
Name(s)

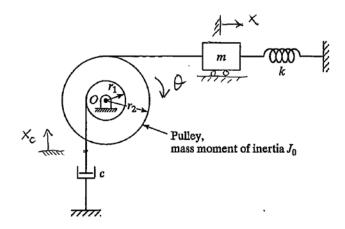
Homework 6

Due: In class, Friday, Oct. 5

1. (15 pts) Examine the geometric model shown below. The wheel rolls without slip making the model SDOF. The spring k_2 is connected to the wheel at a location "*a*" above the center of the wheel.

(1) (4 pts) Draw the *FBD* for the wheel and write the two *ele eqs*, one for m and the other for J_o .

(2) (2 pts) The motion relation between x_k and x is


a) $x_k = x$ b) $x_k = (a/r)x$ c) $x_k = (r/a)x$ d) $x_k = ((a+r)/r)x$

e) $x_k = ((a+r)/a)x$

(3) (9 pts) The math model of the system in x is

a)
$$(m + m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + k_2(a+r)^2/r^2)x = 0$$

b) $(m + m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + k_2(a+r)/r)x = 0$
c) $((a/r)m + m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + (a+r)^2/r^2)x = 0$
d) $((a/r)m + m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + k_2(a+r)/r)x = 0$
e) $(m + (a/r)m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + (a+r)^2/r^2)x = 0$
f) $(m + (a/r)m_1 + J_o/r^2)\ddot{x} + c\dot{x} + (k_1 + k_2(a+r)/r)x = 0$

2. (12 pts) Refer to the geometric model below.

(1) (2 pts) The motion relation between x_c and x is

a) $x_c = x$ b) $x_c = \frac{r_1}{r_2} x$

c)
$$x_c = \frac{r_2}{r_1} x$$
 d) $x_c = \frac{r_1 + r_2}{r_2} x$

e)
$$x_c = \frac{r_2}{r_1 + r_2} x$$

- (2) (10 pts) Let m = 9 kg, $J_o = 4$ kg-m², $r_1 = 0.1$ m and $r_2 = 0.25$ m. The math model of the system in θ is
- a) $656.25\ddot{\theta} + 2c\dot{\theta} + 16.74k\theta = 0$
- b) $656.25\ddot{\theta} + c\dot{\theta} + 16.74k\theta = 0$
- c) $456.25\ddot{\theta} + c\dot{\theta} + 6.25k\theta = 0$
- d) $456.25\ddot{\theta} + 4c\dot{\theta} + 26.83k\theta = 0$
- e) $352.74\ddot{\theta} + 2c\dot{\theta} + 6.25k\theta = 0$
- f) $352.74\ddot{\theta} + 4c\dot{\theta} + 26.83k\theta = 0$