
Homework 5

Due: In class, Friday, 9/28

1. (10 pts) For the system shown below, let $l = 1.0 \,\mathrm{m}$, a = 0.45 l, $k_t = 500 \,\mathrm{N}$ -m/rad and $k_1 = k_2 = 1000$ N/m. Also, the mass of the bar is m = 10 kg and gravity excluded.

(1) (3 pts) The moment of inertia of the bar in kg-m² with respect to the pivot O is:

(a)
$$J_o = 3.33$$

b)
$$J_o = 3.97$$

c)
$$J_o = 4.71$$

d)
$$J_o = 5.82$$

e)
$$J_o = 6.65$$

sol: The moment of inertia of the har about its conter C is:

<27 energy method.

=> Jege = Jo

豆产= +k02+ +k1X1++ + k2X1

=== (kt + a2k1 + lk1) 02

= \frac{1}{40^2 + \frac{1}{2}k_1(a\theta)^2 + \frac{1}{2}k_2(l\theta)^2}

=> ken = kt + a2k, + l2k2 --- (1)

$$J_C = \frac{1}{12} m \ell^2$$

According to parallel axis theorem.

$$= \perp mL^2$$

$$=\frac{1}{3}mL^{2}$$

Thus, $J_{o}=\frac{1}{3}\cdot 10 \text{ kg} \cdot (m)^{2}=3.33 \text{ kg} \cdot m^{2}$

(2) (7 pts) The natural frequency of the system in rad/s is:

sd: (1) FBD method.

a)
$$\omega_n = 12.3$$

b)
$$\omega_n = 22.6$$

c)
$$\omega_n = 33.1$$

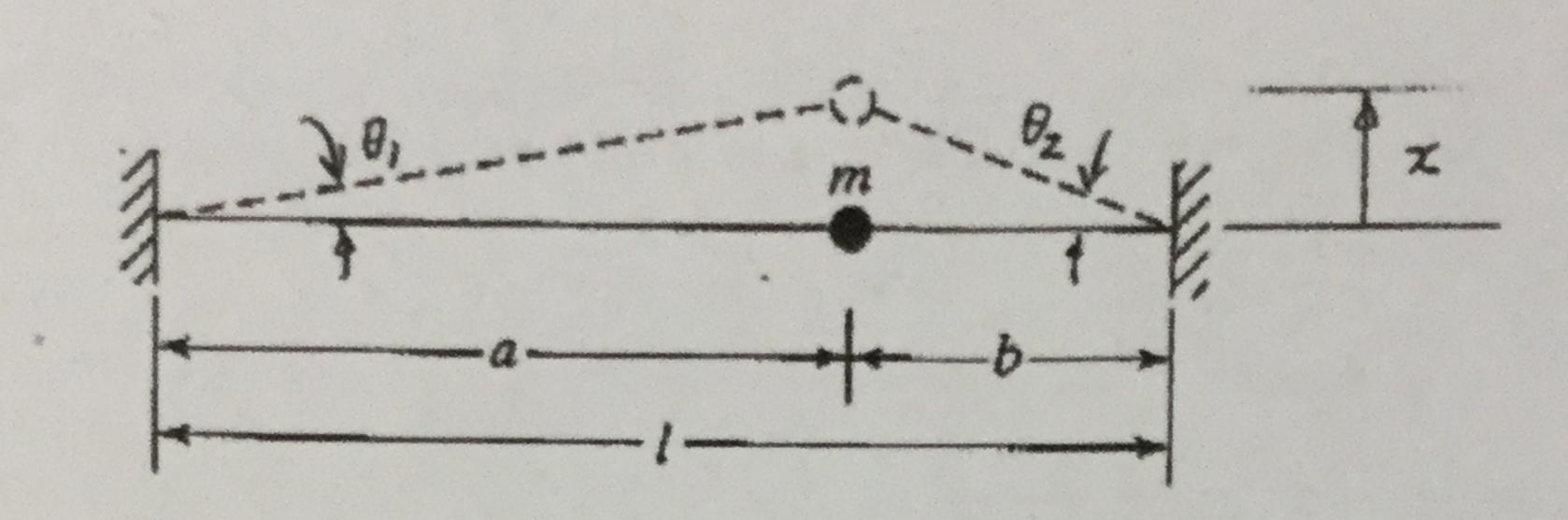
d)
$$\omega_n = 41.5$$

e)
$$\omega_n = 54.2$$

$$K_2$$
: $FK_2 = K_2 X_2 - 0$
 K_4 : $Ft = K_4 \theta - 0$

and:
$$x_1 = a\theta - - 6$$

 $x_2 = l\theta - - 6$


From OOBOBO, get governing equation:

From (1),(2), get
$$W_n = \int \frac{k_{mn}}{J_{equ}}$$
. (3)

| substitute values into (1)(2)(3), get $W_n = 21$, brad/s.

$$\Rightarrow W_n = \int \frac{k_{mn}}{J_{equ}} = \int \frac{k_b + k_1 a^2 + k_2 b^2}{J_o} \frac{\text{substitute values into}}{J_o} \frac{1}{J_o} \frac$$

2. (10pts) A ball of mass is attached to an elastic cord as shown below. The cord is stretched with a tension T. Assume the tension remains the same as the mass is pulled up by a small amount (ie. $\sin \theta = \tan \theta = \theta$). Furthermore, gravity is neglected.

