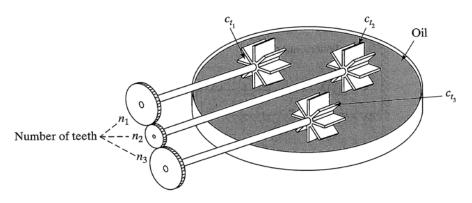


FIGURE 1.82 Dampers located on geared shafts.

(1) (2 pts) The angular velocity of shaft 3 is related to the angular velocity of shaft 1 by

a) $\omega_3 = (n_1 / n_3)\omega_1$ b) $\omega_3 = (n_3 / n_1)\omega_1$ c) $\omega_3 = (n_1 / n_3)^2 \omega_1$ d) $\omega_3 = (n_3 / n_1)^2 \omega_1$

(2) (5 pts) The inertia of the model is

a) $J_{eq} = (J_1 + J_2 + J_3)/3$ b) $J_{eq} = 3(J_1 + J_2 + J_3)$ c) $J_{eq} = \left(\frac{n_3}{n_1}J_1 + \frac{n_3}{n_2}J_2 + J_3\right)$ d) $J_{eq} = \left(\frac{n_3}{n_1}J_1^2 + \frac{n_3}{n_2}J_2^2 + J_3^2\right)^{1/2}$ e) $J_{eq} = \left(\frac{n_3^2}{n_1^2}J_1 + \frac{n_3^2}{n_2^2}J_2 + J_3\right)$ f) $J_{eq} = \left(\frac{n_3^2}{n_1^2}J_1^2 + \frac{n_3^2}{n_2^2}J_2^2 + J_3^2\right)^{1/2}$

(3) (7 pts) Use the energy method to determine the damping constant of the model, C_{eq} . Show essential work to receive credits.