Name(s)

Homework 4

Due: In class, Friday, 9/21

1. (12 pts) A 2DOF geometric model of a mechanical system is shown below. The system is driven by two inputs: force F_i on mass m_s and force F_c on the right part of damper c. The mass m_s can slide on the surface of mass m. The sliding surface is lubricated with oil so that the friction may be modeled using a viscous damper of damping coefficient c_s .

Draw the FBDs of all the model elements given below with *force and motion variables*. Make sure all FBDs are *complete* and *consistent* with the forces, F_{cs} , F_{ks} and F_k , labelled on the incomplete FBDs of the two masses. Pay attention to action/reaction pair of forces between two connected elements.

2 pts for each of the 6 FBDs.

2. (15 pts) Examine the SDOF geometric model and the FBDs below, where J_o is the moment of inertia of the crank with respect to the pivot "O".

(1) (9 pts) Write a complete set of elemental equations (1 pt each, no partial credit)

- a) The ele eq. for k_1 is: $F_{k1} =$
- b) The ele eq. for m is: $m\ddot{x} =$
- c) The ele eq. for J_o is: $J_o\ddot{\theta} =$
- d) The ele eq. for m_s is: $m_s \ddot{x}_s =$
- e) The ele eq. for J_s is: $J_s \ddot{\theta}_s =$

 $(J_s \text{ is the sphere moment of inertia about the center of sphere})$

- f) The ele eq. for k_2 is: $F_{k2} =$
- g) The motion relation between θ and x is: $\theta =$
- h) The motion relation between x_s and x is: $x_s =$
- i) The motion relation between θ_s and x is: $\theta_s =$
- (2) (6 pts) The governing equation of the system in x variable is

a)
$$\left(m + \frac{J_o}{l_1^2} + \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + (k_1 + k_2)x = 0$$

b) $\left(m + \frac{J_o}{l_1^2} + \frac{l_2^2}{l_1^2} \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + \left(k_1 + \frac{l_2^2}{l_1^2} k_2\right) x = 0$
c) $\left(m + \frac{J_o}{l_1^2} + \frac{l_2^2}{l_1^2} \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + (k_1 + k_2)x = 0$
d) $\left(m + \frac{J_o}{l_1^2} + \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + \left(\frac{l_2^2}{l_1^2} k_1 + k_2\right) x = 0$
e) $\left(m + \frac{J_o}{l_1^2} + \frac{l_2^2}{l_1^2} \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + \left(\frac{l_2^2}{l_1^2} k_1 + k_2\right) x = 0$
f) $\left(m + \frac{J_o}{l_1^2} + \frac{J_s + m_s r_s^2}{r_s^2}\right) \ddot{x} + \left(k_1 + \frac{l_2^2}{l_1^2} k_2\right) x = 0$

3. (10 pts) Examine the SDOF geometric model below:

(1) (3 pts) The moment of inertia of the bar about the pivot point O is

- a) $J_o = \frac{1}{12}ml^2$ b) $J_o = \frac{7}{48}ml^2$ c) $J_o = \frac{5}{24}ml^2$ d) $J_o = \frac{1}{3}ml^2$ e) $J_o = ml^2$
- (2) (7 pts) The governing equation of the system is
- a) $7m\ddot{\theta} + 24k\theta = 0$
- b) $7m\ddot{\theta} + 33k\theta = 0$
- c) $7m\ddot{\theta} + 48k\theta = 0$
- d) $5m\ddot{\theta} + 24k\theta = 0$
- e) $5m\ddot{\theta} + 33k\theta = 0$
- f) $5m\ddot{\theta} + 48k\theta = 0$