(1) (3 pts) The magnitude and direction of the vertical force, F_m , on the mass by the cord tension as a function of the displacement of the mass, x, is given by:

(a)
$$F_m = -\left(\frac{Tl}{ab}\right)x$$

b)
$$F_m = -\left(\frac{2Tl}{ab}\right)x$$

c)
$$F_m = -\left(\frac{0.7Tl}{ab}\right)x$$

d)
$$F_m = \left(\frac{Tl}{ab}\right) x$$

e)
$$F_m = \left(\frac{2Tl}{ab}\right) x$$

f)
$$F_m = \left(\frac{0.7Tl}{ab}\right) x$$

since the direction of Fm is opposite to the direction of x Fm=(共)(-X)=-(部)X

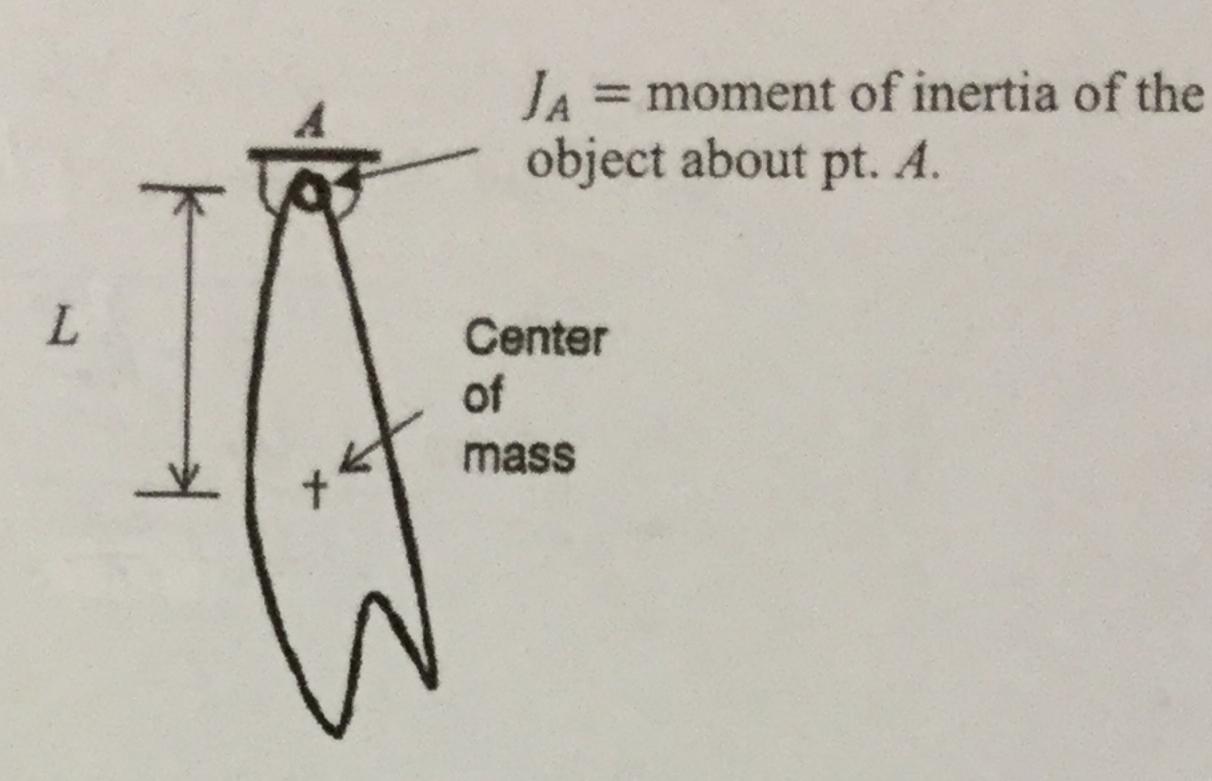
(2) (7 pts) Let l = 1.0 m, a = 0.7l, b = 0.3l, m = 0.1 kg and T = 100 N. If the ball is pulled up by an amount of $x_0 = 1.0$ cm and then let go, the number of times the ball will bounce up and down in one second is equal to:

(a)
$$N = 11$$

b)
$$N = 21$$

c)
$$N = 31$$

d)
$$N = 41$$


e)
$$N = 51$$

sol: element equation:

$$m: Fm = m\ddot{x}$$
 $\Rightarrow m\ddot{x} + \frac{t}{ab}x = 0$

The treguency of oscillation is: f = con (cycles | second) Take the values into f

3. (25 pts) A complex-shaped object of mass m is shown below. When it is suspended like a pendulum at point A, it swings 60 times in one minute.

(1) (2pts) The natural frequency of the system in rad/s is

a)
$$\omega_n = \pi/2$$

b)
$$\omega_n = \pi$$

(c)
$$\omega_n = 2\pi$$

d)
$$\omega_n = 4\pi$$

e)
$$\omega_n = 1.0$$

- sol: Since the pendulum swings 60 times per minute, i.e. Itime por second $f = \frac{wn}{2\pi} = 1$ $\Rightarrow wn = 2\pi -- 1$
- (2) (4 pts) The governing equation for the pendulum in free swing motion is

(a)
$$J_A\ddot{\theta} + mgL\theta = 0$$

b)
$$L\ddot{\theta} + g\theta = 0$$

c)
$$2J_A\ddot{\theta} + mgL\theta = 0$$

d)
$$2L\ddot{\theta} + g\theta = 0$$

e)
$$J_A\ddot{\theta} + 2mgL\theta = 0$$

(3) (5 pts) Let m = 2.0 kg and L = 0.2 m. The moment of inertia of the object about its center of mass in kg-m² is about equal to

a)
$$J_{cg} = 0.009$$

(b)
$$J_{cg} = 0.019$$

c)
$$J_{cg} = 0.038$$

d)
$$J_{cg} = 0.076$$

e)
$$J_{cg} = 0.098$$

$$\Rightarrow$$
 $J_A = \frac{mgL}{4\pi^2}$, take values into it, $J_A \approx 0.099 \text{ kg} \cdot \text{m}^2$

"
$$J_c = 0.099 \, \text{kgm}^2 - 2 \, \text{lg} \cdot (\alpha 2 \, \text{m})^2 = 0.019 \, \text{lg m}^2$$
.

As worked out in class, the free vibration (ie. pendulum swing) is given by $\theta(t) = A\sin(\omega_n t + \phi)$. Suppose the pendulum is displaced by an angle of $\theta_0 = 0.1$ rad and is released with a velocity of $\dot{\theta}_0 = -0.5$ rad/s.

(4) (2pts) The amplitude of the pendulum swing in rad is about equal to

a)
$$A = 0.050$$

sol: use the results introduced in our class,

b)
$$A = 0.098$$

$$A = \int_{0}^{\infty} y_{0}^{2} + \left(\frac{\dot{y}_{0}}{\dot{y}_{0}}\right)^{2}$$
, where Yo and Yo are ICs
From (1), $u_{0} = 2\pi$

(c)
$$A = 0.128$$

From (1),
$$Un = 2\pi$$

 $\Rightarrow A = \int_{0.1}^{0.1} + \left(\frac{-0.51^2}{2\pi}\right)^2 = 0.128$

d)
$$A = 0.187$$

e)
$$A = 0.245$$

(5) (2pts) The phase angle in rad of the pendulum swing is about equal to

a)
$$\phi = \pi/4$$

b)
$$\phi = 0.94$$

$$\phi = \tan^{-1}(\frac{w_n y_o}{\hat{y}_o}) = \begin{cases} \tan^{-1} \frac{w_n y_o}{\hat{y}_o}, \ \hat{y}_o > 0 \\ (\tan^{-1} \frac{w_n y_o}{\hat{y}_o}) + \Pi, \ \hat{y}_o < 0 \end{cases}$$

(c)
$$\phi = 2.24$$

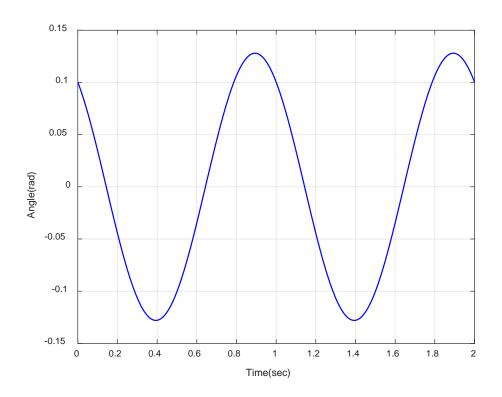
d) $\phi = -1.54$

$$\Rightarrow \phi = \tan^{-1} \frac{0.1 \cdot 2\pi}{-0.5} = \tan^{-1} \frac{0.2\pi}{-0.5} + \pi \approx 2.24$$

e)
$$\phi = -2.76$$

(5) (10pts) Write a simple matlab program to calculate θ vs. t and plot the pendulum swing for two periods of pendulum swing. Make sure your plot shows a smooth curve. Also, make sure your plot matches the given ICs to be correct. Label your plot including units. Submit your matlab program along with results. (the class website has a simple matlab guide)

sol: shown as next page.


(5) Sol:

```
% {
    * Course:ME370
    * Name:Liming Gao
    * Date: September 04, 2018
    *
    * Program Description: Plot the vibration for pendulum swing.
    *}

clear all
close all

t= 0:0.01:2; %Set time of two periods
y=0.128*sin(2*pi*t+2.24); %Use vibration equation to calculate angle

plot(t,y,'b','LineWidth',1); %plot the curve
xlabel('Time(sec)')
ylabel('Angle(rad)')
grid on
```


Fiugre 1 The curve of θ vs. t